
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Synthesis by Spectral Translation Using Boolean Decision Diagrams

Jeffery P. Hansen Masatoshi Sekine
Toshiba ULSI Research Laboratories

1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan

Abstract

Many logic synthesis systems are strongly influenced by the size of the SOP (Sum-of-Products) representation
of the function being synthesized. Two-level PLA (Programmable Logic Array) synthesis and many multi-level
synthesis systems perform poorly without a good SOP representation of the target function. In this paper, we
propose a new spectral-based algorithm using BDDs (Boolean Decision Diagram) to transform the target function
into a form that is easier to synthesize by using a linear filter on the inputs. Using the methods described in this
paper, we were able to perform spectral translation on circuits with many more inputs and much larger cube sets
then previously possible. This can result in a substantial decrease in delay and area for some classes of circuits.

1 Introduction

Spectral methods for design and classification of boolean functions date back even before the first digital computers.
The use of spectral methods in circuit design is also quite old and dates back from the early 1960s. While the theory
was fascinating, at the time its implementation was impractical for actual circuit design due to the exponential
complexity of computing spectral coefficients and the need for an explicit representation of the truth table of the
function being transformed. However, recent innovations in implicit function representations [1][2] and in relating
these representations to the spectral domain[9], has renewed considerable interest in spectral techniques [4][5][9].

One application for spectral methods is spectral translation [6]. In spectral translation, a functionf is divided
into a linear block� and a non-linear blockf 0 (Figure 1) such thatf(X) = f 0(�X) and where the matrix product
�X is evaluated over the Galois Field GF(2). The synthesis problem is to find a linear block� that minimizes
the complexity off 0. The non-linear blockf 0 is typically synthesized with a traditional two-level or multi-level
synthesis tool, and the linear block� is usually implemented as a network of XOR (exclusive OR) gates. While it
is difficult to derive� in the boolean domain, by transformingf to the spectral domain, the synthesis of� becomes
relatively easy. Depending on the function, by adding only a few XOR gates at the inputs the number of terms and
literals in the SOP form off 0 can be decreased by orders of magnitude compared to the SOP expression forf . This
can have a significant impact on the final synthesized circuit.

Unfortunately, the computational complexity of spectral translation methods grows exponentially with the num-
ber of inputs making direct approaches impractical. One solution to this problem is to compute the spectral co-
efficients from the cube set[10] and use heuristics to find the maximum coefficient. Using this approach, larger
functions can be handled than by previous brute force approaches, but when the cube set becomes large, this method
also becomes impractical.

In this paper, we present a new BDD based logic synthesis tool Spectre (SPECtral TRanslation Engine). Spectre
reads a specification file for a multi-output boolean function and outputs its result as a linear block (�) and a non-
linear block(f 0). The linear block is a network composed of only XOR gates which translates the input basis to a
new basis. The non-linear block is a multi-output boolean function in terms of the translated basis and is synthesized
using a standard synthesis package such as SIS (Sequential Interactive System).

By using a BDD-based representation for spectra, we were able to avoid the usual exponential increase in com-
puting cost for the spectral coefficients of functions with large numbers of inputs. We applied our algorithms to
the benchmarks from MCNC and other sources and found that the number of literals and terms in the SOP form

1

ƒƒ ƒ´σ

Figure 1: Spectral Translation of a Function

decreased to some extent for most functions, and by several orders of magnitude for a few functions. For some
circuits, we were able to cut both area and delay by almost half.

2 The Walsh Spectrum

Consider ann-input boolean functionf(X) whereX = [x0; x1; x2; : : : ; xn�1]
T . LetX have the binary encoding

x =
Pn�1

i=0 xi2
i, and letY n(f) be the2n element vector representing1 the truth table off such thatyx is 1 when

f(X) is logic-0, andyx is�1 whenf(X) is logic-1. The Walsh spectrum[6] off is the2n element vector:

Sn(f) =
2n�1X
u=0

su�u = WnY n(f) (1)

where�u is the2n element basis vector in which theuth element is1, and all other elements are0, and whereWn

is the2n � 2n Hadamard matrix defined as:

Wn =

"
Wn�1 Wn�1

Wn�1 �Wn�1

#
; W 0 = 1 (2)

The Walsh matrix is a symmetric matrix consisting only of1s and�1s. If we defineu =
Pn�1

i=0 ui2
i as a binary

encoding similar to the encodingx, thenuth row vector ofWn is Wn
u� = Y n(

Ln
i=0 xiui). That is, as an encoding

for the XOR sum of variablesxi for whichui = 1. The rows ofWn have the property thatWn
u� �W

n
v� is 2n when

u = v, and0 whenu 6= v and thus form a set of orthogonal vectors. The spectral coefficientsu = Wn
u� � Y

n(f) is
equal to the number of agreements minus the number of disagreements betweenY n(f) andWn

u� and represents the
similarity betweenY n(f) andWn

u�. It has a large magnitude when there is a high correlation and a low magnitude
when there is a low correlation. A negativesu indicates a negative correlation. Where convenient, we will also write
sxixj ::: to indicate the spectral coefficients2i+2j+���. We will also define the “order”of a spectral coefficientsu as
jjujj =

Pn�1
i=0 ui which is equal to the number of variables in the XOR sum for rowWn

u� of the Walsh transform
matrix.

Spectral invariance operators on a functionf are operators for which the position and sign of the coefficients
may change, but the set of magnitudes that appear in the spectrum do not change. There are five spectral invariance
operations [6], but in this paper we will primarily be concerned with the translation operationfxi=xi�xj in which
an inputxi is replaced by that input XORed with another inputxj. This operation causes the following spectral
parameters to be exchanged:

sxi� $ sxixj� (3)

� represents all combinations of variables other thanxi andxj. Since spectral invariance operators are reversable,
they divide the set ofn-input boolean functions into a set of equivalence classes, which are generally far fewer in
number compared to the set of all boolean functions. Spectral translation techniques involve the application of these
operations to find the “simplest” function in the equivalence class.

1In ap-valued logic system, typicallye
2�

p
�1

p
� is used to represent the logic level� where� 2 f0; 1; : : : ; p� 1g.

2

S b ab a

2 6 -2 2

d 2 6 -2 2

cd 2 6 6 -6

c -6 -2 -2 2

Q b ab a

16 20 12 12

d 20 28 20 20

cd 28 18 36 36

c 20 20 20 20

(a) (b)

Figure 2: Spectral Map (a) and NSPS Map (b)

Notice that the exchange of spectral coefficients in (3) will cause the order of the exchanged values to either
increase or decrease by one. It has been noted [6] when the high order coefficients of a function have high magnitude,
the function generally does not have a good AND/OR representation. This suggests that we would like to find
translations which move high magnitude coefficients to low order positions, and low magnitude coefficients to high
order positions.

3 Normalized Spectral Product Sum

In this section, we introduce the NSPS (Normalized Spectral Product Sum) transformation. The NSPS transform
has these advantages: it is easily computed from the BDD; and low-order NSPS coefficients contain information
about high-order Walsh coefficients. The NSPS transform ofn-input functionsf andg is defined in terms of the
SPV (Spectral Product Vector) off andg, which is defined as the2n element vector:

Rn(f; g) =
2n�1X
u=0

ru�u =
2n�1X
u=0

(�u � S
n(f))(�u � S

n(g))�u (4)

The vectorRn(f; g) is the vector resulting from multiplying the corresponding elements ofSn(f) andSn(g). The
NSPS transform off andg is then the2n element vector:

Qn(f; g) =
2n�1X
u=0

qu�u = KnRn(f; g) (5)

whereKn is the2n � 2n matrix:

Kn =

"
1
2
Kn�1 1

2
Kn�1

0 Kn�1

#
; K0 = 1 (6)

The coefficientsqu of the NSPS vectorQn are equal to the normalized sum of the coefficientsrv for which
the implication8i ui ! vi holds. In general, we are most interested in NSPS transforms of the formQ(f; f), but
we will develop the theory for the general case ofQ(f; g) since this form is necessary to derive an algorithm for
computingQ(f; f).

As an example, consider the boolean function:

f = bcd+ bcd+ abd+ acd+ abcd (7)

with the spectral and NSPS coefficient maps shown in Figure 2. The NSPS coefficients are computed from the
spectral coefficients which include the same indices as the NSPS coefficient. For example,qad is the sum of the

3

squares of the Walsh coefficients circled in Figure 2(a), or:

qad =
1

4
(s2ad + s2abd + s2acd + s2abcd)

=
1

4
(22 + (�2)2 + (�6)2 + 62) = 20

By substituting the Shannon expansion (m = n� 1):

Sn(f) =

"
Sm(fxm) + Sm(fxm)

Sm(fxm)� Sm(fxm)

#
(8)

of the Walsh spectrum into (4) and (5), it is relatively easy to derive Shannon expansions for the SPV and the NSPS
(m = n� 1):

Rn(f; g) =

2
6664
Rm(fxm ; gxm) +Rm(fxm ; gxm)

+Rm(fxm ; gxm) + Rm(fxm; gxm)

Rm(fxm ; gxm)�Rm(fxm ; gxm)

�Rm(fxm ; gxm) + Rm(fxm; gxm)

3
7775 (9)

Qn(f; g) =

2
64Q

m(fxm ; gxm) +Qm(fxm ; gxm)

Qm(fxm ; gxm)�Qm(fxm ; gxm)

�Qm(fxm ; gxm) +Qm(fxm ; gxm)

3
75 (10)

If we definesup(f)as the set of variables in the support off , then it is easy to show that ifxi 62 sup(f)\sup(g),
andui = 1, then�u � Qn(f; g) = 0 by noting thatxi 62 sup(f) implies thatfxi = fxi . Some additional useful
properties ofQn(f; g) are:

Qn(f; g) = Qn(g; f) = Qn(f; g)

Qn(f; g) = �Qn(f; g) = �Qn(f; g)

�0 �Q
n(f; g) = Y n(f) � Y n(g)

�0 �Q
n(f; f) = 2n

Q0(1; 1) = 1

(11)

4 Function Complexity

In logic synthesis it is often important to estimate the complexity of a boolean function. One estimator frequently
used with spectral translation methods is the complexity factorCn(f) equal to the number of vector pairs(X1;X2)

for which f(X1) = f(X2) and for which the Hamming distancedH(X1;X2) = 1. This estimator is a scalar
value in the range0 ton2n. Large values ofCn(f) imply a simpler AND/OR decomposition withCn(1) = n2n and
Cn(x0�x1�� � ��xn�1) = 0. The complexity factor is invariant with respect to NPN-equivalent functions[6]. NPN-
equivalent functions are functions which can be formed by Negation of inputs, Permutation of inputs or Negation
of the output. It has been shown that complexity can be written as a weighted sum of squares of the Walsh spectral
coefficients [6]:

Cn(f) = n2n �
1

2n

2n�1X
u=0

jjujjs2u (12)

This equation gives us a theoretical justification as to why functions that have high-magnitude spectral coeffi-
cients at low orders have better AND/OR representations. The complexityCn(f) of ann-input functionf can also
be written as the dot product:

Cn(f) = n2n �
1

2
En �Qn(f; f) (13)

4

whereEn is a2n element vectorEn =
Pn�1

i=0 �2i in which the first-order elements are1 and all other elements are
0. The termEn � Qn(f; f) is the sum of all first-order NSPS coefficients. We can show that (13) is equivalent to
(12) by noting thatEn � Qn(f; f) can be expanded to1

2n�1

Pn�1
i=0

P2n�1
u=0 s2uui which can also be written as1

2n�1P2n�1
u=0 s2u

Pn�1
i=0 ui. From the definition ofjjujj, we can write this as 1

2n�1

P2n�1
u=0 jjujjs2u which when substituted

back into (13) gives us (12).

5 Spectral Translation

In this section we will investigate the effect of a translationfxi=xi�xj on the NSPS and on the complexity of a
boolean function. For brevity, vector function arguments and dimensions will be omitted where obvious, and a
prime will be used to indicate the vectors for translated functions (e.g.,S0 for Sn(fxi=xi�xj)). We begin by defining
the2n � 2n translation matrixPn

i;j such that:

Y n(fxi=xi�xj) = Pn
i;jY

n(f) (14)

This matrix transforms the truth table off to the truth table offxi=xi�xj . The translated truth table can be obtained
by exchanging truth table entries wherexi is 1 with those wherexi is 0 wheneverxj is 1. The matrix which describes
this transformation is:

Pn
i;j =

2n�1X
u=0

�u�
T
u uj + �u�

T
u+2iujui + �u�

T
u�2iujui (15)

For example, the translation matrix forfxn�2=xn�2�xn�1 is:

Pn
n�2;n�1 =

2
6664
I 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0

3
7775 (16)

We now propose the following theorem for the change inQ as a result of a translation.

Theorem 1 For anyn-input boolean functionsf andg:

Qn(fxi=xi�xj ; gxi=xi�xj) = Tn
i;jQ

n(f; g) (17)

wherei 6= j and whereTn
i;j is:

Tn
i;j = KnWnPn

i;j(W
n)�1(Kn)�1 (18)

Proof: The transformation (18) is simply a mapping ofPn
i;j from the boolean domain to spectral domain and then

to NSPS domain. We can show this by expanding (17) to obtainKR0 = (KWPi;jW
�1K�1)(KR) which we can

reduce toR0 = WPi;j W
�1R. Since there is a direct mapping between elements ofRn(f; g) and elements ofSn(f)

andSn(g), it also holds thatS0 = WPi;jW
�1S. Expanding this we getWY 0 = (WPi;jW

�1)(W Y) which can be
simplified toY 0 = Pi;jY which holds by the definition ofPn

i;j. 2

For the translation in the previous example, the matrixTn
i;j has the form:

Tn
n�2;n�1 =

2
6664
I 0 0 0

0 I 0 0

0 I I �I

0 2I 0 �I

3
7775 (19)

5

thus it is easy to see that the only first and second-order coefficients to change fork 6= i 6= j areqxj , qxixj andqxjxk ,
and that:

q0xj = qxi + qxj � qxixj
q0xixj = 2qxi � qxixj

(20)

The change in complexity resulting from the same translation is described by the following theorem.

Theorem 2 The increase in the complexity of then-input functionf resulting from replacing inputxi with xi � xj
wherei 6= j is:

�Cn
i;j(f) =

1

2
(�2i+2j � �2i) �Q

n(f; f) (21)

Proof: From the definition of complexity (13), and the Theorem 1, we can rewrite the change in complexity as:

�Cn
i;j(f) = Cn(fxi=xi�xj)� Cn(f)

=
1

2
((En)T (I � Tn

i;j)) �Q
n(f; f) (22)

Since complexity is invariant for any ordering of the input variables, we only need to show (22) for one pair(i; j)

wherei 6= j. For convenience, we choosei = n�2 andj = n�1. Since all rowsu of (I�Tn
n�2;n�1) for u < 2n�1

are zero, and the only non-zero element ofEn for u � 2n�1 is atu = 2n�1, the expression(En)T (I � Tn
n�2;n�1)

reduces to rowu = 2n�1 of (I � Tn
n�2;n�1), which is �2n�2+2n�1 � �2n�2, or in the general case�2i+2j � �2i.

Substituting this back into (22) we get (21). 2

6 Implementation and Example

The BDD package used in implementing the techniques described here is based on [2] and uses compliment edges.
To simplify indexing in the algorithms presented here, nodes are indexed with the highest index at the top of the
graph, decreasing towards the terminal node. The index of the lowest variable is zero. We use the following notation
in the algorithms:

isterm(f) Returns true iff is a terminal node.

T (f) Returns the index of the top variable, or -1 iff is a terminal node.

H(f) Returns the 1-edge of the top node, orf if it is terminal node.

L(f) Returns the 0-edge of the top node, orf if it is terminal node.

Ht(f) ReturnsH(f) if T (f) = t, otherwise returnsf .

Lt(f) ReturnsL(f) if T (f) = t, otherwise returnsf .

max(a; b) Returns the maximum of integersa andb.

Bi(u) Returns 1 if biti of u is set, otherwise returns0.

mssb(u) Return the index of the most significant set bit. That is, the largesti for whichBi(u) is 1.

cmssb(u) . Clear most significant bit for whichBi(u) is 1. u� 2mssb(u) if u 6= 0, or otherwise undefined.

6

Translate(f; n)

f

f 0=f ;
�=I;
for (0 � i � n� 1; i+ 1 � j � n� 1)
Q[i][j]=Q[j][i]=NSPS(f; f; 2i + 2j; n);

for (0 � i � n� 1)
Q[i][i]=NSPS(f; f; 2i; n);

while (9i; j Q[i][j]� Q[i][i] > 0) f

pick i andj (i 6= j) maximizingQ[i][j]� Q[i][i];
f 0=f 0xi=xi�xj

xor row j of � into row i;
Q[j][j]=Q[j][j] + Q[i][i]� Q[i][j];
Q[j][i]=Q[i][j]=2 � Q[i][i]� Q[i][j];
for (0 � k � n� 1; k 6= i; j)
Q[j][k]=Q[k][j]=NSPS(f 0; f 0; 2j + 2k; n);

g

return(�; f 0);
g

Figure 3: Spectral Translation Algorithm

The main synthesis algorithm (Figure 3) isTranslate which takes a single functionf represented as a BDD,
and the number of inputsn, and returns the pair(�; f 0) such thatf(X) = f 0(�X) where� is ann � n matrix
representing the linear block, andf 0 is the non-linear block represented as a BDD. In our implementation, we choose
to translate each output separately, and merge the results after translation. For a multi-output function, this could
result in an increase in the number of inputs to the merged non-linear block, but in practice few additional inputs are
needed. An alternative approach would be to use a combined spectrum for all of the outputs by adding the individual
Y vectors for each output function and applying the algorithms presented in this paper by using an MTBDD (Multi-
Terminal BDD) based representation. This approach, however, can lead to inefficient representations, especially
when the outputs have different support. Another problem with the combined spectrum method is that different
output functions may be optimal under different bases and it may not be possible to optimize all functions with the
same translations.

The algorithm proceeds by first initializingf 0 to the function to be translated, and� to the identity matrix. The
n � n arrayQ[][] is then initialized with the first and second order coefficients ofQn(f; f). Since this array is
symmetric, only then first order coefficients, and the(n2 � n)=2 second order coefficients need to be computed.
The algorithm then loops until there is no improvement in the complexity. On each iteration (21) is used to select
the translationxi = xi�xj having the largest improvement. A composition operation is then done to updatef 0, and
the translation is recorded in� by XORing rowj into row i. The coefficientsqxixj andqxj are updated using (20),
and finally, then� 2 spectral product coefficientsqxjxk ; (i 6= j 6= k) are recomputed.

For example, consider the execution ofTranslate (Figure 4) on the boolean function in (7). For each iteration,
the values off 0, �, Q andC4(f 0) are shown at point where thewhile loop condition is tested. Values in the “1”
column ofQ are the first order spectral coefficients�2i �Q

4(f; f) wherei is the index for each of the input variables
a, b, c andd. The remaining columns ofQ are the second order spectral coefficients�2i+2j � Q

4(f; f) wherei and
j are the indices for two different input variables. Underlined values inQ represent candidate translations with a
positive�C. Double underlined values represent the value actually selected for translation. For example, in the
first iteration of the loop the translationa = a � d with a �C = 1

2
(20 � 12) = 4 was selected. In this case, all

the underlined candidate translations had the same�C so one was chosen at random. Subsequent iterations were

7

1) f 0 = bcd+ bcd+ abd+ acd+ abcd C4(f 0) = 28

Q 1 a b c d
a 12 - 12 20 20
b 20 12 - 20 28
c 20 20 20 - 28
d 20 20 28 28 -

� a b c d
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

2) f 0 = bcd+ bcd+ acd+ abc C4(f 0) = 32

Q 1 a b c d
a 12 - 12 20 4
b 20 12 - 20 20
c 20 20 20 - 12
d 12 4 20 12 -

� a b c d
a 1 0 0 1
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

3) f 0 = bcd+ bcd+ ab C4(f 0) = 36

Q 1 a b c d
a 12 - 12 4 4
b 20 12 - 12 20
c 12 4 12 - 12
d 12 4 20 12 -

� a b c d
a 1 0 1 1
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

4) f 0 = ab+ cd C4(f 0) = 40

Q 1 a b c d
a 12 - 12 4 4
b 12 12 - 4 4
c 12 4 4 - 12
d 12 4 4 12 -

� a b c d
a 1 0 1 1
b 0 1 0 0
c 0 0 1 0
d 0 1 0 1

Figure 4: Spectral Translation Example

performed in a like manner obtaining the translationsa = a� c in Step 2, andd = d� b in Step 3. In Step 4, there
were no more translations for which�C was positive, so the algorithm was terminated. By applying the algorithm,
the original function with 16 literals in the SOP form was reduced to a function with only 4 literals.

Figure 3 shows the basic algorithm based on (10) for computing the NSPS coefficient�u �Q
n(f; g). Whenu = 0,

the NSPS coefficient reduces toY n(f) � Y n(g), which can be computed using the decomposition(m = n� 1):

Y n(f) � Y n(g) = Y m(fx) � Y
m(gx) + Y m(fx) � Y

m(gx)

The indicesl andt are respectively the highest index included inu, and the index of the variable with the highest
index in the union of the supports off andg. If l > t, or l = t and the top variable of neitherf nor g is l, thenu
contains variables which are not in the support off or g, and thus the result is0. Otherwise, the spectral coefficient
is computed from the recursive definition of the NSPS and multiplied by2n�t+1 where isn � t + 1 represents
the number of skipped variables or “cross points”[9]. The hit rate of the computed table can also be improved by
utilizing the symmetry properties shown in (11).

7 Experimental Results

The algorithms described here have been applied to a number of benchmark circuits shown in Table 1. A number in
parenthesis after the number of input terminals indicates the number of inputs in the support of the output with the
largest support. The number of BDD nodes, and the number of terms and literals in the SOP form is shown before
and after translation. The term and literal count is obtained by converting the BDDs to ZBDDs (zero-suppressed

8

NSPS(f; g; u; n)

f

if (isterm(f)&&isterm(g)) return2n � f � g;
if (u==0) returnY n(f) � Y n(g);
l=mssb(u);
t=max(T (f); T (g));
u0=cmssb(u);
if (l > t||(t==l&&(l!=T (f)||l!=T (g))))

return0;
if (([f; g; u]! q) in compute table) returnq � 2n�t+1;
q=NSPS(Lt(f); Lt(g); u

0; t) + NSPS(Ht(f);Ht(g); u
0; t);

if (t == l)
q=q � NSPS(Lt(f);Ht(g); u

0; t)� NSPS(Ht(f); Lt(g); u
0; t);

store ([f; g; u]! q) in compute table;
returnq � 2n�t+1;

g

Figure 5: The NSPS Algorithm

BDD) [7] using an algorithm that generates irredundant SOP forms from the BDD, and then using ZBDD algorithms
for counting literals and terms. For each output, both before and after translation, the phase that resulted in the
smallest SOP form (by literal count) was used. The last four columns represent the cost of the translation. “trans”
is the number of translation operations that were performed; “xor” is the number of XOR gates in the optimized
tree; “+in” is the number of additional input pins to the non-linear block; and “cpu” is the run-time in seconds on a
SPARCstation-20. The linear block was optimized using a simple rectangle covering algorithm to identify common
terms, but we expect that a more sophisticated algorithm employing symmetry properties of the XOR operation
could achieve even smaller linear blocks.

Using our methods, we have been able to apply spectral translation to circuits with many more inputs and much
larger cube sets than previously possible. While an increase in the complexity factor is not guaranteed to result in a
reduction in SOP literals, a reduction was obtained for nearly all of the examples we tested. The circuit “des” is the
Data Encryption Standard chip for which we reduced the number of literals by over a factor of 100. For the circuit
“ham16”, a 16-bit hamming distance circuit, we achieved a reduction of nearly four orders of magnitude. Also of
interest is the parity function “parity” which can be implemented as a single tree of XOR gates.

The results of synthesizing and mapping several benchmark circuits are shown in Table 2. We synthesized the
unmodified circuit and the non-linear block of the translated circuit under SIS 1.3 usingscript.rugged. Mapping
was done using the librarylib2.mcnc2lib with the commandmap -m 0. For the translated circuit we proceeded
by using the rugged script on the translated portion, attaching the linear block, and then mapping the combined
circuit. The table shows that the area2 and delay before and after using Spectre.

Functions that exhibit a large reduction in the number of literals of the SOP form with a small number of XOR
gates often yield a more efficient circuit when spectral translation is applied. For example, by applying Spectre to
the benchmark “sec”, a single-error-correct/double-error-detect encode/decode circuit, we cut both delay and area
by nearly half. But when we synthesized and mapped the example function, we note that while the reduced form
looks much simpler than the original function, when we actually do the mapping, we find that we get an area of 25
and a delay of 5.06 for the original circuit, and an area of 26 and a delay of 5.07 for the Spectre processed circuit.
One reason for this is that while the three XOR gates added in the translation process reduced the number of literals
by a factor of four, the actual number of literals reduced was not very large, thus the cost of the XOR gate is not
justified by the relatively small absolute reduction in literals. Another factor is that for smaller functions, multi-level

2Area measurements are divided by 464, the greatest common factor of all the library components.

9

Circuit Before Trans. After Trans. Cost
name in out bdd term lit bdd term lit trans xor +in cpu

example 4 1 8 4 10 9 3 8 1 3 0 0.1
aluA 19 8 300 2552 26025 634 1568 13410 64 64 49 19.23
apex6 135(24) 99 1256 656 3222 1172 588 2292 39 28 28 27.46
des 256(19) 245 7388 203631 2584463 4887 4301 22633 1087 428 181 293.6
f51m 8 8 39 76 323 54 40 123 24 19 14 1.26
frg2 143(25) 139 3757 3656 18622 3685 3449 17434 135 17 13 95.91
gcd 12 6 813 767 5201 741 335 3059 81 60 37 40.85
ham8 16 4 116 46608 711200 36 151 941 39 15 8 2.31
ham16 32 5 456 3.0e9 5.8e9 144 50323 657457 95 31 16 17.95
hidden 8 1 47 67 423 58 41 227 8 8 0 0.99
k2 45(39) 45 1656 923 6851 1916 924 6362 208 86 75 136.03
lal 26(13) 19 101 99 239 91 83 196 12 12 8 2.78
ldd 9 19 80 59 206 81 54 177 10 10 5 2.32
mul 8 8 171 148 774 193 135 630 19 14 14 3.09
myadd 33 17 457 655287 1.1e7 486 393178 6.2e6 32 32 31 12.22
parity 16 1 17 32768 524288 2 1 1 15 15 0 0.37
pcle 19(12) 9 81 45 185 88 38 155 7 7 7 1.37
rd53 5 3 17 31 140 14 16 61 4 4 1 0.32
rd73 7 3 31 147 876 26 84 429 6 6 1 0.41
rd84 8 4 42 278 1964 36 151 941 7 7 1 0.55
sec 8 8 109 125 697 111 80 381 14 13 10 1.94
term1 34(20) 10 520 257 1501 552 192 1143 20 17 10 20.13
ttt2 24(14) 21 182 136 489 176 123 390 20 18 16 4.08
vda 17 39 595 558 3104 708 471 2343 219 57 54 31.54
z4ml 7 4 23 59 252 21 32 117 6 6 5 0.39
c1908 33(32) 25 12712 3.6e7 9.4e8 19682 1641147 42981741 399 228 104 2762
c880 60(44) 25 3930 73312 1101942 19145 71110 1055984 93 74 58 2772

Table 1: Experimental Results on Benchmark Circuits

synthesis systems can search a much larger portion of the search space, further reducing the benefit of using spectral
translation techniques.

We were also unable to obtain a significant improvement in circuit size or delay for large functions such as the
“des” description. While there was a drop by two orders of magnitude in the number of literals of this function
as a result of spectral translation, we obtained an area of 6213 for the original circuit, and an area of 7824 (5684
for the non-linear block and 2140 for the linear block) for the spectrally translated circuit. We believe the main
reason for this is that since Spectre generatesf 0 directly from a BDD or ZBDD (by replacing each node with
the boolean function represented at that node), the function is essentially flattened before synthesis, whereas SIS
(with script.rugged) does not collapse the network before synthesis. This puts Spectre generated output at a
disadvantage when the original input function has good global structure. Clearly, it is necessary to apply methods
for improving the form of the non-linear block to obtain better synthesis results. Recent work for producing good
multi-level forms from BDDs or ZBDDs[8] looks promising to this end.

8 Conclusion

In this paper we have presented a new algorithm (Spectre) for spectral translation using boolean decision diagrams.
The algorithm is based on using sums of squares of spectral coefficients and uses an efficient BDD based algorithm
to compute the coefficients. While the effectiveness of spectral translation is highly dependent on the function being
synthesized, we have shown that only the first and second order sum of squares coefficients are required to achieve

10

Before Trans. After Trans.
name area delay area delay

example 25 5.06 26 5.07
sec 674 23.02 357 13.95
rd53 67 10.84 63 7.68
rd74 125 18.73 167 12.02
des 6213 126.36 7824 117.53

Table 2: Experimental Results of Mapped Circuits

a significant reduction in the number of literals and terms in the SOP form for many functions.

References

[1] Bryant, R,E., “Graph-Based Algorithms for Boolean Function Manipulation”,IEEE Transactions on Comput-
ing , C-38, 8, pp. 677-91, (August 1986)

[2] Brace, K.S., Rudell, R.L and Bryant, R.E., “Efficient Implimentation of a BDD Package”, From27th
ACM/IEEE Design Automation Conference, pp. 40-5 (1990)

[3] Brayton, R.K., et. al., “MIS: A Multiple-Level Logic Optimization System”, FromIEEE Transactions on
Computer-Aided Design, vol. 6, No. 6, pp. 1062-1081 (1987)

[4] Clark, E.M., et. al., “Spectral Transforms for Large Boolean Functions with Applications to Technology Map-
ping”, From30th ACM/IEEE Design Automation Conference, pg. 54-60 (1993)

[5] Falkowski, B.J. and Chang C.H., “Efficient Algorithms for the Calculation of Arithmetic Spectrum from OBDD
and Synthesis of OBDD from Arithmetic Spectrum for Incompletely Specified Boolean Functions”, FromIEEE
International Symposium on Circuits and Systemsvol. 1, pg. 197-200 (1994)

[6] Hurst, S.L., Miller, D.M. and Muzio J.C., “Spectral Techniques in Digital Logic”, Academic Press (1985)

[7] Minato, Shin-ichi, “Zero-Suppressed BDDs for Set Manipulation in Combinational Problems”, From30th
ACM/IEEE Design Automation Conference, pg. 272-277 (1993)

[8] Minato, Shin-ichi, “Fast Weak-Division Method for Implicit Cube Representation”, FromSynthesis And System
Integration of Mixed Technologies (SASIMI), pg. 423-432 (1993)

[9] Stanković, R.S., “Some Remarks about Spectral Transform Interpretation of MTBDDs and EVBDDs”, From
The Asia and South Pacific Design Automation Conference, pg. 385-390 (1995)

[10] Varma, D., Trachtenberg, E.A., “Design Automation Tools for Efficient Implementation of Logic Functions by
Decomposition”, FromIEEE Transactions on Computer-Aided Design, vol. 8., no 8., pg. 901-916 (1989)

11

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

