
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made 
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc.  To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA          1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Delay Minimal Decomposition of Multiplexers in Technology Mapping

Shashidhar Thakur�

Synopsys Inc.,

700 E. Middle�eld Road,

Mountainview, CA 94043

D.F. Wong�

Department of Computer Sciences,

University of Texas at Austin,

Austin, TX 78712

Shankar Krishnamoorthy

Synopsys Inc.,

700 E. Middle�eld Road,

Mountainview, CA 94043

Abstract

Technology mapping requires the unmapped logic network to
be represented in terms of base functions, usually two-input
NORs and inverters. Technology decomposition is the step
that transforms arbitrary networks to this form. Typically,
such decomposition schemes ignore the fact that certain cir-
cuit elements can be mapped more e�ciently by treating them
separately during decomposition. Multiplexers are one such
category of circuit elements. They appear very naturally in cir-
cuits, in the form of datapath elements and as a result of synthe-
sis of CASE statements in HDL speci�cations of control logic.
Mapping them using multiplexers in technology libraries has
many advantages. In this paper, we give an algorithm for op-
timally decomposing multiplexers, so as to minimize the delay
of the network, and demonstrate its e�ectiveness in improving
the quality of mapped circuits.

1 Introduction

Technology mapping involves the tasks of decomposition,
matching, and covering. The �rst of these steps, decomposition,
involves expressing every node in the logic network in terms of
base functions. This step will be the focus of this paper.
The goal of the decomposition step is twofold; to create a

good initial structure for the mapping algorithm to work on
and to ensure that the logic function of each node belongs to
a set of base functions, every member of which exists in the
library. Most available technology mappers employ the base
function set consisting of two-input NOR and NOT functions.
The structural tree-based mapping algorithm [1, 3, 5] is a

very popular algorithm, and forms the core of many academic
and commercial technology mapping tools. This algorithm par-
titions the unmapped logic network into a collection of trees.
Each component tree is then optimally mapped to the library
using graph matching techniques. When using such a map-
per, it is of an advantage to decompose the unmapped network
in such a way that the resulting network has fewer component
trees. Each library cell is represented as a pattern tree, in which
every node is one of the base functions. Such mappers can uti-
lize library cells that can be represented by tree patterns only.
Circuits usually contain a large number of multiplexers

(MUXes). This is especially true for circuits that are auto-
matically synthesized from high-level descriptions. MUXes ex-
ist in the data-paths of circuits, where they are used to route
operands to operators. Also, the control logic is frequently spec-
i�ed as a CASE statement in HDL descriptions. MUXess arise
as a result of a direct translation of CASE statements in HDLs
into a logic-level description. Figure 1 illustrates the occurrence
of MUXes in circuits.
Cell libraries too contain various choices of MUXes. Cell

implementations make use of the fact that a pass gate imple-
mentation of a MUX is both, faster and smaller. In the case
of MUX-based FPGAs like Actel, there is a natural presence
of MUX in the virtual library. Thus, a method for mapping

�Partially supported by the Texas Advanced Research Program
under Grant No. 003658459, by a DAC Design Automation Scholar-
ship, and by a grant from the AT&T Bell Laboratories.

Register bank

  
(operands)

operator
Case STATE is
      when => STATE_ZERO

         out = a;
when => STATE_ONE
         out = b;
when => STATE_TWO
          out = b;
when => STATE_THREE
          out = c;

a b cSTATE

out

Figure 1: Occurrence of MUXes in synthesized circuits.

MUXes in the unmapped network to those in the library is de-
sirable.
There are some problems that can result from decompos-

ing such MUX nodes in terms of NOR and NOT base func-
tions. These are illustrated in Figure 2. It shows the structure

Figure 2: Result of decomposing a four-to-one MUX.

that results if a four-to-one MUX is represented in a two-level
form, and then decomposed in terms of NOR and NOT gates.
The immediate observation is that such a decomposition causes
multiple fanouts in the network. As mentioned earlier, this is
harmful when using a tree-based mapper. Another, and more
important, point to note is that the mapper will not be able
to match this circuit to three two-to-one MUXes in the library,
the reason being that the two-to-one MUX is not a subgraph
of the decomposed network. This illustrates the importance of
�nding a decomposition of a large MUX that preserves its struc-
ture, allowing the mapper to �nd matches with MUX cells in
the library. An additional motivation for doing this is that the
multiple fanouts, resulting for decomposing a MUX, get hidden
inside a cell when such a match is chosen. This improves the
routability of the circuit.
Rudell [5] suggested that an additional base function, in the

form of a two-to-one MUX, be added to create an extended
base function set. This allows structural mappers to make a
better use of MUX library cells. Clearly, a scheme that identi�es
MUXes in the circuits, and decomposes them in terms of two-
to-one MUX base functions, is needed to take advantage of this.
In this paper we show how large MUX nodes in the circuit can

be decomposed into a tree of two-to-one MUX nodes, under the
constant delay model (delays of gates are independent of drives
and loads). The objective will be to minimize the depth of the
tree, thus minimizing the propagation delay to the root of the
decomposition tree. We give an algorithm that computes the
optimal solution to this problem.
Some algorithms for technology mapping for MUX-based FP-

GAs [4] involve decomposing both, the network and the library



cells, in terms of two-to-one MUX base functions and then ap-
plying structural mapping algorithms. Here the aim is to get a
representation using a small number of base function nodes, and
the objective of meeting performance goals is left to the covering
step. Other work on the problem of synthesizing Boolean net-
works using multiplexers involves trying to express each node
in the circuit as a network of multiplexers [2, 6, 7]. The aim is
to minimize the number of multiplexers used in the decompo-
sition. In contrast, we do the decomposition step with the aim
of getting good performance after mapping.

2 De�nitions

Let S = fs1; s2; : : : ; s�g and D = fd1; d2; : : : ; d�g be sets of
Boolean variables and let V = S

S
D. Let f be a � + � input

Boolean function, over the set of variables V . Below we will
assume that i; j are variables that can take values from the
set f1; 2; : : : ; �g. We assume that the input format for f is a
Boolean expression.
For i � �, de�ne Cdi = fd0

1
d0

2
:::di:::d

0

�
. Thus, Cdi is the co-

factor of f with respect to the positive phase of di, and the
negative phases of the rest of the variables in D.
De�nition 1: Function f is called a (�; �) MUX with selector
inputs s1; s2; : : : ; s� and data inputs d1; d2; : : : ; d� if the follow-
ing conditions hold:
1. s1; s2; : : : ; s� are binate in f and d1; d2; : : : ; d� are unate in

f . We assume, without loss of generality, that the unate
inputs of f are positive unate.

2. (
W

i��
Cdidi) = f .

3. For i; j � �, Cdi

V
Cdj = 0.

For a variable di, Cdi is called its selector code. Thus, the
selector code of a data input is the disjunction of minterms of
selector inputs that select it.
A full MUX is one in which each data signal gets selected by

one and only one selector minterm, and each selector minterm
selects some data signal. Thus, a full MUX has � = 2�. A
priority MUX is one in which each data signal can get selected
by more than one selector minterm. If each selector minterm
selects some data signal the MUX is a priority complete MUX,
else it is a priority incomplete MUX. Priority MUXes have � <
2�.
De�nition 2: For a (�; �) MUX f , the function (

W
i
Cdi )

0 is
called the don't care selector codes function, and is denoted
(DC)f .
Note that (DC)f is a function over variables in S only. In-
formally, this function is the sum of minterms of variables in
S that do not select any data input in f . This is a non-zero
function only for priority incomplete MUXes.
De�nition 3: A multiplexer decomposition of a (�; �) MUX f ,
de�ned over the variables in V , is a tree of (2,1) MUXes that is
functionally equivalent to f . The selector inputs of each (2,1)
MUX is taken from S, and the data inputs of the MUXes are
either the outputs of other (2,1) MUXes in the tree or elements
of D.
We denote the propagation delays of a (2,1) MUX and a two-

input NOR by �m and �n, respectively. The delay of a NOT
gate is assumed to be zero. We will use the unit delay model in
all delay computations. The problem we address in this paper
is stated below.
Problem 1 (Multiplexer Decomposition Problem):
Given �m, a (�; �) MUX f , and arrival times for all inputs
of f , �nd a decomposition of f in terms of (2,1) MUXes such
that the arrival time of the signal at the output of the root (2,1)
MUX is minimized.

3 Decomposing the Network

The algorithm for decomposing the network essentially does
a topological walk over the DAG representing the input logic
network. Clauses 1-3 in De�nition 1 are checked to determine

if the node represents a MUX. The nodes that are identi�ed
as MUXes are decomposed into a tree of (2,1) MUXes using
our decomposition algorithm. Other nodes are decomposed
in terms of NOR and NOT base functions using the Hu�-
man tree-based Algorithm [8]. We call the corresponding al-
gorithms mux decomp and hu� decomp, respectively. The algo-
rithm mux decomp will be the subject of the next section.

4 Multiplexer Decomposition

We are now ready to present the multiplexer decomposition
algorithm. We will analyze the complexity of the problem in
Section 4.1. We will develop the algorithm in Sections 4.2, 4.3,
and 4.4.

4.1 Complexity of the Problem

We claim that any algorithm for the MUX Decomposition Prob-
lem will have a worst case running time that is exponential in
the size of the input. Recall that we assume that the input
MUX, f , is speci�ed as a Boolean expression. The above claim
is stated in the following lemma:

Lemma 1: The Multiplexer Decomposition Problem has time
and space complexities that are exponential in the size of the
input MUX, the number of selector inputs to the MUX, and the
number of data inputs to the MUX.

This implies that any algorithm for the problem has to have
a running time of O(2n), for input fn. Hence, any algorithm
has to have a worst case running time that is exponential in
the size of the input. As a consequence of this, any algorithm
has to have a worst case running time that is exponential in
the number of selector inputs and the number of data inputs.
The exponential time complexity is not a disaster for problems
of practical importance. Our experiments show that, for most
MCNC circuits, the average number of selectors in the MUXes
identi�ed is less than 4. Thus, algorithms that have a worst
case running time of O(k�), where � is the number of selectors
and k is a small constant, will be of practical importance (as
well as the best possible, theoretically).

4.2 Intuitive Algorithm

In this section, we present an intuitive algorithm that correctly
decomposes a MUX node f . This algorithm �nds the delay
optimal decomposition of a full MUX. But for priority MUXes
it is sub-optimal.
We �rst state a lemma that makes a recursive solution of the

problem possible. The proof of this claim follows immediately
from the de�nition of a MUX.

Lemma 2: If f is a MUX and s is a selector input of f then
fs and fs0 are MUXes too.

The algorithm is easy to describe. The selectors are sorted
according to their arrival times. The latest arriving selector
s is chosen, and the cofactors fs and fs0 are computed. By
Lemma 2, both these cofactors are MUXes. The algorithm
then is to decompose each of the cofactors recursively. Doing a
Shannon expansion of f , with respect to s, we get f = sfs +
s0fs0. Hence, the outputs of the decomposition trees of fs and
fs0 are used as data inputs to a new (2,1) MUX node, with s
as selector input. Note that the MUX needs to be constructed
only if fs 6= fs0, as otherwise s is not in the true support of f .
The algorithm described above is called mux decomp selsort

If the input node is a full MUX, then the decomposition done
by this algorithm minimizes the arrival time at the output of
the root of the decomposition tree. This is because all the se-
lectors have to occur on every path from the root to the leaves.
Thus, arranging the selectors in the decreasing order of arrival
times from the root to the leaves ensures a delay optimal decom-
position, independent of the arrival times of the data signals.
This algorithm is suboptimal for priority MUXes. This result
is stated in the following lemma. The complexity of Algorithm
mux decomp selsort is also stated.



Lemma 3: If the input node is a MUX then Algorithm
mux decomp selsort creates a decomposition tree of (2,1) MUX
nodes, that is functionally equivalent to the input node. If the
input MUX node is a full MUX then it creates a decomposi-
tion tree of (2,1) MUX nodes that minimizes the signal arrival
time at the output of the root of the tree. The running time for
this algorithm is O(2�) and it uses O(2�) space, where � is the
number of selector signals of the input node.

4.3 Optimal Algorithm

We now present the optimal MUX decomposition algorithm.
We �rst restrict ourselves to full MUXes and priority complete
MUXes, i.e., the don't care selector codes function is zero. The
decomposition of priority incomplete MUXes will be done by a
slight extension to be described later.
For priority MUXes Algorithm mux decomp selsortmay per-

form sub-optimally as is illustrated by the following example.
Example 1: Let �m = 1. Consider the following function:

f = s(tua+ tu
0
b+ t

0
uc+ t

0
u
0
d) + s

0(ue+ tu
0
f + t

0
u
0
g)

This is a (7,3) priority complete MUX with selector inputs s; t; u
and data inputs a; b; c; d; e; f; g. Assume the arrival times of
s; t; u are 1,2 and 3, respectively. The arrival time of all data
signals except e is 1, and that of e is 4. Figure 3(a) shows the re-

s

t

u u

t

u

u

t

a b c d a b c d

e

f ge f e g
1 1 1 1 4 1 4 1

2

5 5

6

7

1 1 1 1

2

3
s
3

11

4

2

1 1

3

5

2 2

3

6

2 2

3

1

(a) (b)

f f

Figure 3: Illustration of sub-optimality of Algorithm

mux decomp selsort.

sult of applying Algorithm mux decomp selsort and Figure 3(b)
shows a better decomposition.
The above example brings out two important points that lead

to an optimal algorithm. It shows that the order of selectors
on the two branches, starting from an internal MUX in the
decomposition, need not be the same. In the decomposition
shown in Figure 3(b), the left branches of the root MUX have
the selector order t; u and the right branch has the selector order
u; t. The order of selectors on the right branch is not the same
as the order according to decreasing arrival times. This allows
the late arriving data signal, e, to be pushed towards the root.
Also, the example illustrates the fact that saving a MUX along
a critical path (in this case the path from e to the root) can
o�set the disadvantage of pushing a late arriving selector signal
away from the root of the decomposition tree.
The straightforward way then, to allow di�erent selector or-

ders along di�erent branches starting at an internal MUX, is to
modify Algorithm mux decomp selsort so that every selector is
tried as the selector input to the root MUX. The chosen solu-
tion is the best among all the decompositions corresponding to
each possible assignment of the selector input to the root MUX.
The possibilities are tried out in a brute force manner, a source
for ine�ciency that will be corrected later in this section.
The following lemma states the optimality and the complex-

ity of the above algorithm, which we call mux decomp opt ine�.

Lemma 4: If the input MUX node is a full or priority complete
MUX then Algorithmmux decomp opt ine� creates a decompo-
sition tree of (2,1) MUX nodes that minimizes the signal arrival

time at the output of the root of the tree. The running time of
this algorithm is O(2��!) and it uses O(2�) space, where � is
the number of selectors signals of the the input node.

Thus, this algorithm causes a blowup in the running time by
a factor of �!, where � is the number of selectors, when com-
pared to Algorithm mux decomp selsort. The reason for this
ine�ciency lies in the top-down approach to constructing the
decomposition tree. This approach results in repeating the com-
putation of the optimal decomposition tree for the same func-
tion. For example, if s and t are two selector signals of a MUX
f , then the optimal decomposition for fst is computed twice,
once when s is chosen at the top recursion level and t at the
second level, and once for the reversed order of selectors.
The �nal e�cient algorithm uses a bottom-up, non-recursive,

dynamic programming approach in building the tree. Partial
solutions are stored, and re-used when the optimal decomposi-
tion of a previously processed function is desired. The intuition
behind this is illustrated in Figure 4. Figures 4(a) and (b) show

s

t u

u

s v

f f

fst fst’ fs’u fs’u’ fus
f us’ fu’v f

u’v’

(a) (b)

Figure 4: Illustration of e�cient optimal MUX decompo-

sition algorithm.

the exploration of two possible decompositions of a function f .
The triangles represent MUX decomposition trees for the cor-
responding functions. We observe that the optimal decomposi-
tion of fs0u(= fus0) is required to evaluate the delay at the root
node in both the possibilities. It is exactly this repeated com-
putation that is avoided if the optimal decomposition of fs0u
is stored the �rst time it is computed. We call the modi�ed
algorithm mux decomp opt.
The following lemma states the optimality and the complex-

ity of the above algorithm, which we call mux decomp opt.

Lemma 5: If the input MUX node is a full or priority complete
MUX then Algorithm mux decomp opt creates a decomposition
tree of (2,1) MUX nodes that minimizes the signal arrival time
at the output of the root of the tree. The running time of this
algorithm is O(�3�) and it uses O(3�) space, where � is the
number of selectors signals of the the input node.

4.4 Priority Incomplete Multiplexers

We now describe how the MUX decomposition algorithms can
be extended to handle priority incomplete MUXes. By de�ni-
tion, for a priority incomplete MUX f , (DC)f 6= 0. Introduce
a new variable d0, such that d0 62 D. Let D0 = D

S
fd0g, and

arr(d0) = 0. Consider the function gf de�ned as follows:

gf = f + d0(DC)f

We observe that gf is a (�+1; �) priority complete MUX, with
selector signals being the members of S, and data signals being
the members of D0. Either of Algorithms mux decomp opt ine�
or mux decomp opt can be used to decompose gf optimally. A
post-processing step is applied to extract the decomposition for
f from this. In this step, all occurrences of d0 in the decomposi-
tion are replaced by the constant 0. Then constant propagation
is done, where every MUX with one data input 0 is replaced by
a combination of a two-input NOR and a NOT node. Alterna-
tively, the constants could be left in the network, so that the
MUX structure is preserved.



Circuit Area Delay Number of Nets Pins/Net
Name hu� selsort opt hu� selsort opt hu� selsort opt hu� selsort opt
C2670 1525 1519 1519 29.6 28.2 28.2 1142 1111 1111 2.92 2.87 2.87
C5315 3802 3671 3672 25.2 23.0 23.0 2540 2366 2370 3.26 3.24 3.23
apex7 451 456 456 9.3 9.3 9.3 330 329 329 3.08 3.05 3.05
cm150a 116 59 59 5.4 2.9 2.9 101 50 50 2.54 2.32 2.32
cm151a 61 50 50 4.3 3.9 3.9 52 41 41 2.60 2.46 2.46
cm152a 36 29 29 2.9 2.0 2.0 31 26 26 2.65 2.12 2.12
dalu 3463 3342 3342 41.6 35.3 35.3 2043 1906 1906 3.55 3.48 3.48
des 7714 7571 7571 69.7 58.7 58.7 4502 4299 4299 3.65 3.70 3.70
eric 8313 12025 7694 48.4 149.5 41.1 4521 4784 3893 3.77 4.03 3.82
i10 6756 6779 6777 75.7 75.6 75.4 3899 3904 3904 3.53 3.52 3.52
i8 3610 3603 3592 43.9 43.9 43.9 2182 2154 2150 3.50 3.51 3.51
mux 157 73 73 6.7 3.7 3.7 120 54 54 3.03 2.72 2.72
sdmux 213 87 87 5.1 2.6 2.6 124 62 62 3.24 2.34 2.34
tcon 40 32 32 1.0 1.1 1.1 49 25 25 2.47 1.96 1.96

normalized
average 1.0 0.87 0.83 1.0 0.99 0.84 1.0 0.82 0.80 1.0 0.94 0.93

Table 1: Comparison of quality of mapped circuits - lsi 10K.

5 Experimental Results

We implemented the network decomposition algorithm based
on the decomposition algorithms developed in this paper. We
implemented it so as to o�er three choices for the decomposition
method.
1. hu�: All nodes decomposed by Algorithm hu� decomp.
2. selsort: MUX nodes decomposed by Algorithm

mux decomp selsort.
3. opt: MUX nodes decomposed by Algorithm

mux decomp opt.
This was integrated with SIS as the command decomp network.
We used two libraries, Actel and lsi 10K, which were se-

lected because of the presence of large multiplexers in them
(the largest MUX in the Actel2 library is a (4,2) full MUX and
the largest in lsi 10K is a (8,3) full MUX). We just show the re-
sults for the lsi 10K library for brevity. The following sequence
of operations were performed on each circuit.

sweep; eliminate 5;

The �rst operation removes single input and constant nodes
from the circuit. The second operation, eliminate, was just a
straightforward way to collapse small nodes to form larger ones.
This was one way to recover MUX structures in the circuit that
might have been destroyed in the process of translating from
HDLs.
Following this, we did the decomposition and then mapped

the circuits using the commands,
decomp network -choice; map;

We did our experiments on a Sun Sparcstation 5. It was ob-
served that the deviation in the CPU time for the three algo-
rithms is only about 25%. Thus, the run-time penalty paid for
doing multiplexer decomposition is very low.
Finally, we did the technology mapping with the aim of min-

imizing the delay of the mapped circuit as a primary aim and
minimizing the area as the secondary aim. The technology map-
per was a tree-based structural mapper that allowed a (2,1)
MUX as a base function, in addition to a two-input NOR and
NOT. We used the libraries for Actel2 and lsi 10K. The results
of these experiments are tabulated in Table 1.
We make following conclusions from this experiment:
1. The intuitive selector sorting based MUX decomposition

method of Algorithm mux decomp selsort does not cause
any improvement in delay, on an average. This can be di-
rectly attributed to its sub-optimality for priority MUXes.
This justi�es the use of the more complicated Algorithm
mux decomp opt.

2. Both the multiplexer decomposition algorithms cause sub-
stantial reductions in area. This can be attributed to the
the fact that reducing multiple fanouts in the decomposed
network improves the performance of tree-based technol-
ogy mappers. Also, a better use is made of the e�cient
multiplexer implementations in the libraries.

3. For the larger circuits, despite the presence of many
MUXes, the improvement in delay is small. One possi-
ble explanation for this is that the MUXes are along non-
critical paths. Hence, a better decomposition for them
does not have much of an in
uence on the delay of the
mapped circuit. In contrast, an area improvement is ob-
served for most of the examples.

4. As mentioned in the introduction, the decomposition of
MUXes in terms of the base MUX function has the added
advantage of reducing the number of multiple fanouts.
This is con�rmed by the reduction in number of nets and
the number of pins per net.

A point to be noted is that the delay optimality of Algorithm
mux decomp opt is with respect to the decision to decompose
MUX nodes identi�ed in terms of (2,1) MUXes. The possibility
exists that a better mapping might be obtained by decomposing
such nodes in terms of AND/OR gates. For example, in Table 1,
the circuit tcon has a better delay after mapping when the
Hu�man tree-based algorithm is used.

References

[1] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang. Technology mapping in MIS. In Proceedings of
the International Conference on Computer Aided Design, pages
116{119. IEEE/ACM, 1987.

[2] R. K. Gorai and A. Pal. Automated synthesis of combinational
circuits by tree networks of multiplexers. In Proc. 3rd Intl. Conf.
VLSI Design, pages 300{305. IEEE, January 1990.

[3] K. Keutzer. Dagon: Technology binding and local optimization
by DAG matching. In Proceedings of the Design Automation
Conference, pages 617{623. ACM/IEEE, 1987.

[4] R. Murgai, R.K. Brayton, and A. L. Sangiovanni-Vincentelli. An
improved synthesis algorithm for multiplexer-based PGAs. In
Proceedings of the Design Automation Conference, pages 380{
386. IEEE/ACM, 1992.

[5] R. L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, U.C.
Berkeley, April 1989.

[6] I. Schafer and M. Perkowski. Synthesis of multilevel multiplexer
circuits for incompletely speci�ed multioutput Boolean functions
with mapping to multiplexer based FPGAs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
12(11):1655{1664, November 1993.

[7] A. J. Tossner and D. Aoulad-Syad. Cascade networks of logic
functions built in multiplexer units. Proceedings of IEE, Pt. E,
127(2):64{67, March 1980.

[8] A. R. R. Wang. Algorithms for Multi-level Logic Optimization.
PhD thesis, U.C. Berkeley, April 1989.


	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index


