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Abstract
Pseudo-exhaustive testing (PET) offers a simple solution to test-

ing complex circuits and systems [12]. However, PET suffers long
testing time for test generation and high area overhead of test hard-
ware. The pipelined pseudo-exhaustive testing (PPET) achieves
fast testing time with high fault coverage by pipelining test vectors
and test responses among partitioned circuit segments [15]. To
reduce hardware overhead in PPET, a novel approach for imple-
menting area-efficient PPET is presented. Circuit partitioning with
retiming is used to convert designs for PPET. Experimental results
show that this approach exhibits an average of 20% area reduction
over non-retimed testable circuits. Our algorithm offers high utili-
zation of existing flip-flops (FFs) and provides a framework for
further performance optimization.

1  Introduction
Pipelined pseudo-exhaustive testing (PPET) [8] was proposed

as an efficient self-testing scheme for high fault coverage on stuck
faults. In this testing methodology, test registers are grouped into
cascadable multiple-input shift registers (MISRs), namely the Cas-
cadable Built-in Testers (CBITs), to perform dual-mode pseudo-
exhaustive test pattern generation (TPG) and parallel signature
analysis (PSA). A scan chain links all the test registers for initial-
ization and signatures read-out.

During self-testing mode, non-overlapping segments of logic
are tested concurrently by pairs of distinct CBITs. In each pair, the
proceeding CBIT generates test patterns and the succeeding CBIT
reads outputs of circuit-under-test (CUT) for deriving test signa-
ture. The dual-mode capability enables the second CBIT (perform-
ing PSA) to be the first CBIT (performing TPG) ofother pairs in
PPET.

Figure 1(a) shows circuit configuration with CBITs in self-test-
ing mode. Circuit segments, CUT1,..., CUT4, are results of circuit
partitioning and surrounded by CBITs. Test patterns and test
responses propagate to CBITs through existing data paths. Since
all CUTs are tested concurrently after global initialization of
CBITs, the total testing time is dominated by the CUT with the
largest set of test vectors. Because number of test vectors grows
exponentially with CBIT width, the maximum width of CBITs
determines the overall testing time (Figure 1(b)).

The validity of PPET in realistic circuit is determined by two
criteria: the saving in testing time needs to be significant and the
additional test hardware is minimal. Testing time can be improved
when circuit partitioning techniques are used to reduce the width
of CBITs with a given number of segments. A dual formulation of
the partitioning is to set the upper bound on CBIT width while
minimizing the number of segments. However, both problems
have been shown to beNP complete [4]. Heuristics have been pro-
posed to find the smallest set of cut nets to minimize additional test
hardware in complex circuits [4][13].

Test hardware can be warranted throughlegal retiming [1] by
repositioning, adding, or removing flip-flops (FFs) while preserv-

ing functionality of the new circuit in normal operation. Functional
FFs are moved to desired CBIT locations to construct test paths for
self testing. If the number of the suggested test FFs exceeds that
provided by retiming, extra multiplexing circuitry is needed
between existing data paths in normal operation and the additional
test FFs for self-testing mode.

Previous works on retiming for improved testability were pro-
posed for partial scan [2][3]. Partial scannable FF configuration is
identified as the minimum feedback vertex set (MFVS) of the FFs
in a circuit under test. Retiming is used to transform the existing
FF assignment to timing/area optimal partial scannable design.

In this work, a scheme that combines circuit partitioning algo-
rithm with retiming is presented for test hardware savings for
implementing PPET. A set of minimal cut nets which dissect the
circuit into disjoint clusters is obtained by the multicommodity
flow partitioning algorithm [6]. Legal retiming is then used to add,
delete, or move existing functional registers to CBIT locations.
Additional test registers not allocated by retiming are recognized.
CBIT assignment is performed through a greedy approach to find
the best area savings on testing smaller clusters. Experimental
results show flow-based circuit segmentation with retiming for
PPET achieves an average of 20% area reduction over that without
retiming technique.

The paper is organized as follows: Section 2 shows the theoreti-
cal modeling of the area-efficient PPET problem with cost func-
tion and constraints imposed by legal retiming. Section 3 explains
our heuristics in detail for solving this optimization problem.
Experimental results on ISCAS89 benchmark circuits [5] are dis-
cussed in Section 4. Trade-offs in test hardware overhead among
various testing time requirements are demonstrated. Concluding
remarks are briefed in Section 5.

2  Problem Statement
In the following sections, a formal representation of the area-

optimal partitioning for PPET with retiming is derived.
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2.1  Graph Representation
A synchronous circuit can be represented by a directed graph,

, where  is the set of nodes including regis-
ters, , and combinational components, , and  is the set of
directed edges describing signal flows from source to sink(s)
among nodes.

Figure 2 shows an example of constructing  from a
given circuit netlist. The schematic representation of a synchro-
nous circuit, s27 from ISCAS89 benchmark [5], is depicted in Fig-
ure 2(a). Directed graph representation using the multi-pin model
[6] is illustrated in Figure 2(b). Under the multi-pin model, each
net is represented by a directed edge with branches from the source
module indicating fan-outs to different nodes. For the example in
Figure 2(a), this is shown as the out-going edges from node 1, 4, 7,
and 10 with multiple fan-outs in Figure 2(b).

2.2  Retiming Principles
Retiming is an operation on synchronous circuits which deletes

or adds registers to a circuit to meet certain performance con-
straint(s) [1]. Let  be a retiming which transforms the
or ig ina l  c i r cu i t , ,  to  a  new c i rcu i t ,

, by adding or removing registers, , of
through an integer-valued vertex-labeling procedure on . Fur-
thermore, let  denote the number of reg-
isters for a given path in . We will use the following retiming
principles from [1] in the application to area efficient PPET:
Lemma 1.Let  be a retiming on a synchronous circuit,

. If , is
a path in , let  represent the number of registers in .
Thus we have for each path ,

. (1)

Corollary 2. For any directed cycle  in , if  is a retiming on
, then

(2)

Corollary 3. A legal retiming on  means
, for all paths in the retimed

circuit, . (3)

2.3  Input Constraint Partitioning for PPET on Sequential
Circuits

The implementation of PPET according to a specific testing
time on circuits with high fan-ins can be modeled as the classical
m-way partitioning problem. When the given testing time is

 clock cycles, the largest input size of a CUT can not
exceedN in order to warrant the user-specified testing time. This is
the partition with input constraint (PIC) problem [4], which has
been proven to beNP-complete.

Let  be a function which represents the number of
inputs to a circuit described by a directed graph . The
input-constraintm-way partition,  is an
operation on graph  with a given positive integer, ,
such  tha t  fo r  each ,

, and . No overlapping/gate-sharing
among ’s [7] is allowed in PPET since each CBIT is dedicated
to pseudo-exhaustive test pattern generation (TPG) for one CUT.
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Overlapping CUTs cannot guarantee high fault coverage in
 clock cycles under PPET.

For each cut net, an A_CELL [8] is placed at the cut location.
Figure 3(a) shows the basic design of an A_CELL. For CMOS
techno logy  [14 ] ,  the  a rea  o f  an  A_CELL i s

 times that of a DFF. There are one 2-
input AND (3 area units), one 2-input NOR (2 area units), and one
2-input XOR (4 area units) gates added to the input of a DFF
(7area units). If an A_CELL is converted by a functional register
through retiming, only the three logic gates are added. Therefore,
the area overhead is given by the three gates which is 0.9 times of
a DFF as the shaded gates shown in Figure 3(b).

A 2-to-1 MUX (3 area units) should be added when an A_CELL
replaces a cut net without utilizing existing DFFs as prohibited by
Eq. (2). Figure 3(c) shows the multiplexed data paths both for nor-
mal operation: , and for self testing mode:

. The total area
of an A_CELL and a MUX is 2.3 times of a DFF without consider-
ing additional routing.

Generally, a modified register (e.g., the A_CELL in the CBIT
design) is placed on a cut net and grouped later into a CBIT. As
discussed in Section 2.2, additional registers can be added arbi-
trarily for PPET based on Eq. (1) of the retiming principles. How-
ever, the number of registers in loops should follow Eq. (2) to
guaranteelegal retiming. This restricts the number of cut nets (i.e.,
the suggested location of registers for PPET) in loops (orstrongly
connected components [9]). Consequently, additional multiplexing
circuitry between normal operation and self-testing mode is
needed when there are more registers required by PPET than exist-
ing number of FFs in loops.

Let  represent the number of cuts on the edge set, .
 if edge  is cut, otherwise . The number of

cut nets on a cyclic path  in  is then . Anm-way PIC for
PPET can be legally retimed when Eq. (3) is satisfied. For a cycle

, there are  multiplexed registers added for PPET if
. No multiplexing circuitry is needed when .

2.4  The Object Function
The main objective of this implementation of PPET on sequen-

tial circuits is to minimize total CBIT area according to user-speci-
fied testing time. Table 1 lists relative area cost comparing to that
of a non-self-test D-type flip-flop (DFF) for various sizes of
CBITs. Column 3 specifies the estimated area,pk, of each CBIT
type,dk, with respect to that of a simple DFF when each register is
replaced by an A_CELL and the feedback polynomial is primitive.
Column 4 shows less bit-wise cost,σk, for biggerlk. The reason is
that simple primitive feedback polynomial which gives smaller
area cost for a largerlk may exist. However, testing time grows
exponentially with increasinglk as shown in Figure 4. Therefore,
d4 andd5 are candidates for maximal CUT sizes which give both
feasible testing time and better area savings in PPET.

Table 1:  Area Cost for Various CBIT Sizes

CBIT Type
(dk)

CBIT Length
(lk)

 Area/DFF
(pk)

pk/Bit (σk)

d1 4 8.14 2.04
d2 8 16.68 2.09
d3 12 24.48 2.04
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Figure 3: Schematic of the A_CELL
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To formulate the area-minimal constraint for PIC with retiming,
let nk denote the number of typedk CBITs,  be the total cost of
combinations of CBITs, andq be the total number of CBITs. The
goal is to minimize

, where (4)

with constraints (including primary inputs)
, for each partition (5)

and for each loop , , (6)
where  is an integer-valued multiplication factor manipulat-
ing number of cuts on loop .

3  The Heuristics
The first version of our PPET implementation on structural cir-

cuit netlists is called Merced. Table 2 demonstrates the top-level
design of the software. STEP 1 reads in the circuit netlist and con-
verts it to an internal data structure. A list of strongly-connected
components (SCC) is built [9] for observing legal retiming which
is tunable by user as in Eq. (6). At STEP 3, an input-constraint par-
titioning procedure,Assign_CBIT, is invoked to find the minimal
value of Eq. (4), satisfying both Eq. (5) and Eq. (6). At the end of
the procedure, a report on the partitioned circuits and its cost is
generated in STEP 4.

3.1  Partitioning with Retiming by M-way Clustering
Algorithm

Probabilistic multicommodity-flow approach [10] is adopted to
identify a minimal cut set of all nets, , in the circuit/network .
Edges are removed from  according to their congestion until all
clusters, , are disjoint and have input number smaller than

, i.e., . A distance function is defined
as  which indexes the congestion of each net
according to an exponential function of the flow generated by the
stochastic process [10]. Since our objective is not only to have a
set of disjoint clusters, but also to satisfy Eq. (5), the network satu-
ration procedure in [6] needs to be modified. To guarantee afair

d4 16 32.21 2.01
d5 24 47.66 1.99
d6 32 63.12 1.97

STEP 1 Construct the graph representation of input design,
G(V,E).

STEP 2 Identify strongly connected components in G,
SCC(G).

STEP 3 Assign_CBIT (G, ∆, α, lk) with Eq. (6)
STEP 4 Return solution P and cost.

Table 2: Merced--The BIST Compiler

Table 1:  Area Cost for Various CBIT Sizes

CBIT Type
(dk)

CBIT Length
(lk)

 Area/DFF
(pk)

pk/Bit (σk)

Figure 4: Bit-wise Area vs. Testing Time for Various CBIT
Types
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sampling on the random-flow injection process, an index on the
nodes, , in , , is introduced to monitor the source
selection by Dijkstra’s algorithm. Distance function will truly
reflect the congestion of the network when values of  is
large enough to reflect a random process. Table 3 outlines the mod-
ified Saturate_Network procedure:

Result fromSaturate_Network is demonstrated in Figure 5 of
the example of Figure 2(b). Wider arrows represent more flows
injected and are more congested. Nets in big SCC’s are more con-
gested because the equi-probable selection of source nodes in
STEP 3.1 injects flows to those “strongly-connected” nets more
often.

Clustering procedure begins with the distance function, ,
returned by the modifiedSaturate_Network. A sorted stack of all
different values of ’s is built from max to min for construct-
ing a set of clusters, . This  stack
represents the congestion degree of nets in the network. A net-
removing process according to net congestivity minimizes the set
of cut nets. Table 4 summarizes the clustering process which
selects cut nets according to  and assures Eq. (5) and Eq. (6).
For Eq. (5), the solution to the While loop in STEP 5 is guaranteed
as long as  is bigger than the maximal fan-in number of each
primitive cell in the circuit. Since reducing fan-in numbers by re-
synthesizing the circuit is not of concern in implementation current
version of Merced, each primitive cell is considered non-alterna-
tive. The constraint of Eq. (6) is checked at each call ofMake_Set
in Table 5.

Make_Set is based on modified depth-first-search (DFS) [11]
according to a givenunassigned cell (theseed) and the current
value of the searchingboundary given by current value of .
Table 5 is theMake_Set procedure. At STEP 2 of Table 5, an
option is offered for user tolock cells in the current design (i.e., a

STEP 1 For each net,  do
1.1 , , .

STEP 2 For each node,  do
2.1 .

STEP 3 While ( ) do
3.1 Randomly pick a node, v, visit(v)=visit(v)+1.
3.2 Find shortest path(s) from v to all sinks,

Tv = Dijkstra(G, d(E), v).
3.3 For each net in the shortest path tree,

do
3.3.1
3.3.2 .

STEP 4 Return G with  information.
Table 3: Modified Saturate_Network (G,∆, α)

STEP 1 Initialize .
STEP 2 Saturate_Network (G, ∆, α)
STEP 3 Construct a sorted list, D, of ’s from max to

min.
STEP 4 S=Make_Set (G, d(E), Extract_Max(D)).
STEP 5 While ( ) do

5.1 boundary=Extract_Max(D), D=D-{boundary}.
5.2 S=S-{g}+Make_Set (g, boundary).

STEP 6 Sort S from max in(g) to min in(g).
STEP 7 Return S.

Table 4: Make_Group (G,∆, α, lk)

V G visit:V I→

visit V( )

e E∈
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v V∈
visit v( ) 0=
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Figure 5: Figure 2 (b) afterSaturate_Network
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portion of the circuit) that Merced is not expected to work on.

Table 6 and Table 7 briefs the modified DFS with consideration of
Eq. (6). At STEP 2.1 of Table 7, the value of  is
modified to be insignificant if the number of nets removed from
the SCC, , is greater than , which is speci-
fied by the designer.

For the example of Figure 5 with ,Make_Group produces
result shown in Figure 6. The removal of the nets with

 gives clusters with input number less than .

3.2  Near-Optimal Solution for CBIT Assignment
Circuit clusters identified byMake_Group may contain a lot of

small clusters with input sizes less than  and shared input
nets. As shown in Figure 4, the bit-wise area cost reduces as CBIT
length increases, it is cost-effective to merge small clusters to fit in
one CBIT with length  as much as possible rather than assigning
individual small CBITs to small input clusters. The final pass for
assigning CBITs will perform cluster merging in greedy approach.

Table 8 lists the final pass for merging small clusters,
Assign_CBIT. At STEP 3, the input number of unassigned/remain-
ing circuit, S, is calculated and compared with . During each
pass of the While loop, a cluster with the largest input number,O,
is removed from theS list. The inner loop of STEP 3.2 calculates
merging gain of the clusters remaining in theS list with respect to
O and finds the best solution, clusterg, from S. A new cluster is
formed as . This process continues until  or

STEP 1 Initialize
STEP 2 For each  do

2.1 If (v is not locked) Mark v not assigned.
STEP 3 While (  is not assigned) do

3.1 g =DFS (list, v, boundary).
3.2 .

STEP 4 Return Q.
Table 5: Make_Set (list, boundary)

STEP 1 .
STEP 2 For each  do .
STEP 3 DFS_Visit(list, v, boundary).
STEP 4 Return group.

Table 6: DFS (list, v, boundary)

STEP 1 .
STEP 2 For each  do

2.1 If ( ) then
2.1.1 If ( ) then

2.1.2 else
2.1.2.1 For each : If

( ), .
2.2 else

2.2.1 For each  do
2.2.1.1 If ( ) then

,
DFS_Visit(list, w, boundary).

STEP 3 .
Table 7: DFS_Visit (list, u, boundary)

Q ∅=
v list∈

v∃ list∈

Q Q g+=

d e SCC∈( )

c SCC( ) β f SCC( )×

group v=
u list∈ ∅≠ color u( ) white=

color u( ) gray=
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Figure 6: Figure 5 afterMake_Group (lk=3)

flow=0
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0.5l k
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O O g+= ι O( ) l k=

no feasible solution inS can be found. ThenO is added to the par-
titioned list,P, and total cost, , is updated accordingly.

The gain function, , of merging two clusters,  and
, is defined as the difference between the input size of the

merged cluster, , and :

(7)

Paired clusters with the same merged input number are discerned
at STEP 3.2.1 according to number of cut nets that current merge
removes. Zero or positive number of  indicates current merging
is possible in proportion to the gain, otherwise the merging is not
feasible according to Eq. (5).

When the outer loop of STEP 3 stops, there might be a remain-
ing part ofG, i.e., S, left which cannot be merged to any existing
partition given by this greedy approach. Therefore, a suitable size
of CBIT is assigned to the residualS and the near-optimal solution
is found byAssign_CBIT. Figure 7 shows final merged result of
F igure  6  and  four  par t i t i ons  a re  found :

.

3.3  Complexity Analysis
Finding the strongly connected components by DFS takes

 times on a given graph . SinceMake_Group
i s  based  on  DFS,  the  complex i t y  i s  bounded by

. In the worst case, ,
so the worst-case complexity is . However,
in realistic practice, , and the clustering process at
STEP 5 of Table 4 finishes with number of iterations much less
than . The average complexity can be considered as

, where  is a constant.
For the modifiedSaturate_Network procedure, STEP 3 of Table

3 takes , where  is the average/
expected number of visits to each node in a graph, , by
the random selection process in STEP 3.1. ThusSaturate_Network
takes at most  itera-
tions, where  is the variance of the random visiting
process.

The  g reedy  approach  o fAss ign_CBIT takes
 for finding the maximum  at STEP

3.1. The inner loop of STEP 3.2 takes at most  itera-
tions for merging small clusters. Therefore, the complexity of
Assign_CBIT is .

Since the number of clusters, , is smaller than the
number of nodes, , and  fromMake_Group
grows with  for a constant , the overall complexity
is thus dominated by

STEP 1 k=0, cost=0, .
STEP 2 S=Make_Group (G, ∆, α, lk).
STEP 3 While (in(S)>lk) do

3.1 O=Extract_Max(S), S=S-{O}.
3.2 While (in(O)<lk and  not visited) do

3.2.1 Search for the best and feasible g from S.
3.2.2 If ( ) then

O = O+g, S=S-g.
3.3 P=P+O, cost=cost+po, k=k+1.

STEP 4 P=P+S, cost=cost+pS, k=k+1.
STEP 5 Return P, cost and k.

Table 8: Assign_CBIT (G,∆, α, lk)
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Figure 7: Figure 6 afterAssign_CBIT (lk=3)
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from Saturate_Network.

4  Experiments
The sequential benchmark circuits, ISCAS89 [5] from Micro-

electronics Center of North Carolina (MCNC), is used for testing
Merced. Table 9 lists the netlist information of the seventeen test
cases from small to large sizes:

The last column shows the estimated area of the circuits by
counting 1 unit area per inverter, 3 units for 2-input AND gates, 2
units per 2-input NAND gate, 3 units per 2-input OR gate, 2 units
for 2-input NOR gates, and 10 units for each DFF. Gates with
higher fan-ins are scaled up with 1 unit area per additional input by
the CMOS technology [14].
4.1  Setting the Parameters

For the modifiedSaturate_Network procedure, a few experi-
ments are conducted to obtain a set of parameters for a properly
distributed distance function, , which can be used to differ-
entiate the net congestivity for a moderate sampling size, i.e., the
average value ofvisit in STEP 3 of Table 3. A small sampling size
(i.e., a smaller value ofmin_visit) will identify more locally con-
gested nets and a first pass of theMake_Set in STEP 4 of Table 4
gives a lot of small segments which slows down STEP 3.2.2 of
Table 8. The values of  should be chosen so that the averaged
flow value, f(), is not larger than the capacity of the net, i.e.,

. The value of  should be adjusted to magnify
the flow difference into the distance function appropriately for the
same reason as that for settingmin_visit. From our observations,
we set , , , and .

The retiming constraint for loops in Eq. (6) is relaxed by setting
 in STEP 2.1.1 of Table 7 for all circuits. The purpose is to

get the unrestricted results fromAssign_CBIT for the best testing
time specified bylk, i.e.,  clock cycles. A designer can give
a smaller value of  to restrict the number of cut nets in the
strongly connected components by trading off with longer testing
time. Thus  is a design-dependent parameter set by the user.

4.2  Results and Comparison
Two sets of experiments are conducted for  and

 on a SUN/Sparc10 station. Table 10 and Table 11 list the
result for  and  respectively. As shown on the 4-
th columns of the tables, most cut nets returned byAssign_CBIT
are on SCC’s where retiming can fully utilize the existing DFFs on
SCC’s. There is no significant trend on the number of cut nets of
SCC’s growing with circuit sizes. It varies on individual design as

Table 9: Circuit Information of Selected ISCAS89 Benchmark
Circuits

Circuit
Name

No. of
PIs

No. of
DFFs

No. of
Gates

No. of
INVs

Estimated
Area

S510 19 6 179 32 547
S420.1 18 16 140 78 620

S641 35 19 107 272 832
S713 35 19 139 254 892
S820 18 5 256 33 943
S832 18 5 262 25 961

S838.1 34 32 288 158 1268
S1423 17 74 490 167 2238
S5378 35 179 1004 1775 6241

S9234.1 36 211 2027 3570 11467
S9234 19 228 2027 3570 11637

S13207.1 62 638 2573 5378 19171
S13207 31 669 2573 5378 19476

S15850.1 77 534 3448 6324 21305
S35932 35 1728 12204 3861 50625
S38417 28 1636 8709 13470 52768

S38584.1 38 1426 11448 7805 55147

d E( )

∆

min_visit ∆ b≤× α

b 1= min_visit 20= α 4= ∆ 0.01=

β 50=

O 2 l k
 
 

β

β

l k 16=
l k 24=

l k 16= l k 24=

design style differs.

The number of cut nets increases as the circuit size grows up as
shown in the last column of Table 10 and Table 11. This manifests
the characteristics of the benchmark circuits which are not locally
clustered according to the input size constraint,  and

. Therefore, a bigger size of CBIT will accommodate
more nets than a smaller CBIT and reduce the number of cut nets
as comparing the last column of Table 11 with that of Table 10.

Table 12 shows retiming achieves 2% to 32% area savings over
non-retimed circuits in terms of the percentage of CBIT area vs.
total circuit area implementing PPET for  and .
The CBIT area with retiming is calculated as the number of reti-
mable cut nets multiplied by 0.9 of the area of a DFF (10 units) for
adding three gates shown in Figure 3(b). And the excess cut nets
on SCC’s which need multiplexing circuitry which is 2.3 times the
area of a DFF as depicted in Figure 3(c). For CBIT area without
retiming, all internal cut nets are added with an A_CELL with a
MUX by the fact that the DFFs in the original circuit is not moved.
Zero entries represent no internal cuts for circuits with input num-
ber less than . The area savings offered by retiming grows
more significant for large circuits as depicted in Figure 8.

Table 10: Partition Results for

Circuit
Name

No. of
DFFs

DFFs
on SCC

cut nets
on SCC nets cut CPU time

(sec.)
S510 6 6 77 92 0.1

S420.1 16 16 0 8 <0.05
S641 19 15 19 28 <0.05
S713 19 15 24 34 <0.05
S820 5 5 68 88 <0.05
S832 5 5 77 96 <0.05

S838.1 32 32 0 23 <0.05
S1423 74 71 53 65 <0.05
S5378 179 124 283 420 0.6

S9234.1 211 172 497 700 1.2
S9234 228 173 471 649 4.9

S13207.1 638 462 794 975 3.3
S13207 669 463 817 978 2.9

S15850.1 534 487 720 1014 2.0
S35932 1728 1728 2881 2926 191.6
S38417 1636 1166 1703 2506 66.9

S38584.1 1426 1424 3110 3322 97.9
Table 11: Partition Results for

Circuit
Name

No. of
DFFs

DFFs
on SCC

cut nets
on SCC nets cut CPU time

(sec.)
S641 19 15 12 17 <0.05
S713 19 15 32 38 <0.05

S5378 179 124 254 392 0.4
S9234.1 211 172 379 531 1.0

S13207.1 638 462 749 931 10.7
S13207 669 463 689 845 4.8

S15850.1 534 487 602 872 18.1
S35932 1728 1728 2639 2667 85.4
S38417 1636 1166 1555 2279 60.4

S38584.1 1426 1424 2593 2764 95.0

Table 12:  CBIT Area Comparison for  and

Circuit
Name

ACBIT/ATotal (%)

lk=16 lk=24

w/ Retim-
ing

w/o
Retiming

w/ Retim-
ing

w/o
Retiming

S510 78.8 80.6 0 0
S420.1 19.7 24.2 0 0

S641 18.9 45.4 13.2 33.5
S713 27.4 48.5 33.9 51.3
S820 67.2 69.7 0 0

l k 16=

l k 24=

l k 16=
l k 24=

l k 16= l k 24=

l k 24=

lk 16= l k 24=



5  Conclusion
Our experiments show retiming with flow-based partitioning

offers an excellent solution for reducing CBIT area overhead in
implementing PPET. Although the probabilistic multicommodity
flow algorithm in Table 3 needs several iterations (as discussed in
Section 3.3) to explore the network structure, its result gives very
close to an minimal cut-set solution. Therefore, PPET can be area-
efficient with retiming and achieve fast testing time and high fault
coverage. In addition, functional equivalence of the retimed circuit
to the original one can be assured through recalculation of the ini-
tial state of retimed circuit [16].

Partitioning with retiming offers a new paradigm of implement-
ing pseudo-exhaustive testing techniques for considering effective
testing of complex circuits and systems. Even with conventional
pseudo-exhaustive testing (PET) approaches [7], partitioning with
retiming helps to make best use of the functional registers while
reducing test hardware overhead as shown through our examples.
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Figure 8: Comparison between PPET with/without Retiming
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