Synthesis by Spectral Translation Using Boolean Decision Diagrams

Jeffery P. Hansen Masatoshi Sekine
Toshiba ULSI Research Laboratories
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan

Abstract

Many logic synthesis systems are strongly influenced by the size of the SOP (Sum-of-Products) representation
of the function being synthesized. Two-level PLA (Programmable Logic Array) synthesis and many multi-level
synthesis systems perform poorly without a good SOP representation of the target function. In this paper, we
propose a new spectral-based algorithm using BDDs (Boolean Decision Diagram) to transform the target function
into a form that is easier to synthesize by using a linear filter on the inputs. Using the methods described in this
paper, we were able to perform spectral translation on circuits with many more inputs and much larger cube sets
then previously possible. This can result in a substantial decrease in delay and area for some classes of circuits.

1 Introduction

Spectral methods for design and classification of boolean functions date back even before the first digital computers.
The use of spectral methods in circuit design is also quite old and dates back from the early 1960s. While the theory
was fascinating, at the time its implementation was impractical for actual circuit design due to the exponential
complexity of computing spectral coefficients and the need for an explicit representation of the truth table of the
function being transformed. However, recent innovations in implicit function representations [1][2] and in relating
these representations to the spectral domain[9], has renewed considerable interest in spectral techniques [4][5][9].

One application for spectral methods is spectral translation [6]. In spectral translation, a fynididivided
into a linear blocks and a non-linear block’ (Figure 1) such thaf(X) = f/(c X) and where the matrix product
o X is evaluated over the Galois Field GF(2). The synthesis problem is to find a linear dltek minimizes
the complexity off’. The non-linear blockf’ is typically synthesized with a traditional two-level or multi-level
synthesis tool, and the linear bloekis usually implemented as a network of XOR (exclusive OR) gates. While it
is difficult to derivec in the boolean domain, by transformirigo the spectral domain, the synthesisrdfecomes
relatively easy. Depending on the function, by adding only a few XOR gates at the inputs the number of terms and
literals in the SOP form of’ can be decreased by orders of magnitude compared to the SOP expresgionhier
can have a significant impact on the final synthesized circuit.

Unfortunately, the computational complexity of spectral translation methods grows exponentially with the num-
ber of inputs making direct approaches impractical. One solution to this problem is to compute the spectral co-
efficients from the cube set[10] and use heuristics to find the maximum coefficient. Using this approach, larger
functions can be handled than by previous brute force approaches, but when the cube set becomes large, this method
also becomes impractical.

In this paper, we present a new BDD based logic synthesis tool Spectre (SPECtral TRanslation Engine). Spectre
reads a specification file for a multi-output boolean function and outputs its result as a linearst)lacki @ non-
linear block(f’). The linear block is a network composed of only XOR gates which translates the input basis to a
new basis. The non-linear block is a multi-output boolean function in terms of the translated basis and is synthesized
using a standard synthesis package such as SIS (Sequential Interactive System).

By using a BDD-based representation for spectra, we were able to avoid the usual exponential increase in com-
puting cost for the spectral coefficients of functions with large numbers of inputs. We applied our algorithms to
the benchmarks from MCNC and other sources and found that the number of literals and terms in the SOP form

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or. class-room use is granted without fee provided that copies are not made
or distributed for profit or commercia advantage, the copyright notice, the titlg of the publication and its date appear, and notice is given that copying is
By permission of ACM, Inc. To co%otherwwe to republish, to post on servérs or to redistribute to lists, requires prior specific permssion and/or afee.
AC 96 - 06/96 Las Vegas, NV, U J1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Figure 1: Spectral Translation of a Function

decreased to some extent for most functions, and by several orders of magnitude for a few functions. For some
circuits, we were able to cut both area and delay by almost half.

2 The Walsh Spectrum

Consider am-input boolean functiorf (X) whereX = [z¢.x1,22,....2, 1]’ . Let X have the binary encoding
T = Z;’:‘O] x;2', and letY” (f) be the2” element vector representihthe truth table off such thaty, is 1 when
f(X) is logic-0, andy,. is —1 whenf(X) is logic-1. The Walsh spectrum[6] ¢fis the2™ element vector:

2" —1

S ()= D subu=W"Y"(f))

u=0

where¢,, is the2™ element basis vector in which thdh element isl, and all other elements abe and wheré¥V ™"
is the2" x 2" Hadamard matrix defined as:

anl _anl WU =1 (2)

n—1 n—1

[%]

The Walsh matrix is a symmetric matrix consisting onlyisefand—1s. If we defineu = Z'Z’.L;Ol u;2" as a binary
encoding similar to the encoding thenu! row vector of W is W7, = Y (", z:u;). Thatis, as an encoding
for the XOR sum of variables; for whichw; = 1. The rows oflW" have the property that’, - W, is 2" when
u = v, and0 whenu # v and thus form a set of orthogonal vectors. The spectral coefficiest W), - Y"(f) is
equal to the number of agreements minus the number of disagreements betwgerandiV), and represents the
similarity betweery™ (f) andW/,. It has a large magnitude when there is a high correlation and a low magnitude
when there is a low correlation. A negativgindicates a negative correlation. Where convenient, we will also write
se;2;... t0 indicate the spectral coefficiest: . ,; ... We will also define the “order"of a spectral coefficientas
|Ju|| = £} u; which is equal to the number of variables in the XOR sum for iijy, of the Walsh transform
matrix.

Spectral invariance operators on a functjoare operators for which the position and sign of the coefficients
may change, but the set of magnitudes that appear in the spectrum do not change. There are five spectral invariance
operations [6], but in this paper we will primarily be concerned with the translation operation ..., in which
an inputz; is replaced by that input XORed with another inpyt This operation causes the following spectral
parameters to be exchanged:

S;L’ia’ <~ séL‘iéL‘jQ’ (3)

« represents all combinations of variables other thaandz ;. Since spectral invariance operators are reversable,
they divide the set ofi-input boolean functions into a set of equivalence classes, which are generally far fewer in
number compared to the set of all boolean functions. Spectral translation techniques involve the application of these
operations to find the “simplest” function in the equivalence class.

27

1 o
!In ap-valued logic system, typically” » ° is used to represent the logic levelvheres € {0,1,...,p — 1}.

s [blabja) [@] [b]abfa]

2|16]-2]2 16|20 | 12 | 12
d||2]|6|[2]2)] |d|20]28]|20]20
cd| 2| 6 @_& cd| 28| 18| 36 | 36
c|6]-2|-2|2] |c|20]20]20]20

(@) (b)

Figure 2: Spectral Map (a) and NSPS Map (b)

Notice that the exchange of spectral coefficients in (3) will cause the order of the exchanged values to either
increase or decrease by one. It has been noted [6] when the high order coefficients of a function have high magnitude,
the function generally does not have a good AND/OR representation. This suggests that we would like to find
translations which move high magnitude coefficients to low order positions, and low magnitude coefficients to high
order positions.

3 Normalized Spectral Product Sum

In this section, we introduce the NSPS (Normalized Spectral Product Sum) transformation. The NSPS transform
has these advantages: it is easily computed from the BDD; and low-order NSPS coefficients contain information
about high-order Walsh coefficients. The NSPS transform-iofput functionsf andg is defined in terms of the

SPV (Spectral Product Vector) gfandg, which is defined as th#" element vector:

2m 1 o1
R"(f,g9) = 2 Tulu = Z (Eu - S" ())& 5" (9))Eu 4)
u=0 u=0

The vectorR" (f, g) is the vector resulting from multiplying the corresponding elemeni$'¢f§) andS”(g). The
NSPS transform of andg is then the2™ element vector:

2n 1

Q"(f.9)= > quéu=K"R"(f,9))
u=0
whereK™ is the2” x 2" matrix:
1l n=-1 1gmn—-1
sK =K
n_ | 2 2 0 —
K [0 Kn,—]] 3 K 1 (6)

The coefficients;, of the NSPS vecto)” are equal to the normalized sum of the coefficientsor which
the implicationV: «; — v; holds. In general, we are most interested in NSPS transforms of theldofiry), but
we will develop the theory for the general casecff, g) since this form is necessary to derive an algorithm for

computingQ(f, f).
As an example, consider the boolean function:

f = bed + bed + abd + atd + abed (7)

with the spectral and NSPS coefficient maps shown in Figure 2. The NSPS coefficients are computed from the
spectral coefficients which include the same indices as the NSPS coefficient. For examehe sum of the

squares of the Walsh coefficients circled in Figure 2(a), or:

1, . ,
2 2 2 2
Z(Sad + Sabd + Sacd + Sabcd)

= 2(22 4+ (=2)? + (=6)2 + 62) = 20

By substituting the Shannon expansion £ »n — 1):

S™(fz) + 8™ (fe,)
Sm(,ffm) _ Sm(,f(vm)

of the Walsh spectrum into (4) and (5), it is relatively easy to derive Shannon expansions for the SPV and the NSPS
(m=mn-1):

Jad =

S"(f) = 8

R™(fz,,: 97) + R (f7,,5 G
+R" (frpys 970) + B (fons 9o
R™ (ffm 3 gf,”,) - R™ (ffm s Gy,)
—R™(fep 97m) + R ([G |

_Qm(ffm) Qfm) + Qm(fxm) gxm)
Q"(f,9)= | Q" (fzn 9z7.) — Q" [z Gr) (10)
—Q" (frps97m) + Q" (fr1ys G |

R"(f,g) = 9

If we definesup(f) as the set of variables in the supporifothen it is easy to show thatif, ¢ sup(f)Nsup(g),
andu; = 1, then¢, - Q"(f,g) = 0 by noting thatz; ¢ sup(f) implies thatf,, = fz,. Some additional useful
properties of)" (f, g) are:

Q"(f, g) Q" (g, f)=Q"(f.9)
Q"(f,9) Q”(f g)=-Q"(f,9)

o - Q" (f, g) Y (f)- Y"(g) (11)
&o-Q"(f, f)=2"
Q"(1,1) =1

4 Function Complexity

In logic synthesis it is often important to estimate the complexity of a boolean function. One estimator frequently
used with spectral translation methods is the complexity factdrf) equal to the number of vector pair&’;, X»)

for which f(X;) = f(X>) and for which the Hamming distaneg; (X, X») = 1. This estimator is a scalar

value in the rangé to n2". Large values of€” (f) imply a simpler AND/OR decomposition with™ (1) = n2" and
C"(zog®z1®- - -Px,—1) = 0. The complexity factor is invariant with respect to NPN-equivalent functions[6]. NPN-
equivalent functions are functions which can be formed legaddion of inputs, &mutation of inputs or Bgation

of the output. It has been shown that complexity can be written as a weighted sum of squares of the Walsh spectral
coefficients [6]:

2m -1
C"(f)=n2" — — Z |[u]|s5 (12)

n
2 u=0

This equation gives us a theoretical justification as to why functions that have high-magnitude spectral coeffi-
cients at low orders have better AND/OR representations. The compXity) of ann-input functionf can also
be written as the dot product:

()= 2" — LB Q(f.) (13)

whereE™ is a2™ element vectoE™ = 2?;01 £, in which the first-order elements afeand all other elements are

0. The termE™ - Q™(f, f) is the sum of all first-order NSPS coefficients. We can show that (13) is equivalent to
(12) by noting thatE™ - Q" (f, f) can be expanded tgl+ "~ 32" 51 s2u; which can also be written agl—+
Y25t 2 Yo w;. From the definition of|u||, we can write thls asr Yo" ||ul|s2 which when substituted
back |nto (13) gives us (12).

5 Spectral Translation

In this section we will investigate the effect of a translatin-., ., on the NSPS and on the complexity of a
boolean function. For brevity, vector function arguments and dimensions will be omitted where obvious, and a
prime will be used to indicate the vectors for translated functions (&.or S" (f.,=-a;)). We begin by defining

the2" x 2" translation matrix”"; such that:

V' (foizeiwn;) = PLY"(f) (14)

This matrix transforms the truth table gfto the truth table off,,—.,«.,. The translated truth table can be obtained
by exchanging truth table entries whetgs 1 with those where; is 0 whenever:; is 1. The matrix which describes
this transformation is:

21171

, T T _ T
PPy= " &uby 05 + Eul it + Euy_gitijug (15)
u=0

For example, the translation matrix féf, _,—... _,5.,_, IS:

0

—
ja—

0
(16)

o O

n —
n—2,n—1 —

jes R en B an B
O O~
O~ O

I

We now propose the following theorem for the chang@ias a result of a translation.

Theorem 1 For anyn-input boolean functiong and g:

Q/rl‘(flri:]}i%]}j 9 g.m::m%:r]') = T:JQH(f g) (17)

where: # j and wherel}"; is:
n n n pn n 1 n 1
T = KW P (W) K (18)

Proof: The transformation (18) is simply a mappingf; from the boolean domain to spectral domain and then
to NSPS domain. We can show this by expanding (17) to oldtaih = (KW P, ;W~1K~!)(KR) which we can
reduce ta?’ = WP, ; W~!R. Since there is a direct mapping between elemeni&'¢f,) and elements of" ()
andS"(g), it also holds thas’ = WP, ;W 1S. Expanding this we gé¥'Y’ = (W P, ;W ~1)(W Y) which can be
simplified toY’ = P; ;Y which holds by the definition oP’";. O

For the translation in the previous example, the maffixhas the form:

I 0 00

" _lo 1 00

AR RIS
0 2I 0 —I

(19)

thus itis easy to see that the only first and second-order coefficients to chakge fof j areq..;, g.,., andq. ., ,
and that:

I
Qp; = Qvi T 9u; — Guia, (20)

/ P —
qa?ia?j - Q(IVLL q;ciwj

The change in complexity resulting from the same translation is described by the following theorem.

Theorem 2 The increase in the complexity of thenput functionf resulting from replacing input; with z; ® z;
where: £ j is:

1 n
ACH(f) = 5(Eoipar — &) - Q"(£.]) (21)
Proof: From the definition of complexity (13), and the Theorem 1, we can rewrite the change in complexity as:

AC’HJ(f) = Cn(fﬂ?i:ﬂ?i@.n]‘) - C"(f)

= (BT (T =) Q" (F.) 22)

Since complexity is invariant for any ordering of the input variables, we only need to show (22) for or¢ pair
wherei # j. For convenience, we choose= n—2 andj = n— 1. Since all rows: of (I -77_, , ;) for u < 27!
are zero, and the only non-zero elementffor u > 21 is atu = 2" 1, the expressionEZ™)" (1 — T ,,)
reduces to row: = 2"~ of (I — T 5,), Which iS&yn 24901 — &y, OF in the general cas®i, s — &y
Substituting this back into (22) we get (21). O

6 Implementation and Example

The BDD package used in implementing the techniques described here is based on [2] and uses compliment edges.
To simplify indexing in the algorithms presented here, nodes are indexed with the highest index at the top of the
graph, decreasing towards the terminal node. The index of the lowest variable is zero. We use the following notation
in the algorithms:

isterm(f) Returns true iff is a terminal node.

T(f) Returns the index of the top variable, or -Ififs a terminal node.

H(f) Returns the 1-edge of the top node fdf it is terminal node.

L(f) Returns the 0-edge of the top node fdf it is terminal node.

H,(f) ReturnsH(f)if T(f) = t, otherwise returng.

Li(f) ReturnsL(f) if T'(f) = t, otherwise returng.

max(a,b) Returns the maximum of integeisandb.

B;(v) Returns 1 if bit of « is set, otherwise returris

mssb(u) Return the index of the most significant set bit. That is, the largestwhich B;(u) is 1.

cmssb(u) . Clear most significant bit for whick; (u) is 1. v — 2M8SP(W) if 4, £ 0, or otherwise undefined.

Translate(f,n)

{
f'=f;
o=1I;
for0<i<n—-1,14+41<j<n-1)
Q[)[s]=Q[s][i]=NSPS(f. f, 2" + 2/, n);
for(0<i<n-—1)
Q[i][s]=NSPS(f, f, 2", n);
while (3¢, 7 Q[Z][5] — Q[¢][z] > 0) {
pick: andj (i # 7) maximizingQ[Z][7] — Q[z][¢];
f/=. alﬁ,i=x,,'<; figt
XOr FOwW j 3of o into row:;
alj][71=als1(7] + alilli] — Qlilsl;
Qlj][7)=al7][1=2 * QLi[i] - afillsl;
for(0<k<n-—-1, k#1447
Qj1[k]=Q[K][j]=NSPS(f’, f', 27 + 2F n);
}
return(o, f');

}

Figure 3: Spectral Translation Algorithm

The main synthesis algorithm (Figure 3)Tisanslate which takes a single functiofi represented as a BDD,
and the number of inputs, and returns the paifo, f/) such thatf(X) = f'(cX) wherec is ann x n matrix
representing the linear block, aifitlis the non-linear block represented as a BDD. In our implementation, we choose
to translate each output separately, and merge the results after translation. For a multi-output function, this could
result in an increase in the number of inputs to the merged non-linear block, but in practice few additional inputs are
needed. An alternative approach would be to use a combined spectrum for all of the outputs by adding the individual
Y vectors for each output function and applying the algorithms presented in this paper by using an MTBDD (Multi-
Terminal BDD) based representation. This approach, however, can lead to inefficient representations, especially
when the outputs have different support. Another problem with the combined spectrum method is that different
output functions may be optimal under different bases and it may not be possible to optimize all functions with the
same translations.

The algorithm proceeds by first initializingf to the function to be translated, ando the identity matrix. The
n x n arrayQ[][] is then initialized with the first and second order coefficient®of f, f). Since this array is
symmetric, only the first order coefficients, and the? — n)/2 second order coefficients need to be computed.
The algorithm then loops until there is no improvement in the complexity. On each iteration (21) is used to select
the translation:; = «; @ «; having the largestimprovement. A composition operation is then done to ufiatel
the translation is recorded inby XORing row; into row:. The coefficients,, .., andq,, are updated using (20),
and finally, then — 2 spectral product coefficients .., , (¢ # j # k) are recomputed.

For example, consider the executionratnslate (Figure 4) on the boolean function in (7). For each iteration,
the values off’, o, Q andC*(#') are shown at point where th&xile loop condition is tested. Values in the “1”
column ofq are the first order spectral coefficietits - Q*(f, f) wheres is the index for each of the input variables
a, b, ¢ andd. The remaining columns af are the second order spectral coefficights,, - Q*(f, f) wherei and
4 are the indices for two different input variables. Underlined values iepresent candidate translations with a
positive AC. Double underlined values represent the value actually selected for translation. For example, in the
first iteration of the loop the translation= a @ d with a AC' = (20 — 12) = 4 was selected. In this case, all
the underlined candidate translations had the sAmfieso one was chosen at random. Subsequent iterations were

1) #' = bed + bed + abd + acd + @bed C*(f') = 28
Q| 1]|la b ¢ d cla b ¢ d
a(l12z| - 12 20 20 all 0 0 0
b|20|12 - 20 28 b|0oO 1 0 O
c|20(20 20 - 28 c/l0O 0 1 0
d| 20|20 28 28 - d/o 0 0 1
2) f' = bed + bed + acd + abe Cl(f) =32
Q| 1|la b ¢ d cla b ¢ d
all1l2| - 12 20 4 all 0 0 1
bl20|12 - 20 20 b{0O 1 0 O
c|20[20 20 - 12 c/l0O 0 1 0
d|12| 4 20 12 - d/ o 0 0 1
3) f' = bed + bed + ab CA(#') = 36
Q(l]ja b c¢ d cla b ¢ d
al|l2| - 12 4 4 all 0 1 1
bl20|12 - 12 20 b{0O 1 0 O
c|124 4 12 - 12 c|0 0 1 O
dj 12| 4 20 12 - d|/0o 0 0 1
4) f'=ab+ed CH(f") = 40
Q| 1]|a b ¢ d cla b ¢ d
a|l2| - 12 4 4 all 0 1 1
b|12|12 - 4 4 b{0O 1 0 O
c|1l2| 4 4 - 12 c/l0O 0 1 0
dl12| 4 4 12 - d/o 1 0 1

Figure 4: Spectral Translation Example

performed in a like manner obtaining the translations a & c in Step 2, andl = d & b in Step 3. In Step 4, there
were no more translations for whiekC' was positive, so the algorithm was terminated. By applying the algorithm,
the original function with 16 literals in the SOP form was reduced to a function with only 4 literals.

Figure 3 shows the basic algorithm based on (10) for computing the NSPS coeffici@fit f, g). Whenu = 0,
the NSPS coefficient reducesY¥d (f) - Y"(g), which can be computed using the decompositios n — 1):

Yﬂ,(.f) A Yﬂ(g) — an/(f'l‘) i Y]T[,(gw) + Y]T'I(f'.l_) R YTII (gz)

The indiced andt are respectively the highest index included jrand the index of the variable with the highest
index in the union of the supports @gfandg. If I > ¢, orl = t and the top variable of neithgrnor g is [, thenu
contains variables which are not in the supporf afr ¢, and thus the result & Otherwise, the spectral coefficient
is computed from the recursive definition of the NSPS and multiplie@d"by ™! where isn. — ¢ + 1 represents
the number of skipped variables or “cross points”[9]. The hit rate of the computed table can also be improved by
utilizing the symmetry properties shown in (11).

7 Experimental Results

The algorithms described here have been applied to a number of benchmark circuits shown in Table 1. A number in
parenthesis after the number of input terminals indicates the number of inputs in the support of the output with the
largest support. The number of BDD nodes, and the number of terms and literals in the SOP form is shown before
and after translation. The term and literal count is obtained by converting the BDDs to ZBDDs (zero-suppressed

NSPS(f, g, u,n)
{
if (isterm(f)&&isterm(g)) return2” x f x g;
if (u==0) returnY™™(f)-Y"(g);
l=mssb(u);
temax(T(f), T(g));
u'=cmssb(u);
if (1> 11 (t==l&&(l =T (f)| 11'=T(g))))
returno;
if (([f,g,u] = ¢) in compute table) returp x 27—+,
q=NSPS(L:(f), Li(g),u', t) + NSPS(H;(f), Hi(g), v, t);
if (t == 1)
q=q — NSPS(L:(f), Hi(g), v, t) — NSPS(H,(f), L(g), v, t);
store (f, g.u] — ¢) in compute table;
returng = 2" t+1;

Figure 5: The NSPS Algorithm

BDD) [7] using an algorithm that generates irredundant SOP forms from the BDD, and then using ZBDD algorithms
for counting literals and terms. For each output, both before and after translation, the phase that resulted in the
smallest SOP form (by literal count) was used. The last four columns represent the cost of the translation. “trans”
is the number of translation operations that were performed; “xor” is the number of XOR gates in the optimized
tree; “+in” is the number of additional input pins to the non-linear block; and “cpu” is the run-time in seconds on a
SPARCstation-20. The linear block was optimized using a simple rectangle covering algorithm to identify common
terms, but we expect that a more sophisticated algorithm employing symmetry properties of the XOR operation
could achieve even smaller linear blocks.

Using our methods, we have been able to apply spectral translation to circuits with many more inputs and much
larger cube sets than previously possible. While an increase in the complexity factor is not guaranteed to result in a
reduction in SOP literals, a reduction was obtained for nearly all of the examples we tested. The circuit “des” is the
Data Encryption Standard chip for which we reduced the number of literals by over a factor of 100. For the circuit
“ham16”, a 16-bit hamming distance circuit, we achieved a reduction of nearly four orders of magnitude. Also of
interest is the parity function “parity” which can be implemented as a single tree of XOR gates.

The results of synthesizing and mapping several benchmark circuits are shown in Table 2. We synthesized the
unmodified circuit and the non-linear block of the translated circuit under SIS 1.3asiigt . rugged. Mapping
was done using the libraryib2.mcnc21ib with the commancéhap -m 0. For the translated circuit we proceeded
by using the rugged script on the translated portion, attaching the linear block, and then mapping the combined
circuit. The table shows that the afesnd delay before and after using Spectre.

Functions that exhibit a large reduction in the number of literals of the SOP form with a small number of XOR
gates often yield a more efficient circuit when spectral translation is applied. For example, by applying Spectre to
the benchmark “sec”, a single-error-correct/double-error-detect encode/decode circuit, we cut both delay and area
by nearly half. But when we synthesized and mapped the example function, we note that while the reduced form
looks much simpler than the original function, when we actually do the mapping, we find that we get an area of 25
and a delay of 5.06 for the original circuit, and an area of 26 and a delay of 5.07 for the Spectre processed circuit.
One reason for this is that while the three XOR gates added in the translation process reduced the number of literals
by a factor of four, the actual number of literals reduced was not very large, thus the cost of the XOR gate is not
justified by the relatively small absolute reduction in literals. Another factor is that for smaller functions, multi-level

2Area measurements are divided by 464, the greatest common factor of all the library components.

Circuit Before Trans. After Trans. Cost

name | in |out [bdd |term | it bdd [term [t trans [xor | +in | cpu
example| 4 1 8 4 10 9 3 8 1 3 0 0.1
aluA 19 8 300 2552 26025 634 1568 13410 64 64 | 49 | 19.23
apex6 135(24)| 99 | 1256 | 656 3222 1172 | 588 2292 39 28 | 28 | 27.46
des 256(19)| 245 | 7388 | 203631| 2584463| 4887 | 4301 22633 1087 | 428 | 181 | 293.6
f51m 8 8 39 76 323 54 40 123 24 19 |14 | 1.26
frg2 143(25)| 139 | 3757 | 3656 18622 3685 | 3449 17434 135 |17 |13 | 9591
gcd 12 6 813 767 5201 741 335 3059 81 60 | 37 | 40.85
ham8 16 4 116 46608 | 711200 | 36 151 941 39 15 | 8 231
ham16 | 32 5 456 3.0e9 | 5.8e9 144 50323 657457 95 31 |16 | 17.95
hidden | 8 1 47 67 423 58 41 227 8 8 0 0.99
k2 45(39) | 45 | 1656 | 923 6851 1916 | 924 6362 208 |86 | 75 | 136.03
lal 26(13) | 19 | 101 99 239 91 83 196 12 12 | 8 2.78
Idd 9 19 | 80 59 206 81 54 177 10 10 |5 2.32
mul 8 8 171 148 774 193 135 630 19 14 | 14 | 3.09
myadd | 33 17 | 457 655287| 1.1e7 486 393178 | 6.2e6 32 32 |31 | 1222
parity 16 1 17 32768 | 524288 | 2 1 1 15 15 |0 0.37
pcle 19(12) | 9 81 45 185 88 38 155 7 7 7 1.37
rd53 5 3 17 31 140 14 16 61 4 4 1 0.32
rd73 7 3 31 147 876 26 84 429 6 6 1 0.41
rdg4 8 4 42 278 1964 36 151 941 7 7 1 0.55
sec 8 8 109 125 697 111 80 381 14 13 |10 | 1.94
terml 34(20) | 10 | 520 257 1501 552 192 1143 20 17 | 10 | 20.13
ttt2 24(14) | 21 | 182 136 489 176 123 390 20 18 | 16 | 4.08
vda 17 39 | 595 558 3104 708 471 2343 219 | 57 |54 | 3154
z4ml| 7 4 23 59 252 21 32 117 6 6 5 0.39
c1908 33(32) | 25 | 12712| 3.6e7 | 9.4e8 19682 | 1641147| 42981741| 399 | 228 | 104 | 2762
€880 60(44) | 25 | 3930 | 73312 | 1101942| 19145| 71110 1055984 | 93 74 | 58 | 2772

Table 1: Experimental Results on Benchmark Circuits

synthesis systems can search a much larger portion of the search space, further reducing the benefit of using spectral
translation techniques.

We were also unable to obtain a significant improvement in circuit size or delay for large functions such as the
“des” description. While there was a drop by two orders of magnitude in the number of literals of this function
as a result of spectral translation, we obtained an area of 6213 for the original circuit, and an area of 7824 (5684
for the non-linear block and 2140 for the linear block) for the spectrally translated circuit. We believe the main
reason for this is that since Spectre genergtedirectly from a BDD or ZBDD (by replacing each node with
the boolean function represented at that node), the function is essentially flattened before synthesis, whereas SIS
(with script.rugged) does not collapse the network before synthesis. This puts Spectre generated output at a
disadvantage when the original input function has good global structure. Clearly, it is necessary to apply methods
for improving the form of the non-linear block to obtain better synthesis results. Recent work for producing good
multi-level forms from BDDs or ZBDDs|[8] looks promising to this end.

8 Conclusion

In this paper we have presented a new algorithm (Spectre) for spectral translation using boolean decision diagrams.
The algorithm is based on using sums of squares of spectral coefficients and uses an efficient BDD based algorithm
to compute the coefficients. While the effectiveness of spectral translation is highly dependent on the function being

synthesized, we have shown that only the first and second order sum of squares coefficients are required to achieve

10

Before Trans.| After Trans.
name | area | delay | area | delay

example| 25 5.06 26 5.07
sec 674 | 23.02 | 357 | 13.95
rd53 67 10.84 | 63 7.68
rd74 125 | 18.73 | 167 | 12.02
des 6213 | 126.36| 7824 | 117.53

Table 2: Experimental Results of Mapped Circuits

a significant reduction in the number of literals and terms in the SOP form for many functions.

References

[1] Bryant, R,E., “Graph-Based Algorithms for Boolean Function Manipulatitte 2E Transactions on Comput-
ing, C-38, 8, pp. 677-91, (August 1986)

[2] Brace, K.S., Rudell, R.L and Bryant, R.E., “Efficient Implimentation of a BDD Package”, F2@th
ACM/IEEE Design Automation Conferengep. 40-5 (1990)

[3] Brayton, R.K., et. al., “MIS: A Multiple-Level Logic Optimization System”, FrolBEE Transactions on
Computer-Aided Desigol. 6, No. 6, pp. 1062-1081 (1987)

[4] Clark, E.M., et. al., “Spectral Transforms for Large Boolean Functions with Applications to Technology Map-
ping”, From30th ACM/IEEE Design Automation Conferenpg. 54-60 (1993)

[5] Falkowski, B.J. and Chang C.H., “Efficient Algorithms for the Calculation of Arithmetic Spectrum from OBDD
and Synthesis of OBDD from Arithmetic Spectrum for Incompletely Specified Boolean Functions”| EE&n
International Symposium on Circuits and Systewisl1, pg. 197-200 (1994)

[6] Hurst, S.L., Miller, D.M. and Muzio J.C., “Spectral Techniques in Digital Logic”, Academic Press (1985)

[7] Minato, Shin-ichi, “Zero-Suppressed BDDs for Set Manipulation in Combinational Problems”, 8otm
ACM/IEEE Design Automation Conferengg. 272-277 (1993)

[8] Minato, Shin-ichi, “Fast Weak-Division Method for Implicit Cube Representation”, Feymthesis And System
Integration of Mixed Technologies (SASIMbYy. 423-432 (1993)

[9] Stankovt, R.S., “Some Remarks about Spectral Transform Interpretation of MTBDDs and EVBDDs”, From
The Asia and South Pacific Design Automation Confergmge385-390 (1995)

[10] Varma, D., Trachtenberg, E.A., “Design Automation Tools for Efficient Implementation of Logic Functions by
Decomposition”, FromiEEE Transactions on Computer-Aided Desigal. 8., no 8., pg. 901-916 (1989)

11

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

