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Abstract

We propose a low-overhead scan design methodology
which employs a new test point insertion technique to es-
tablish scan paths through the functional logic. The tech-
nique re-uses the existing functional logic; as a result, the
design-for-testability (DFT) overhead on area or timing can
be minimized. In this paper we show an algorithm which
considers the test point insertion for reducing the area over-
head for the full scan design. We also discuss its application
to timing-driven partial scan design.

I. Introduction

Automatic test pattern generation (ATPG) for sequen-
tial circuits is a di�cult problem because of the lack of
direct controllability of the present state lines and direct
observability of the next state lines. To enhance testability,
design-for-testability (DFT) techniques aiming at improv-
ing controllability and observability of the state lines have
been proposed, such as full scan [1, 2, 3] and partial scan
[4, 5]. Both scan techniques facilitate testing of a sequen-
tial circuit by interconnecting selected 
ip-
ops into a shift
register during the test mode to directly control and ob-
serve the state lines. The complexity of ATPG is therefore
reduced. However, the area and delay overheads imposed
by conventional scan can be signi�cant due to the extra
scan multiplexers (MUXs) in the scan 
ip-
ops (assuming
that MUXed D 
ip-
ops are used) and the extra routing
area for the scan chains.
To alleviate the above DFT penalty, we propose a low-

overhead scan design methodology which employs the test
point insertion to establish the scan paths through the ex-
isting combinational logic. These test points are estab-
lished by appropriately inserting a two-input AND gate or
a two-input OR gate with a common test input. The es-
sential idea is illustrated in Figure 1. Figure 1(a) shows a
portion of a sequential circuit, where the boxes represent

ip-
ops. By inserting a test point at the output of F4 and
setting the primary input x to 0 during the test mode, a
scan chain F1 ! F2 ! F3 can be formed through the com-
binational logic, as shown in the dotted line of Figure 1(b).
In this example, we established a partial scan chain involv-
ing three 
ip-
ops using the functional logic and the area
overhead is a two-input AND gate, while conventional scan
design would require two multiplexers.
In our method, the cost of inserting a test point is one

AND (OR) gate and a connection from the test input T ,
while converting a 
ip-
op into a MUXed scan 
ip-
op re-
quires a multiplexer, a connection from another 
ip-
op,
and a connection from the test input T . Inserting test
points is advantageous in terms of area, if inserting k test
points can successfully establish k more scan paths. A scan

1This work was conducted when the author was in University of
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Fig. 1. Example of a test point insertion.

path here is de�ned as a physical path between two 
ip-

ops that can be fully sensitized in the test mode. More-
over, the method of inserting test points can be applied for
timing-driven scan design. For example, we can add test
points away from the critical paths while still being able to
establish scan paths through critical nets.
In this paper, we discuss two applications of using the

test point insertion technique for scan design. First, we
consider the full scan design environment, where the ob-
jective is to establish as many scan paths and use as few
test points as possible. The advantage of our technique in
this application is the reduction of area overhead. Next, we
consider the partial scan design environment. The objec-
tive is to break cycles without degrading the performance
of the design. In partial scan design, a 
ip-
op is selected
by the cycle-breaking algorithms [4, 6, 7] sequentially and
if timing constraints are not met for converting it into a
MUXed scan 
ip-
op, test point insertion technique can
be applied to avoid adding test circuitry onto the critical
path to eliminate timing degradation. Due to the space
limitation, some details are omitted. Please refer to [8].

II. Review and terminology

To improve the ATPG e�ciency, a testpoint insertion
technique [9] inserted a set of test-cells into a circuit to im-
prove the observability and controllability of some selected
internal signals. The size of a test-cell may be large and the
compound e�ect of adding such cells may result in signi�-
cant area overhead (a test-cell requires at least one 
ip-
op
and two multiplexers). Our test point is simply a two-input
AND or a two-input OR gate and the purpose of inserting
test points is to establish a scan chain, which in turn makes
scanned 
ip-
ops fully observable and controllable.
The work in [10, 11, 12] presented algorithms to reduce

scan overhead by attempting to merge scan MUXs into the
combinational logic during logic synthesis. In [13], a scan
design methodology called free-scan was proposed. By set-
ting appropriate values at primary inputs during the test
mode, some combinational paths between 
ip-
ops can be
sensitized and thus a portion of the scan chain can be es-
tablished without any DFT overhead. In [14], the concept
of embedded scan was proposed and attempts were made
to embed the scan-multiplexers into the logic immediately
preceding the scan 
ip-
ops.
We de�ne some terminology used in the following dis-

cussion. A connection is speci�ed by a pair of gates
[gsource; gsink], where gsource is gsink's fanin. A path is



speci�ed by a sequence of gates, [g1; � � � ; gk], where gi is
gi+1's fanin. Side inputs of a path are a set of connections
where their gsink's are on the path, while gsource's are not.
Given a gate g and one of its fanins f , we de�ne a constant
value v as sensitizing value for the connection [f; g], if set-
ting f to v does not determine the value of g. On the other
hand, if it does, v is called a controlling value.
For static timing analysis, we adopt the timing models

used in [15] where the delay across a gate g is modeled
linearly by its block delay, driving power, and load as fol-
lows: delay(g) = block(g) + drive(g) � load, where load is
the total capacitive load driven by gate g. The parame-
ters block(g) and drive(g) are speci�ed in the technology
library. We de�ne the slack time as the di�erence between
the required and arrival times. The slack time of a con-
nection determines how much extra delay can be added to
this connection without degrading the overall performance
of the circuit. The slack times of all gates have to be pos-
itive to guarantee the correctness of the circuit under the
given cycle time.

III. Test point insertion

Suppose that a pair of 
ip-
ops is connected through a
combinational path. To include this path into a scan chain,
all the side-inputs along this path must be set to sensitizing
values. If a value of zero is desired at a connection c for
disabling the connection in the test mode, we can insert a
two-input AND gate at c with the test input T as one of
its inputs. The value of T is assumed to be 1 in the normal
mode and 0 in the test mode. On the other hand, if a
value of one is desired, we can insert a two-input OR gate
with T 0 as one of its inputs, where T 0 is the negation of T .
To establish a scan path between two 
ip-
ops may require
more than one test points. The number of side-inputs along
a selected combinational path is an upper bound on the
requirement of the number of test points for establishing a
scan path through the selected path.
In general, assigning a constant value at a connection (by

inserting a test point) may potentially disable more than
one side-input because the connection may have multiple
fanouts. To e�ciently utilize this methodology, we should
analyze the circuit's topology and determine the global ef-
fect of inserting a particular test point. The objective is to
decide at which connections test points should be inserted
and what constant values they should be, so that we can
establish as many scan paths as possible with as few test
points as possible.

A. Test point insertion for full scan design

For a full scan design, the goal here is to use the test
point insertion technique to establish as many scan paths
(through functional logic) with as few test points as possi-
ble, and then use the conventional scan conversion (MUX
insertion) for the missing scan paths in order to have a
connected scan chain. We developed an algorithm, called
TPGREED, for this purpose. TPGREED examines the
combinational paths between 
ip-
ops in the circuit and
then, in a greedy way, sequentially inserts the test points
with appropriate values. During the insertion, all the pos-
sible candidate locations are sorted according to their po-
tential contribution in establishing scan paths. The details
of the algorithm are as follows.
Given a sequential circuit, we build �rst a sparse matrix

A, where the entry Aij represents a set of combinational
paths from 
ip-
op Fi to Fj. Since there might exist a large
number of paths in the circuit and in general it is more
costly to establish a scan path through a combinational
path with a large number of side-inputs, we heuristically

limit the number of paths for consideration and record only
those paths with a number of side-inputs smaller than a
user speci�ed upper bound Kbound to save computation
time.
Given a combinational path pk in Aij, let jpkj denote

the number of side-inputs along this path. During the iter-
ation of test point insertion and the forward implication of
the assigned constants, side-inputs of pk may have either
sensitizing, controlling or unknown values. If there exists
a side-input which has a controlling value, it will be im-
possible to build a scan path through pk. We call such a
path a nulli�ed path and remove it from Aij. On the other
hand, if there is no side-input with a controlling value, we
use wk to denote the number of side-inputs which have an
unknown value. The gain of setting one of the side-inputs
to a sensitizing value is 1=wk. Notice that, for each path
pk, the number jpkj does not change while wk decreases
during the process. When wk is reduced to zero, the path
pk successfully becomes a scan path.
Given a connection c, if we insert a test point with value

v at c, forward implication of v at c may imply new values
vi's at some connections ci's in c's fanout cone. We denote
them as f(c1; v1); � � � ; (ch; vh)g. Some of the vi's are con-
trolling while others are sensitizing values. With these new
constant values, paths passing through c; c1; � � � ; ch�1, or
ch will be nulli�ed. Also, paths with c or ci's as side-inputs
and v or vi's being controlling values will be nulli�ed. On
the other hand, paths with c or ci's as side-inputs and v or
vi's being sensitizing values will have their wk's reduced.
We denote the set of such paths as Sc. Thus, the gain of
inserting a test point with value v on c is as follows:

nX
j=1

(MAXn

i=1
(MAXpk2Aij ;pk2Sc

1

wk

)); (1)

where n is the number of 
ip-
ops. We sum the contri-
bution of making 
ip-
ops Fj 's (1 � j � n) as a part of
the scan chain. Among all the paths in Aij's ending at a

ip-
op Fj , we choose the maximal contribution instead of
their summation because our objective is to establish ex-
actly one path from a 
ip-
op to 
ip-
op Fj in the scan
chain.
Based upon the cost function in Equation 1, we itera-

tively choose a connection and a value (c; v) with the high-
est gain as a test point and update the entries Aij's in the
matrix A by removing the nulli�ed paths. During the it-
eration of the insertion process, if the scan path Fi ! Fj
is established, we record this path as part of the �nal scan
chain. Since the scan chain has to be acyclic, we also re-
move some entries Apq 's if adding the path Fp ! Fq to the
scan chain would result in a cycle. For example, consider
a sequential circuit with four 
ip-
ops F1; F2; F3 and F4.
Suppose that we have already established a path F1 ! F2.
Assume adding a new test point will establish scan path
F2 ! F3. Besides recording this new scan path in the scan
chain, we remove A31, because a path F3 ! F1 would re-
sult in a cycle F1 ! F2 ! F3 ! F1. We also have to
remove all Ai3's and A2j's, since each 
ip-
op in the scan
chain should have only one incoming edge and one outgoing
edge.

B. Input assignment

After performing the procedure described above, we
know exactly at which connections (i.e., c1; � � � ; cm) test
points should be inserted and also what values (i.e.,
v1; � � � ; vm) they should be. Before physically inserting
AND (for value 0) or OR (for value 1) gates, we make at-
tempt to set up as many of the values vi's as possible at the
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Fig. 2. Example of setting values for test points by assigning values
at primary inputs.

connections ci's by assigning appropriate values at the pri-
mary inputs to avoid inserting unnecessary test points. For
example, Figure 2 shows a portion of a sequential circuit,
where a; b and c are primary inputs. Assume that the inser-
tion procedure decides to insert test points at connections
t1 and t2 with values 0 and 1, respectively, to establish two
scan paths, F1 ! F2 and F3 ! F4. We can use appropri-
ate values at primary inputs to produce one of the desired
constants (e.g. a = 0, or a = 1 & b = 1, or a = 1 & c = 1),
and use one test point to achieve another desired constant.
In general, an optimization algorithm is required to decide
the optimal input assignment to maximize the number of
signals with desired values without inserting test points.
We adopt the algorithm described in [13] for this purpose.

C. Overall algorithm

Besides the circuit, users should provide two extra pa-
rameters Kbound and gainbound. The parameter Kbound is
used to limit the number of side-inputs for paths consid-
ered for establishing scan paths. The parameter gainbound
is used to terminate the algorithm when the highest gain
computed by Equation 1 for all candidate connections is
smaller than gainbound. During the iteration, some scan
paths may be established. Besides adding them as a por-
tion of the scan chain, we also have to make sure that the
subsequent insertions will not destroy the established scan
paths. In our current implementation, after a test point is
inserted, we re-compute the gain of inserting a test point at
each connection, before inserting the next one. This could
cause high computation time. One possible solution is to
have an incremental algorithm which only re-computes the
gain of those a�ected connections. We also apply a proce-
dure which determines the values for the primary inputs to
reduce the number of required test points (as discussed in
Section B).

D. Experimental results

We tested the proposed test point insertion method on a
number of ISCAS89 and MCNC91 sequential benchmarks.
All circuits are optimized by SIS script.algebraic script
and mapped using technology libraries nand-nor.genlib and
mcnc latch.genlib for minimal area. In the current imple-
mentation, we can only handle primitive gates, including
AND, OR, NAND, and NOR gates.
The results of test point insertion are shown in Ta-

ble I. We report the number of 
ip-
ops in the circuit
(A), the number of test point inserted (B), the number of
test points' values which can be setup freely by primary
inputs (C), and the number of scan paths established (D).
The CPU time is measured on a SUN SPARC 5 with 128
Megabyte memory. In our experiments, the parameters
Kbound and gainbound are set to 10 and 0:5. For example,
we inserted 137 test points in circuit s15850 to establish
244 scan paths. Among the 137 test points, we can use
primary inputs to set up two of them. So the actual num-
ber of required test points is 135. Assuming that the area
costs of inserting a multiplexer and a test point are 2 and
1, the reduction of area overhead will be

1�
2(A�D) + (B � C)

2A
:

TABLE I
Experiment results for ISCAS89 and MCNC91 circuits.

#FF #insertion #free #scan reduction CPU
circuit A B C paths D (sec)
s5378 152 28 3 62 32.6% 171
s9234 135 35 1 57 29.6% 296
s13207 453 120 2 196 30.2% 1151
s15850 540 137 2 244 32.7% 3907
s35932 1728 3 3 1440 83.3% 3019
s38417 1636 169 8 448 22.5% 6852
s38584 1294 164 1 1133 81.3% 15324
bigkey 224 115 3 112 25.0% 576
dsip 224 4 3 168 74.8% 52
mult32a 32 31 1 31 50.0% 24
mult32b 61 31 1 31 26.2% 26

If we use MUXed D 
ip-
ops, the area overhead can be ap-
proximated as 2A. For our method, the term (B �C) rep-
resents the number of test points inserted and term (A�D)
represents the number of remaining 
ip-
ops which requires
a multiplexer for each of them.
The amount of the reduction depends on a circuit's struc-

ture, the logic synthesis algorithm, and our test point in-
sertion algorithm. In the case of s35932, as much as 83%
in the area overhead reduction can be achieved. The com-
putation time for s38584 is quite high. This is because
the number of paths considered in our algorithm is huge
(270463). Possible ways to reduce the computation time
are to have a smaller Kbound, or have an incremental algo-
rithm for re-computing the gains as discussed in Section C.

IV. Timing-driven scan path design by test point

insertion

Although partial scan has a lower overhead in terms of
area, it may not be so when we consider timing issues.
In [7], a timing-driven partial scan 
ip-
op selection algo-
rithm was proposed. There, a 
ip-
op with a slack time
less than the gate delay of a multiplexer is not allowed for
selection, even if it has high gains for breaking cycles. As
a result, the number of selected 
ip-
ops for breaking cy-
cles is usually larger than the case in which timing issues
are not considered. Moreover, there are circuits that have
no cycle-breaking solutions without degrading the perfor-
mance. Here, we enhance the timing-driven partial scan
design methodology [7] by combining the cycle-breaking
algorithm and the test point insertion method.
If we scan a 
ip-
op by converting it to a MUXed scan


ip-
op, where the slack time of the 
ip-
op is less than
the gate delay of a multiplexer, such a conversion will re-
sult in timing degradation. However, by incorporating the
test point insertion technique, we may scan the 
ip-
op
without any timing penalty. Figure 3(a) shows a portion
of a sequential circuit, where the bold lines denote a critical
path. To scan the 
ip-
op F2 by inserting a MUX directly
behind F2 will increase the critical delay and result in tim-
ing degradation, as shown in Figure 3(b). However, there
exists a combinational path from F1 to F2. To make this
combinational path F1 ! g1 ! g2 ! F2 a scan path, all
the side-inputs, a and c, must have sensitizing values in
the test mode. To achieve this, we insert a test point (OR
gate) at a. However, we cannot insert a test point at c
without degrading the performance, since c is on a critical
path. Instead, we can insert a test point (AND gate) at b,
which in turn will induce a sensitizing value 0 at c. The
insertion of test points at a and b causes no timing viola-
tion and establishes a scan path from F1 to F2. The result
is shown in Figure 3(c).
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Fig. 4. Example of MUX and test point insertion for timing-driven
scan path design.

The above transformation has one disadvantage. That
is, since the scan path is from F1 to F2, we have to scan
F1 too in order to have a connected scan chain. In the par-
tial scan environment, scanning F1 might not help break
cycles. Also, there is no guarantee that we can scan F1
without timing degradation. To overcome this problem, we
can consider insertion of MUX's as well. The MUX's need
not be placed immediately behind the scan 
ip-
ops. We
only insert them at connections with enough slack times. If
necessary, we may also insert test points at the correspond-
ing side-inputs to sensitize the scan path. For example, in
Figure 4(a), we can insert a multiplexer at a, and a test
point at b to establish a scan path F1 to F2 (Figure 4(b)).
Notice that, using the above transformation, the predeces-
sor of F2 in the scan chain need not be F1 and could be
any other 
ip-
op.

A. Topological feasibility analysis

Given a 
ip-
op selected by the cycle-breaking algorithm
for scan, we derive the formula in Figure 5 to check if we
can scan it without timing degradation. For simplicity,
we assume that a gate has one of the following �ve types:
AND, OR, INVERTER, FLIP-FLOP or INPUT. The gate
delays of a multiplexer, a two-input AND and a two-input
OR are tmux; tand and tor , respectively. The slack time
slack(ci) of a connection ci is computed as the di�erence
between the required and arrival times, while the gate type,
gate type(ci), is the gate type of ci's source gate. The
fanin(ci) denotes the set of fanins of ci's source gate.
To scan a 
ip-
op, some connection in its fanin cone has

to carry the signal from the scan chain. Such a signal is
denoted as scanin. Also, some connections have to be set
to 1 or 0. For example, to convert the circuit in Figure 4(a)
to Figure 4(b), we assign a constant value 0 at b and assign
a as the scanin. We de�ne cost(ci; value) as the area cost
of assigning a connection ci as scanin, 1 or 0, where value
is scanin, 1 or 0. In Equation 2 of Figure 5, if the slack
time of ci is greater than the gate delay of a multiplexer,
we simply insert a multiplexer and the cost is the area
of a multiplexer. Otherwise, we recursively check if we
can use cj (one of ci's fanins) to be part of the scan path
(assigning it to scanin) and make other fanins ck's (k 6= j)
have sensitizing values (assigning them to 1 or 0). Since
there may exist multiple solutions, we choose the one with

a

b

c

e

b,0

c,0a
e,1

T’

(a) before insertion (b) after insertion

a,1

Fig. 6. Example for classi�cation of constants.

a minimal area overhead. If the gate type of ci is FLIP-
FLOP, the cost will be 1 since it has no fanins to allow
further recursion. Equation 3 and Equation 4 are de�ned
similarly. For a 
ip-
op with fanin connection ci, if the
cost function cost(ci; scanin) is not 1, we can scan this

ip-
op without timing degradation.
The selection of scan 
ip-
ops and the insertion of test

points are done sequentially. It is important to keep track
of the created scan paths and make sure that the subse-
quent insertions will not destroy the previous e�orts. That
is, there are some connections which have constant values
associated with them due to the previous insertions. We
classify them into two categories: desired constants and
side-e�ect constants. For example, in Figure 6(a), to make
the connection c to be 0 in the test mode, we can insert an
AND gate at c (set c to 0), insert an AND gate at b (set b
to 0), or insert a OR gate at a (set a to 1). Assume that
the slack times of b and c do not satisfy the requirement,
while the slack time of a does. A test point can be inserted
at a (Figure 6(b)). As a result, we have a = 1, e = 1,
b = 0 and c = 0. Among them, a = 1, b = 0 and c = 0 are
desired constants (as shown in the bold line of Figure 6(b))
while e = 1 is a side-e�ect constant. To preserve the ef-
forts of this insertion, the desired constants should not be
changed by subsequent test point insertions. On the other
hand, we are free to change the constant value of side-e�ect
constants.
There is a problem in using the recursive operations de-

�ned above. That is, when a test point is inserted at a
connection c, the slack times of gates in c's fanin or fanout
cone may be a�ected. Consequently, the function slack(ci)
is not a constant value but depends on the decisions made
in the previous recursions. Taking such update into ac-
count will result in a very complicated recursive process.
To simplify this problem, we restrict the application of re-
cursion only to the non-reconvergent fanin regions as de-
�ned below. With this restriction, we don't have to update
the slack times during the recursion and the result is guar-
anteed to be correct. Notice that since we restrict our so-
lution space to non-reconvergent fanin region, the obtained
solution might be a sub-optimal solution.

De�nition 1 Given a connection c, we de�ne its non-
reconvergent fanin region to be a set of connections in its
fanin cone, so that each connection has exactly one path to
c.
See the circuit in Figure 7 for illustration. The dotted re-

gion is the non-reconvergent fanin region of the connection
c. Although the gate g1 has two fanouts, a and e, there is
only one path from g1 to c passing through a. As a result,
the connections a; b and d are in the non-reconvergent fanin
region of c. On the other hands, since the gate g3 has two
paths to c, the connections j and k are not in.

Lemma 1 The non-reconvergent fanin region of a connec-
tion c forms a tree rooted at c.

Theorem 1 Given a connection c, using Equations 2,3
and 4 recursively while restricting the connections at its
non-reconvergent fanin regions, the value slack() for each
connection can be considered as a constant. In other words,
we don't have to update the slack time during the recur-
sions.



cost(ci; scanin) =

8>>>>>><
>>>>>>:

area(MUX) if slack(ci) > tmux

MINcj2fanin(ci)
(cost(cj; scanin)+ if gate type(ci) = ANDP

ck2fanin(ci);ck 6=cj
(cost(ck; 1)))

MINcj2fanin(ci)
(cost(cj; scanin)+ if gate type(ci) = ORP

ck2fanin(ci);ck 6=cj
(cost(ck; 0)))

cost(fanin(ci); scanin) if gate type(ci) = INVERTER
1 if gate type(ci) = FLIP-FLOP

(2)

cost(ci; 0) =

8>><
>>:

area(AND) if slack(ci) > tand
MINcj2fanin(ci)

(cost(cj; 0)) if gate type(ci) = ANDP
cj2fanin(ci)

(cost(cj; 0)) if gate type(ci) = OR

cost(fanin(ci); 1) if gate type(ci) = INVERTER
1 if gate type(ci) = FLIP-FLOP

(3)

cost(ci; 1) =

8>><
>>:

area(OR) if slack(ci) > tor
MINcj2fanin(ci)

(cost(cj; 1)) if gate type(ci) = ORP
cj2fanin(ci)

(cost(cj; 1)) if gate type(ci) = AND

cost(fanin(ci); 0) if gate type(ci) = INVERTER
1 if gate type(ci) = FLIP-FLOP

(4)

Fig. 5. The de�nition of cost(ci; value), where value is scanin, 1 or 0.
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Fig. 7. Example of non-reconvergent fanin region.

The non-reconvergent fanin region of a connection c can
be constructed in linear time in terms of its size by using
breadth-�rst-traversal from the connection c toward the in-
puts.

B. Timing-driven partial scan algorithm

The overall algorithm integrates a conventional cycle-
breaking algorithm [6] and our test point insertion algo-
rithm. The cycling-breaking algorithm used here is origi-
nally from [6] and then modi�ed by [7]. It consists of two
major steps: (1) graph reduction and (2) heuristic selec-
tion. In the graph reduction step there are �ve operations.
The �rst three (source operation, sink operation, self-loop
operation) are exactly the same as the ones given in [6]
while the last two reduction operations (unit-in operation
and unit-out operation) are modi�ed to take into account
the slack times of the 
ip-
ops. In the heuristic selection
step, the algorithm chooses the one with maximal summa-
tion of the fanins and fanouts. For more details, please
refer to [6, 7].
In our algorithm, we examine the topological structure of

the given circuit and build the 
ip-
op connectivity graph
excluding self-loops. Given a 
ip-
op � selected by the
cycle breaking procedure for scan, Equations 2,3,4 are per-
formed to �nd a zero-performance degradation solution to
scan � in the non-reconvergent fanin region of �. If such a
solution exists, we always �nd it and return the set of test
points. The algorithm then inserts appropriate MUX, AND
or OR gates into the circuit and performs an incremental
static timing analysis for the next run. If there exist no
zero-performance degradation solutions, it returns NULL
and the algorithm will mark this 
ip-
op and instruct cy-
cle breaking procedure to choose another one. It continues
until no cycles are left in the resulting graph or all 
ip-
ops
left have been marked. If there still exist cycles in G, we
know there is no zero-performance degradation solution for
this circuit. The algorithm then iteratively selects a 
ip-

op with minimal timing degradation using the equations
similar to the ones described in Equations 2,3 and 4.

C. Experimental results

TABLE II
Statistics on ISCAS89 and MCNC91 benchmark circuits

after delay optimization. Circuits marked '*' are optimized

without using full simplify.

circuit #I #O #FF area delay (ns)
s5378 35 49 163 4286.0 26.9
s9234 36 39 135 3619.0 29.5
s13207 31 121 453 8511.0 35.8
s15850 14 87 540 13442.0 54.7
s35932* 35 320 1728 40881.0 31.0
s38417* 28 106 1462 40611.0 42.4
s38584* 12 278 1449 36646.0 39.6
bigkey* 262 197 224 14461.0 27.8
dsip* 228 197 224 8288.0 23.1
mult32a* 33 1 32 1655.0 95.8
mult32b* 32 1 61 1505.0 12.2

We have implemented a prototype system, named TP-
TIME, based on the SIS-1.2 [15] package. The experimen-
tal results for a number of ISCAS89 and MCNC91 sequen-
tial benchmarks and the experimental setup are described
as follows.
All the circuits are �rst optimized by SIS script.delay

script and then mapped for minimal delay. Since we target
the timing-driven partial scan design, it is more reasonable
to optimize the original circuits for minimal delay. The
longest delay of the optimized circuit is used as the circuit
timing constraint. The technology libraries used for map-
ping are based on nand-nor.genlib and mcnc latch.genlib
from SIS-1.2 package. We choose nand-nor.genlib be-
cause the current implementation can only handle prim-
itive gates. To facilitate test point insertion (adding AND,
OR and MUX gates into the circuit), we appended three
entries in the technology library in order to perform static
timing analysis in SIS-1.2. Each library cell's drive(g) is set
to 0.2 and the input capacitive load is set to 1. For exam-
ple, inserting a multiplexer at a connection will decrease its
slack time by 2:2, since its block delay is 2:0 and the extra
0:2 is due to the fanout of the multiplexer. The statistics of
the SIS-1.2 optimized circuits are shown in Table II. No-
tice that the test input T might have many fanouts and
consequently its large capacitive load would cause timing
problems. Fortunately, in the mission (normal) mode, since
the value of T is �xed to 1, the paths from T to test points
or MUX are false paths. Therefore, we should disable the
paths originating from T during the static timing analysis.
Three di�erent experiments were performed for each op-

timized circuit. First, we ran the Lee-Reddy [6] cycle-
breaking algorithm(CB) which does not take timing into



TABLE III
Experimental results on ISCAS89 and MCNC91 circuits for timing-driven partial scan design.

CB TD-CB TPTIME
circuit #FF area delay #FF area delay #FF area delay time (CPU)

s5378 29 4431.0 3.4% 29.0 7.8% 29 4431.0 3.4% 26.9 0.0% 29 4431.0 3.4% 26.9 0.0% 44.6s
s9234 24 3739.0 3.3% 31.6 7.1% 25 3744.0 3.5% 29.5 0.0% 24 3754.0 3.7% 29.5 0.0% 33.2s
s13207 41 8716.0 2.4% 38.0 6.1% 42 8721.0 2.5% 35.8 0.0% 42 8721.0 2.5% 35.8 0.0% 113.0s
s15850 91 13897.0 3.4% 56.9 4.0% 91 13897.0 3.4% 55.9 2.2% 91 13909.5 3.5% 54.7 0.0% 441.6s
s35932* 306 42411.0 3.7% 33.2 7.1% 306 42411.0 3.7% 31.0 0.0% 306 42411.0 3.7% 31.0 0.0% 11217.4s
s38417* 366 42441.0 4.5% 44.6 5.2% 388 42551.0 4.8% 44.6 5.2% 382 43351.0 6.7% 44.2 4.2% 8727.2s
s38584* 175 37521.0 2.4% 41.8 5.6% 233 37811.0 3.2% 41.4 4.5% 183 37808.5 3.2% 40.6 2.5% 3384.2s
bigkey* 112 15021.0 3.9% 30.0 7.9% 112 15021.0 3.9% 30.0 7.9% 112 15686.0 8.5% 28.7 3.2% 778.4s
dsip* 150 9038.0 9.0% 25.3 9.5% 180 9188.0 10.8% 25.3 9.5% 162 10555.5 27.4% 23.1 0.0% 688.6s
mult32a* 16 1735.0 4.8% 97.9 2.2% 17 1740.0 5.1% 97.9 2.2% 16 1740.0 5.1% 95.8 0.0% 13.8s
mult32b* 2 1515.0 0.6% 14.2 16.4% 22 1616.0 7.4% 14.2 16.4% 19 1647.5 9.5% 12.2 0.0% 14.9s

account. Second, we ran the timing-driven cycle-breaking
(TD-CB) algorithm shown in [7]. Third, we ran our pro-
gram (TPTIME). The results are shown in Table III. For
each experiment, we report the number of selected 
ip-

ops, and the area and delay of the resulting circuit. As
we can see, without taking timing into account, the �rst
method (CB) selected fewer 
ip-
ops and had smaller area
overhead, but all the tested circuits have timing degrada-
tion ranging from 2.2% to 16.4%. On the other hand, the
timing-driven cycle-breaking algorithm (TD-CB) selected
more 
ip-
ops and had a larger area overhead, but the tim-
ing degradations for the tested circuits are smaller, ranging
from 0.0% to 16.4%.
Our method (TPTIME) incorporates test point inser-

tion technique to scan timing-critical 
ip-
ops. Compared
to CB, TPTIME has a larger area overhead due to the
extra AND or OR gates. However, compared to TD-CB,
since the number of selected 
ip-
ops is smaller, the area
overhead may be less. In term of timing degradation, our
method TPTIME obtains the best results among the three
methods. In most cases, there is no timing degradation at
all.

V. Conclusion

In this paper, we propose a low-overhead scan design
methodology which employs the test point insertion tech-
nique to establish scan paths through the functional logic.
Applications for reducing either area or timing overhead
are addressed and the experimental results demonstrate its
usefulness.
Since the scan path is a part of the combinational logic,

it is necessary to test the scan path prior to testing the
entire circuit. This can be accomplished by scanning in
a sequence of alternating 0's and 1's and scanning them
out [8]. If there are some discrepancy between the scan-
in and scan-out data, we know that the circuit is faulty.
Moreover, by examining the scan-out data, certain faults
(in the combinational logic) which a�ect the correctness of
the scan chain can be tested before the application of scan
tests.
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