
Error Correction Based on Verification Techniques

Shi-Yu Huang
Dept. of Electrical & Computer Engr.

U. of California, Santa Barbara
Santa Barbara, CA 93106

Kuang-Chien Chen
Fujitsu Labs of America

3350 Scott Blvd. Bldg. 34
Santa Clara, CA 95054

Kwang-Ting Cheng
Dept. of Electrical & Computer Engr.

U. of California, Santa Barbara
Santa Barbara, CA 93106

abstract
In this paper, we address the problem of correcting a

combinational circuit that is an incorrect implementation of a
given specification. Most existing error-correction approaches
can only handle circuits with certain types of errors. Here, we
propose a general approach that can correct a circuit with
multiple errors without assuming any error model. We identify
internal equivalent pairs to narrow down the possible error
locations using local BDD’s with dynamic support. We also
employ a technique called back-substitution to correct the circuit
incrementally. This approach can also be used to verify circuit
equivalence. The experimental results of correcting fully SIS-
optimized benchmark circuits with a number of injected errors
will be presented.

1. Introduction
During the design cycle, the correction of a circuit which has

been proven different than a given specification is an essential but
difficult task. Recently, the efficiency of gate level equivalence
checking tools that can check circuit equivalence has dramatically
improved [5,10]. However, error correction is still a challenging
problem. In generalerror diagnosis is performed first to serve as
the guidance of rectifying the circuit. Existing error diagnosis
approaches can be divided into two categories: (1) OBDD-based
approaches [2,6,9], and (2) simulation-based approaches [3,8]. For
the OBDD-based approaches, one or two candidate signals which
can correct the entire circuit are identified using BDD formulas.
This approach will fail if no such candidate signal exists. In
addition, it suffers from the memory explosion problem for large
designs. For simulation-based approaches, input vectors that dif-
ferentiate the erroneous circuit from its specification are simulated
to narrow down the possible error regions. This approach is more
flexible because it can still find a set of suspected incorrect signals
for a circuit with multiple errors. However, this approach is not as
precise as the OBDD-based approach, and thus, it provides less
information about how to rectify the circuit after diagnosis.

For the error correction step, earlier research used a classifica-
tion of commonly occurred design errors [1]: (1) gate-type error,
including a missing gate, an extra gate and wrong gate type (2)
connection-type error, including a missing connection and an
extra connection. Using this error model and the information

* This workwas supported by the National Science Foundation under grant
MIP-9503651, California MICRO and Fujitsu Labs of America.

provided by error diagnosis, they tried to match the error with one
type of error in the error model. If an error does not belong to any
type in the model, then no solution can be produced.

Engineering change (EC) is a problem closely related to error-
correction. Its goal is to reuse the existing investment on the
implementation of a circuit when a specification is slightly
changed. An EC algorithm was proposed in [7] assuming three
netlists are given: the new specification, the old specification and
the old implementation. This approach uses automatic test pattern
generation (ATPG) techniques to identify equivalent signal pairs
between the new specification and the old implementation, for the
purpose of reusing some existing logic gates. This identification
process proceeds from the input side towards the output side in
stages. Once an equivalent pair is found, the signal in the new
specification can be replaced by its counterpart in the old imple-
mentation. Also, a technique calledback-substitution is employed
to create more equivalent signal pairs using structural correspon-
dence between the old specification and the new specification. The
function of the old implementation is changed when back-substi-
tution is performed, and it is incrementally transformed to a
function equivalent to the new specification.

In this work we borrowed the concept of engineering change
and developed new techniques to correct a circuit with multiple
errors. For error diagnosis, we used a novel technique called
dynamic support for building BDD’s to identify equivalent signal
pairs in stages. Also, we used a dominator as a pseudo-output to
take the observability don’t cares into consideration. This
technique is superior to the ATPG-based approach when a specifi-
cation is optimized using a lot of don’t cares, and thus, has less
structural similarity to the original specification. After the identifi-
cation of the equivalent signal pairs, we incorporate a new method
to locate the error signals. Then the back-substitution is employed
to correct the identified error signal incrementally.

The rest of this paper is organized as follows. In Section 2, we
introduce the terminologies and the overall scenario. In Section 3,
we discuss the technique of dynamic support and the error correct-
ing process in detail. In Section 4, we present experimental results.
Section 5 gives concluding remarks.

2. Preliminaries

2.1 Definitions
Without loss of generality, we assume that the specification and

the incorrect implementation are both single-output circuits. Both
circuits are given as gate level netlists and denoted asC1 andC2,

respectively. Our algorithm is performed on a netlist where the
primary inputs of 2 netlists are joined together. The outputs forC1

andC2 are denoted aso1 ando2. The problem of error correction

is to find a transformation that can convertC2 to a circuit equiva-

lent to C1. During this transformation, the output function ofC1

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

remains the same, while the internal signals ofC2 could be

changed to rectify the function ofo2.

Definition 1: (Signal pair): (a1, a2) is called a signal pair, wherea1

is a signal ofC1, anda2 is a signal ofC2.

Definition 2: (Equivalent pair): (a1, a2) is called an equivalent

pair if the values of signala1 anda2 in response to any input vec-

tor are identical.
Definition 3: (Discrepancy function): A vectorv is a distinguish-
ing vector for a signal pair (a1, a2) if the application ofv can pro-

duce (0, 1) or (1, 0) ata1 anda2. The characteristic function of the

set of distinguishing vectors is called a discrepancy functionand
denoted asDisc(a1, a2).

Definition 4: (Generalized equivalent pair): (a1, a2) is called a

generalized equivalent pair with respect too1 if the function ofo1

remains the same after signala1 is replaced bya2. This general-

ized definition is implicitly used in the sequel.
Definition 5: (Back-substitution): An operation that replaces a
signala2 in C2 by a signala1 in C1 is called a back-substitution.

Note that (a1, a2) is usually not an equivalent pair to be considered

for back-substitution.
Note that back-substitution does not preserve the output

function ofC2. It is an operation that tries to create more equiva-

lent pairs between the specificationC1 and the incorrect imple-

mentationC2 after an error signal is identified, so that more

subsequent normal substitutions can be performed. The selection
of the best candidate for back-substitution may affect the result.
Fig. 1 illustrates the difference between normal substitution and
back-substitution. In this example, the incorrect circuit is different

from the specification by only one gate (shadowed). Signal pair
(a1, a2) is equivalent; hence a normal substitution is performed.

Signal pair (d1, d2) is not equivalent and they are selected for

back-substitution to create more equivalent pairs in their fanout-
cones. After this back-substitution,o2 becomes equivalent too1

and one more gate (e2) in C2 can be reused to implement a correct

circuit.

2.2 The overall procedure
Given a specificationC1 and an implementationC2, our

algorithm first constructs the joined netlist. Then we compare the
signal names in the two circuits to pair up signals. If a signala1 in

C1 has a corresponding signala2 with the same name inC2, then

signala1, a2 are regarded askey signalsand (a1, a2) is akey signal

pair. The joined netlist can be transformed into a hypergraph con-
sisting of a set of supernodes and a set of connections such that

Fig. 1: Normal substitution and back-substitution.

a2

o1 o1

o2 o2

(a) replacinga1 with a2

a1

d1

d2

(b) d2 is back-substituted byd2
(normal substitution) (function ofo2 is changed)

e1

e2

every connection is a key signal and every supernode corresponds
to a collapsed subcircuit in the original netlist. We sort the key
signals in an order that every signal is after its transitive fanins.
Once an equivalent signal pair (a1, a2) is identified,a1 is replaced

by a2 immediately. This incremental approach identifies equiva-

lent pairs in stages to significantly reduce the run-time complexity
[7]. After we have checked every internal key signal pair, we
check if the output functionso1 ando2 are equivalent. If they are

equivalent, then no more correction is needed. Otherwise, we
select an inequivalent pair and perform back-substitution. After
the back-substitution, another iteration of error-diagnosis is
followed to identify newly generated equivalent pairs. The process
continues untilo1 ando2 are equivalent. The overall procedure of

this incremental error correction process is described in Fig. 2.

3. Techniques
3.1 Dynamic-support for constructing BDD’s

Here we discuss a technique to check the equivalence of a
signal pair using dynamic supports for constructing BDD’s. We
first define the sensitization function.
Definition 6: Sensitization function is the characteristic function
of the set of input vectors that can propagate a discrepancy signal
from signala1 to a primary outputo1, denoted asSen(a1, o1). This

function is a boolean difference of functiono1 with respect to an

internal signala1, i.e.,Sen(a1, o1) ≡ (o1(a1=0)) ⊕ (o1(a1=1)).

Property 1 [5,6]: (a1, a2) is an equivalent pair if the intersection

of the discrepancy function and the sensitization function is the
zero function, i.e.,Disc(a1, a2) ^ Sen(a1, o1) = 0. ❏

This property states that if there exists no input vector that can
generate (0, 1) or (1,0) at (a1, a2) and propagate this discrepancy

all the way to the primary outputo1, then it is safe to replace

signala1 with signala2 without changing the function ofo1. If the

global BDD of the joined netlist can be constructed, the above
necessary and sufficient condition can be checked efficiently.
However, for larger designs, it is not feasible to construct the
global BDD. In [5], an ATPG technique is applied to check the
necessary and sufficient condition of equivalence. The efficiency
of this approach strongly relies on the degree of structural similar-

Check equiv. of PO pair

 Identify an equiv. pair &

 more?

Select an error signal

Back-substitution

 Identify key signals
 by name-comparison

Sort key signals
 (fanin first)

END

C1

C2

joined netlist

do normal substitution

Correcting-stage

Diagnosis-stage

Fig. 2: Overview of our incremental error-correcting process.

yes

no

yes

no

Connecting PIs
 together

ity between the circuits. In this paper we further propose a new
technique that is less sensitive to structural similarity to identify
the equivalent signal pairs.

This technique is based on an observation that if there exists a

cutset for the input-cones ofa1 anda2 such that no value com-

bination of the cutset can produce (0, 1) or (0, 1) at (a1, a2), then

(a1, a2) is an equivalent pair. We further enhance this sufficient

condition by considering thea1’s dominator,dom, (if it exists) as

the pseudo primary output. Dominator is a signal in the output-
cone ofa1, such that every path froma1 to any primary output

should passes through it. We denote the discrepancy function with
respect to the cutsetλ for signal pair (a1, a2) asDiscλ(a1, a2), and

the sensitization function with respect to one of signala’s domina-
tor, dom, asSenλ(a1, dom). In the sequel, cutset is also referred to

assupport. The following lemma shows a sufficient condition of
equivalence.

Lemma 1: A signal pair (a1, a2) is equivalent if there exists a

support λ for the input-cones ofa1 and a2 such that:

Discλ(a1, a2) ^ Senλ(a1, dom) = 0, wheredom is a dominator of

signala1.

Our experiments show that a large percentage of equivalent
pairs satisfy the above sufficient condition without using the
primary inputs as the support. Hence we developed a heuristic that
expands the support towards the primary inputs dynamically to
select an appropriate support for checking the equivalence of a
candidate pair. Since we only construct the discrepancy function
and the sensitization function (if a dominator exists) based on a
local support, we can handle much larger designs than the tradi-
tional approach using global BDD’s. Fig. 3 illustrates this
backward expansion process for selecting dynamic support.

In the worst case, we need to advance the frontier of the
support all the way to the primary inputs to prove whether a signal
pair is equivalent or not, which requires the construction of global
BDD’s. To avoid this situation, we set a limit on the maximum
levels of the backward expansion process. If the signal pair cannot
be proven equivalent after reaching the limit, we then give up,
treat them as inequivalent and move on to the next signal pair. The
only exception is when the target signal pair is a primary output
pair. Then we switch to the ATPG technique to continue the search

λ

C1

o1

x1

x2

x3

C2

o2

a1

a2

dom

dynamic support

Fig. 3: The dynamic support that expands towards the primary
 inputs for verifying the equivalence of (a1, a2).

backward
expansion

for any possible distinguishing vector. The complete procedure of
checking the equivalence for a signal pair is shown in Fig. 4.

3.2 Error signal selection
Once the process of identifying equivalent pairs is completed,

a heuristic is applied to predict the possible locations of the error
signals. In the joined netlist, we search for a cutset from the
primary output towards the primary inputs. In this cutset, every
signal s is a key signal, and has been identified as equivalent to its
corresponding signals’. Finding such a cutset is helpful for
precisely locating the sources of errors. Fig. 5 illustrates the idea.

The key signals that were identified as inequivalent are in shadow.
(a1, a2), (b1, b2) and (ε1, ε2) are three of them. A cutset that

envelops signal pair(ε1, ε2) and their fanout cones is identified.

Since the signal pairs (a1, a2) and (b1, b2) do not cause the key

signal pairs in their output cones to become functionally different,
their inequivalence is not responsible for the inequivalence of the
primary output functions. On the other hand, the output cone of
signalε2 is affected because of the incorrect function of signalε2,

which leads to the incorrectness of the implementation’s primary
output functions. Therefore, signalε2 is the suspected error signal.

We examine each key signal from the primary outputs towards the
primary inputs to search for such an error signal for the subse-
quent correcting process. The candidate error signal satisfies the
condition thatall of its fanin signals in the hypergraph are also in
the identified envelop cutset. Usually this signal is one of the
sources of errors. Once an error signal is located, we perform the
back-substitution to fix it.

4. Experimental Results

A given pair (a1, a2)

computedisc(a1, a2)

computesen(a1, dom)
if dominator (dom) exists

backward expand support

update the support

find the first level support

 Over Limit?

Fig. 4: Checking an equivalent pair using dynamic support.

yes

no

no

 (disc ^ sen)=0?

 (a1, a2)
is equivalent

 (a1, a2)
is notequivalent

yes

Primary
 Inputs

a1

b1 1

a2

b2 2

Specification

Primary
Outputs

Primary
Outputs

Fig. 5: Illustrating the cutset for selecting an error signal.

cutsetcomposed of equivalent key signal pairs

implementation

ε

ε

We have implemented this algorithm on top of SIS [4]. Note
that our program can also be used for verifying circuit equiva-
lence. We have used our program to verify the equivalence of
three types of circuits synthesized by SIS: redundancy removed
circuits, circuits minimized byscript.rugged, and mapped circuits
using librarysynch.genlib.The results of verifying minimized and
mapped ISCAS85 benchmark circuits on a Sun Sparc-20 worksta-
tion equipped with 128MB memory are shown in Table 1 and 2,
respectively. The results of verifying the redundancy removed
circuits are faster than those in Table 1 and 2. But due to the space
limitation, they are not presented here. Redundancy removed
circuits are typically structurally similar to their original circuits.
However, for thoroughly optimized (byscript.rugged) or mapped
circuits, the structural similarity has been significantly reduced,
and thus, the verification is more difficult. Our approach is quite
robust and applicable to circuits with different degrees of struc-
tural similarity. Our experience shows that it is very common that
some equivalent signal pairs cannot be proven equivalent unless
we backward expand the dynamic support for a number of levels.
Currently we expand the support for up to 6 levels if necessary. If
this is not enough to prove a signal pair equivalent, we regard
them as inequivalent. Our experience shows that a very high per-
centage of equivalent pairs (the column of# equiv. pairsdivided
by the column of #key pairs) can be identified using this sufficient
condition. We also implemented the idea of using a dominator as
the pseudo-output. For some cases, this feature increases the
number of equivalent pairs. Since we do not build global BDDs,
the memory explosion problem has not been encountered.

Table 3 shows the results of correcting the minimized circuits
with multiple errors (randomly injected 3 errors) [1]. The column
labeledreuse-rate is the ratio of the number of nodes taken from
the incorrect implementation to the total number of nodes in the
final correct circuit. i.e.,reuse-rate =(no. of existing nodes) / (no.

of existing nodes + no. of new nodes).

Circuit-
name

C1
#node

C2
#nodes

key
signals

eq.
pairs

Time
(sec)

C432 123 49 38 37 2.3
C499 162 162 90 90 1.0
C880 311 49 49 49 1.7
C1355 474 162 90 90 1.4
C1908 441 152 98 94 20.6
C2670 788 256 208 208 76.4
C3540 956 240 146 146 492.4
C5315 1467 401 292 292 13.1
C6288 2353 934 704 704 24.1
C7552 2165 578 398 398 47.4

Table 1: Verifying circuits minimized byscript.rugged.

Circuit-
name

C1
#node

C2
#nodes

key
signals

equiv.
pairs

Time
(sec)

C432 123 99 8 8 18.8
C499 162 177 132 132 1.7
C880 311 163 76 76 1.5
C1355 474 445 36 36 16.9
C1908 441 436 436 425 7.6
C2670 788 518 211 211 91.0
C3540 956 632 160 160 72.1
C5315 1467 952 307 307 12.6
C6288 2353 2309 61 61 105.8
C7552 2165 1289 458 458 42.4

Table 2: Verifying mapped circuits using librarysynch.genlib.

5. Conclusions
Most existing algorithms for automatic error correction are

restricted to certain types of errors or cannot handle large designs
with multiple errors. In this paper, we present a general approach
for rectifying a large combinational circuit. Since no error model
is assumed, this approach can handle arbitrary types of errors. In
the process of error diagnosis, we proposed a dynamic-support
technique to identify the equivalent pairs efficiently using local
BDD’s. Based on the information derived in the error diagnosis
phase, we narrow down the possible locations of errors for the
subsequent correcting process. To correct those identified error
signals, we perform a sequence of back-substitutions to rectify the
circuit incrementally. This approach is less sensitive to the struc-
tural similarity than the previous incremental approaches. We
have successfully verified all fully SIS-optimized ISCAS85
benchmark circuits. Also, we have successfully corrected the
circuits when injected with multiple random errors.

References
[1] K. A. Tamura, “Locating Functional Errors in Logic Circuits,” ACM/

IEEE,Design Automation Conference, pp. 185-191, 1989.

[2] J. C. Madre, O. Coudert, and J. P. Billon, “Automating the Diagnosis
and the Rectification of the Design Errors with PRIAM,” Proceed-
ings ofICCAD, pp. 30-33, 1989.

[3] M. Tomita, H. H. Jiang, T. Tomamoto, and Y. Hayashi, “An Algo-
rithm for Locating Logic Design Errors,” Proceedings ofICCAD, pp.
468-471, 1990.

[4] “SIS: A System for Sequential Circuit Synthesis,” Report M92/41,
University of California, Berkeley, 1992.

[5] D. Brand, “Verification of Large Synthesized Designs,” Proceedings
of ICCAD, pp. 534-537, 1993.

[6] P. Y. Chung, Y. M., Wang, and I. N., Hajj, “Diagnosis and Correction
of Logic Design Errors in Digital Circuits,”ACM/IEEE Design Auto-
mation Conference, pp. 503-508, 1993.

[7] D. Brand, A. Drumm, S. Kundu, and P. Narrain, “Incremental Syn-
thesis,” Proceedings ofICCAD, pp. 14-18, 1994.

[8] A. Kuehlmann, D.I. Cheng, A. Srinivasan, and D.P. LaPotin, “Error
Diagnosis for Transistor-level verification,” ACM/IEEE Design
Automation Conference,pp. 218-223, 1994.

[9] C. C. Lin, K. C. Chen, S. C. Chang, M. Marek-Sadowska, and K.T.
Cheng, “Logic Synthesis for Engineering Change,” ACM/IEEE
Design Automation Conference,pp. 647-652, 1995.

[10] S. M. Reddy, W. Kunz, and D. K. Pradhan, “Novel Verification
Framework Combining Structural and OBDD Methods in a Synthe-
sis Environment,” ACM/IEEEDesign Automation Conference, pp.
414-419, 1995.

Ckt-
name

key
signals

#equiv.
pairs

new
nodes

#exist.
nodes

Reuse
rate

Time
(sec)

C432 38 36 16 187 92% 8.0
C499 90 88 4 437 99% 6.7
C880 49 45 40 327 89% 12.1
C1355 90 89 6 447 99% 10.6
C1908 98 94 79 369 82% 31.4
C2670 208 205 27 918 97% 88.9
C3540 145 136 147 1167 89% 2025.0
C5315 292 283 105 1373 93% 27.0
C6288 704 701 14 2362 99% 35.8
C7552 398 395 190 2261 92% 42.4

Table 3: Correcting minimized circuits injected with 3 random errors.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

