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Abstract -- The arithmetic functions, as a subclass of Boolean generated the best result that has @3y 2input AND/OR gates.
functions, have very compact descriptions in the AND and XORThe run time for the script is high wilt872CPU seconds. In con-
operators. Any n-bit adder is a prime example. This paper presentstrast, t481 has only16 cubes in the well-known Fixed-Polarity
a multilevel logic synthesis method which is particularly suited for Reed-Muller (FPRM) form. The FPRM form is one of the many
arithmetic functions and utilizes their natural representations in two-level AND\XOR representations [18]. Factorization methods
the field GF(2). Algebraic factorization is performed to reduce the from Elementary Algebra can be applied easily to generate a good
literal count. A direct translation of the AND/XOR representations multilevel circuit. After certain redundant XOR gates are replaced
of arithmetic functions into multilevel networks often results in ex- with AND/OR gates (we will explain the details later), the final
cessive area, mainly due to the large area cost of XOR gates. Wiresult is a multilevel circuit described by the following equation.
present a process of redundancy removal which reduces many _ —

XOR gates to single AND or OR gates without altering the func- 1481 = EI'VO\% . VZVEBD%EVS D_E]VG * V7%D o
roqUies only 1o simuiate & amall and decidable sot of primary - s ot ot 050 athst)

put patterns. Preliminary results show that our method produces XOItRcan b.e impllemgnl;edhb% K}Lné)/lgéA‘ND/OR gates if each
circuits, before and after technology mapping, with area improve- gate Is replaced by three gates.

ment averaging 17% when compared to Berkeley SIS 1.2. The rur  The adders have similar sub-optimal synthesis result when con-
time is reduced by at least 50%. The resulting circuits also have ventional tools are used. This is due to the same problem as illus-
good testability and power consumption properties. trated in the next example.

1. Introduction Example 2: z4mik a3-bit adder with a carry-in bit and a carry-
o ) . ) out bit. Basic data [3] show that it 88 irredundant, prime cubes
The majority of the multilevel logic synthesis CAD tools cur- i the two-level SOP form. In contrast, there aPecubes in the

rently on the market implement the methods based on techniqueepr\ form. All the32 cubes have a special property (we will
described in [2] [4]. The central theme of the synthesis methods isgxpain this later) which facilitates the algebraic factorization
the factorization and decomposition of the original design picely. We have generated a multilevel circuit Zdmlwith 21 2-
described by macro blocks, each block b_elng in the_ Sum-_of-P_ro_d-input gates and the synthesis process does not rely on any high
uct (SOP) form. Naturally, before the logic synthesis begins, it iS |eye| description. The best result derived from SIS script2#4as

necessary to determine a compact and concise description of tho_innyt gates. The run time for SIS is much higher than ours. The
circuit's functional behavior which is suitable for the tool. There- ifference in size increases (in terms of percentage) for larger cir-

f_ore, even the functions having their n_aturally compact descrip- cyits as is the case of theit adderadda

tions in AND/XOR forms are changed into equivalent AND/OR ] ) ]

forms and might be mixed into macro blocks with the rest of the  In general, for arithmetic functions, the two-level SOP forms
function. This is also true for arithmetic functions [17], such as contain large set of cubes and the irredundant prime covers are dif-
adders, multipliers, and error-correcting circuits that are originally ficult to derive and store [5] [9]. On the other hand, the FPRM
derived in the context of algebraic fig&F(2). If input descrip- ~ forms of arithmetic functions have small sets of cubes [17]. The
tions of arithmetic functions are represented in forms different FPRM form of any function is canonical with fixed polarity of
from AND/XOR forms, e.g. two-level SOP forms, then the com- each variable, therefore the cubes in the FPRM form clearly indi-
pact descriptions of the original equations are completely lost. In cate the relations among variables. Both of the above examples
both cases, the synthesis tools rely entirely on the Boolean factorindicate these properties. For adders, 2dgl| the FPRM forms
ization to include XOR gates. This may result in synthesized cir- are the same as the original equations, in two-level form specifica-
cuits with suboptimal area. We will use two examples from the tion. The transformation to SOP form will result in information

IWLS'91benchmark set [22] to illustrate our observations. loss. Therefore, maintaining the original equations in the FPRM
forms for multilevel logic synthesis can shorten the synthesis time

_ Example 1: t481is a 16-input, single-output function and is  anq assist in deriving better results. Note that we use the FPRM
listed in both the two-level and multilevel benchmark sets in [22]. t5rms only as the initial specification.

The case name comes from the fact that therd&ké@redundant, o ] ) )
prime cubes in the two-level SOP form. In the multilevel set, the ~ The circuits implementing functions in FPRM forms, or any

user’s guide list$481 as a circuit havin@072gates (no informa-  related forms, have been considered by only a small group of
tion on the gate types). When we run the major scripts in the Ber-researchers besides Reed [15] and Muller [13]. Reddy [14] has
keley SIS 1.2 to synthesize the function, the scrimged shown that the circuits implementing FPRM forms have extremely

good testability property. Recently, multilevel logic synthesis
methods with XOR operators [19] or related forms [1] [11] [16]
[17] [21] have achieved some good results, especially for Lookup
Table based FPGAs. However, for standard cells, most of the cur-
rent results assume that the XOR gate is a single entity. For arith-
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metic functions this will lead to additional cost, since each XOR expressed in a binary decision tree where terminal nbaesi 0

gate has a relatively large area in comparison to AND/OR gates.indicate the presence or absence of each path (cube) and the root of
Implementing an XOR gate by AND/OR gates is discussed in [1], the graph representsin this binary tree, each level represents a
but the process of redundancy removal is not addressed. All of thevariable and each node has a branch that contains the literal and a
recently proposed multilevel synthesis methods with XOR gates branch that does not. The OFDD is derived from the binary deci-
use various types of decision diagrams with fixed variable order-sion tree with all isomorphic subtrees merged and only two termi-
ing, but none of them apply complete algebraic factorization. This nal nodes § and 1) present. When two subtrees directly under a
leads to suboptimal designs. Decision diagrams will not presentnonterminal node are isomorphic, the node is eliminated and the
automatically a good factorization and changing the variables’ subtrees are merged. The nonterminal nodes in our OFDD have
order does not solve the problem. branches labele@ and1. Agreement of the branch label with the
polarity of the corresponding variable indicates the existence of
the literal in the cube. The other branch, with a label different from
the polarity, indicates the absence of the literal in the cube. Each
path from the root to the terminahe node represents a set of
cubes inf. Any missing node along a path corresponding to the
variablex;, represents two cubes in the FPRM form. One cube con-

In this paper we propose a multilevel logic synthesis method for
arithmetic functions which formalizes our observations described
by the two examples above. The primary objective is to minimize
the area. However, the resulting circuits also possess good testabi
ity properties and their estimated power dissipation is low. The test

set for these circuits can be determined without conventional test,_. . ; :
; . . . - tainsx; with the appropriate polarity and the other cube does not
gigﬁg?;“sog t?itgﬂgscéitli}n-ls—k;ﬁesf%rlll‘g]viiﬂ; Q:gg?d Is described IIﬂhave>ﬁj. Therefore, a path witknonterminal nodes stands for a set
) of 2" cubes in the FPRM. For example, the OFDIFigure 1
(1) The FPRM form is generated, if the original specification is represents = x, O x_1x3IZI X, X, O x_x2x3 Oxz0x, with polarity
not in this form. We include this step in our experiment, since we vectorV = (0 1 %[) In"this OJFBD, ﬂ‘]e path witky = O, represents
do not have any benchmark cases described in FPRM form. All thethe first four cubes and the péttB1 represents the cubg. Note
cases ifWLS'91are in SOP forms. (Section 2) that the same OFDD can represent a different function if the polar-
. . o . ity vector is different. Therefore, keeping a polarity vector with the
(2) Algebraic factorization is performed to minimize the literal OFDD is essential. We will refer to [1], [8], [12], [13], [15], [18]

count and build the multilevel circuit. A set of rules to merge cubes 4,4 150} for more details on the FPRM forms and their OFDDs.
is also discussed. We present two methods for algebraic factoriza

tion: the first method uses cubes directly and the second methoc
uses decision diagrams to derive initial networks. (Section 3)

(3) A set of primary input patterns is generated from the cubes
in the FPRM form and simulated. Based on the simulation results,
some of the XOR gates can be reduced to single AND or OR gate:
without altering the functionality of the circuit. (Section 4)

Section 5 presents our experimental results. Conclusion and dis
cussion of future improvements are in Section 6.

2. The FPRM Forms and their Functional Decision Diagrams

A FPRM form of a Boolean function is its representation as an Figure 1 OFDD of f with V=(0 1 1)
XOR sum of cubes, in which every variable has either positive or
negative (but not both) polarity in all the cubes. FPRM forms of a
function can be efficiently derived and the cubes retrieved from the
ordered functional decision diagram (OFDD) [12] [20] or directly
from any two-level SOP form [20]. In our experiment, we use the
OFDDs to derive the cubes for the first method of algebraic factor-
ization. For the second method of algebraic factorization, the
OFDDs are used to generate the initial multilevel networks. The
OFDD can be derived efficiently [20] from reduced ordered binary
decision diagram (ROBDD) [6]. In our implementation, we utilize
the SIS 1.2 ROBDD package augmented by a polarity vector. The
origination and structure of an OFDD is described as follows.

In the sequel, we will refer the dependent variables of a function
(cube) as thesupport set Some cubes of the FPRM forms are
called prime cubes. A culgeis prime [7] in the functionf if the
support set op is not properly contained in any support set of the
remaining cubes. Csanlet al [7] have proved that every prime
cube occurs in al" possible FPRM forms of a function. The set
of prime cubes indicate sets of variables that are related. For exam-
ple, z4mlis a three-bit adder that adds two binary numbers whose
consecutive bits angxsx; andxsxgX, and the carry-in ig;. The
outputs arex24, x25, x26, x2ivherex24is the carry-out bit. The
output x26 of z4ml in the FPRM form s
o _ x26 = X5 U X5 0 x,x, O x;x, 0x,x,, where all the cubes are
A FPRM form of a Boolean function is the expansion of each prime. All the cubes in ach output functionzdinl are primes.

variablex; with either the positive Davio expansior xf, Of— ,  This can be very useful for algebraic factorization. The same prop-
or the negative Davio expansion= ;iff of, [8], Whe£exi and erty occurs in other arithmetic functions such as multipliers. In
f_ are cofactors off and fS_ =1 of_. For example, t481, 10 of the 16 cubes are primes.

i X 0X % 0%, DX xx5 O xg Ox, IS the FPRM representation 3. Algebraic Factorization

of f in polarity(0 1 1)
There are exactlgm-1) XOR operators in a FPRM form with

~ With eachn-input functionf we associate a binanydimen- cubes. Therefore, the goal of factorization is to: (1) reduce as many
sionalpolarity vector An entry of the vector i§(1) if the corre- ~ XOR gates as possible by merging cubes, and (2) factor out the
sponding variable in the FPRM form is in the negative (positive) maximal number of variables from subsets of cubes. The multi-

polarity. Note the binary nature of the Davio expansions. Each |evel network is constructed during factorization. We propose two
equation has two terms: one contains the litgrahd the other  factorization methods.

does not. Using the construction of ROBDDs as an analogy, the ) . .
variables are ordered and each variable is expanded by applyin¢__The first one is the cube method that takes all the cubes in the
one of the Davio equations. The FPRM form of a functican be FPRM forms as the input. First the cubes are divided into groups



such that every two groups have disjoint supports. Each group is
factored separately and the resulting subnetworks are joined by ¢
balanced binary tree of XOR gates to form the complete network.

Let A, BandC be cubes or complex expressions and + repre-
sents the OR gate. The rules we apply to reduce the XOR gates ai
as follows.

The Reduction rules are: (a)AOAB=AB
ABO ACO ABC=A(B+C),(c)ABOB= A+B.

The Factorization rules are:
(d) ABOACO A.. = A(BOCO...) ,
) .

Note that rule (e) is used only after Reduction rules have been
applied. The two sets of rules are applied to the cubes iteratively
until no further factorization is possible. The first factorization
method is summarized in the following procedure:

(b)

(e) AB+ AC+ A.. = A(B+C+ ...

Step 1: generate all the cubes in the FPRM form.
Step 2: divide the cubes into groups with disjoint support.

Step 3: for each group of cubes, divide the cubes into subgroup:
with maximal common support.

Step 4: apply Reduction or Factorization rules to each subgroup
to generate subnetworks.

Step 5: merge subnetworks by a balanced, binary tree of XOR
gates to form the complete network.

The second factorization method uses the OFDD to generate the
initial, factored form. In the OFDD, any set of nodes that share a
common child node represents a factored subexpression similar tc
the right hand side of the rule (d). The initial network is con-
structed by replacing each node of the OFDD with a set of one
AND gate and one XOR gate that implement the appropriate
Davio expansions. Note that, as described in the previous section
the variables that are missing in each path of the OFDD should be
in some of the cubes; therefore, additional care is needed tc
include them. The initial network can be constructed by a single
traversal of the OFDD. The following procedure summarizes the
second factorization method:

Step 1: traverse the OFDD and construct the initial network.

Step 2: traverse the initial network and apply the Reduction and
Factorization rules when possible.

We have implemented both of the factorization methods in our
experiment and the results are comparable but the second metho
has better results on a few more test cases. For multioutput func
tions, we do factorization for each output function and use the SIS
commandresub to merge the networks of all output functions.
Note that the missing variables in the paths of a multioutput OFDD
could result in a node being shared by two output functions with
different support variables; therefore, we can not use the multiout-
put OFDD to build the initial network directly.

In general, we believe that more elegant methods for algebraic
factorization are still possible, similar to the methods in [2], for
AND/XOR forms. The set of rules developed by Sasao [17] for
XOR related forms could serve as a base and the main factoriza
tion technique could follow the methods in [2]. This new method
should be targeting designs that have high level descriptions in
macro blocks.

4. Redundancy Analysis of XOR Gates

The rules (a) to (c) of the previous section suggest that some of
the XOR gates can be removed or reduced to simple OR gates. li

this section we will show a complete method for detecting such
reducible XOR gates in the entire network. For simplicity, in this
section we make the following assumptions:

(1) all the variables have positive polarities in the FPRM forms.
(Our results apply to FPRM forms with any polarity combinations)

(2) the cubel in the FPRM form, if exists, is always imple-
mented as an inverter at the primary output (PO). This can be done
sincef = fO1.

(3) the multilevel network, calletl,, has been constructed by
applying the algebraic factorization described in Section 3, but
reduction rules (a) - (c) were not applied.

Hayes [10] has proved that for a two-input XOR gate imple-
mented by AND/OR gates, all four input patterns have to be
applied to test internal single stuck-stdj faults and this is inde-
pendent of the implementation of the XOR gate. Therefore, the
internals-afaults can be partitioned into four classes of equivalent
faults; each class is detected by a particular input pattern. A class
of internal faults is untestable, if, and only if, the corresponding
input pattern is either: (a) uncontrollable, or (b) unobservable. An
s-a-Ountestable fault means the wire is redundant and can be set to
a constan®. Similarly, as-a-1untestable wire can be set to a con-
stantl. The gate with redundant inputs can then be simplified. For
the XOR internal gates, if the whole class of faults corresponding
to a particular input pattern is untestable, then all the wires corre-
sponding to the faults can be set to constant values.

fXOI’

a O hy

Figure 2 The structure of the XOR gates inside the network.

Letf = gOh be an internal XOR gate b, whereg andh
are the output functions of the fanins. Similarly, det 909
andh = hOh . Figure 2 shows the structure of the consecutive
XOR gates. Note that in the network built by the algebraic factor-
ization, there might be AND gates gnor h that implement some
subcube or subexpression; i.e.qg = ADgI DgrD or
h = BH 0O h U. However, we are concerned gnly with the con-
secutive Xofggates in the analysis; therefore, we do not show
(B) in the figure.

h

Property 1 If all primary inputs (Pl) are set @ then the inputs
and output of every XOR gate are als@his is true since we have
the assumptions (1) and (2) above. We will denote the all zero PI
pattern as AZ.

Property 2 For each two-input XOR gate My, at least three of
the four input patterns are controllable.

Proof: If less than three input patterns occur, than one of the
inputs or the output is a constant. However, nongfg, or h
should be constant, since each function is an XOR sum of a subset
of cubes from the canonical FPRM form. (QED)

Property 1guarantees that tt§@, 0)input pattern is always con-
trollable for any XOR gate ifl,. Now we consider the remaining
three input patterns of any XOR gateNp. Table 1shows the
respective functions.

Property 3 If the input patterr{1, 1)is uncontrollable or unob-



servable, thefi,, = g + h; i.e., the XOR gate is reduced to an OR the FPRM form of the function, we create a PI pat®nwhere all

gate. the variables ilC; are set td and all the variables not {} are set

to 0. We will call this set of PI patterns the one-cub€) set. All

the PI patterns i@C are simulated oN,. This will generate some
input patterns of each XOR gate. However, we must guarantee that
for each XOR gate all possible input patterns are determined; i.e.,
all possible PI combinations that could generate additional input

Property 4 If the input patterr{O, 1)is uncontrollable or unob-
servable, thefi,, = g h; i.e., the XOR gate is reduced to an AND
gate. Similarly, if the input patteltt, 0)is uncontrollable or unob-
servable, thef,,, =g h

Table 1 Truth Table for XOR and three implied functions patterns of,,, have been considered.
values at g and h gOh g+h | gh Property 8 There exists at least one PI patterrO@ set that
0,0 0 0 0 0 derives dl at an XOR gaté .
0,1 1 1 0 1 Property 9 At least two of the three input patter(@s 1), (1, 0)
1,0 1 1 1 0 and(1, 1)at each XOR gate are derived by patterns irh@eset.
1,1 0 1 0 0 For XOR gates that are in the direct fanout of two cubes, we

know that all three input patterns are always controllable, since the

one-cube PI pattern corresponding to each cube will détive)

and(0, 1)input patterns, respectively. For t{ig 1)input, we will
Property 5 A situation that an input pattern i, is not observ- simulate theAO pattern where all the variables are set.to

able occurs only when redundancy was discovered at some of the

XOR gates in the transitive fanoutfof,.

The following property ensures that the reductions of the XOR
gates can occur only in a certain order.

After the simulation ofOC and AO patterns, one of the three
input patterns might not be derived at sofgg in the network.

Proof: XOR gates do not have controlling value, therefore, Now the question is whether the missing input pattern is controlla-
observability is changed only when a path to any primary output ble. We know that based on the property of XOR operator, when
contains some AND/OR gates. (QED) an odd number of cubes dnare set td and the rest of the cubes

When an XOR gaté,, is reduced to an OR or AND gate, the are set td theng is 1. If an even number of cubesgdrare set td
observability af,, will be dominated by the controlling value. In ‘he'.”g 'Sf OH TheLefor%, the input \{alues %BH a(r:(r deIC|deddby the
the case wherf,, is changed to an OR gate, suppose that all the ﬁa“ty of the 9(‘; elilt at are sekt]]Im g andh. Llearly Vl‘J'g_ 0 not
Pl patterns that set boghandg;, to 1 also seh to 1, then thg(1, 1) ave to consider PI patterns that can not set any cubéntl,,
input pattern ofg is unobservable and the XOR gatecan be since their effect on the inputs of each XOR gate is identical to the

reduced. The following properties describe cases when redundan”Z pattern. However, there are still a large number of Pl patterns
cies occur due to observability problems. that could derive various parities of cubeg ahdh. To avoid enu-

merating all the possible Pl patterns explicitly, we have derived a

Property 6 Suppose that XOR gate was reducefjgp=g + h. method that is based on the following strategies: (1) define an
When for all Pl patterns controllinggandg;, to 1, his also set td, ordering of the cubes in the function and enumerate the parity
theng, = g, = 1 is unobservable anglis reduced to an OR gate. value of cubes in order, and (2) maintain the record of only the
Similarly, wheng, = 0 andg, = 1 impliesh = 1, theng = g; 9. accumulated parity values gfandh when at least one of them has

Property 7 Suppose that XOR gate has been reducégts g parity 1. Note that we do not have to simulate any Pl pattern
R. If all PI patterns controllingg, ) to (0, 3 or (1, 0) also seh to explicitly, since the parity values are enough to decide the func-
1, then one of0, 1) or (1, 0) is not observable and can be tional values ag) andh. The method is quite involved and we have
reduced to an AND gate. to cut this portion due to the space limitation. For any XOR gate

- . ) where one of the input pattern is missing, we apply the method to
Similar properties can be derived for the case when the XOR gecide whether the missing input pattern is controliable. If a parity
gate is reduced = g h value combination o andh is derived that matches the missing
For multioutput functionsProperty 5applies to all POs that  input pattern, then we generate a PI pattern by setting all the vari-
share thd,,, subnetwork. If there exists a path frég to any PO ables in all the related cubesltand all other variables
that contains only XOR gates, then the observability of,ies With complete information of all possible inputs to every XOR
still maintained. In this case Propertiand7 do not apply. gate, the gate reduction is done as described in the following step.

The last three properties indicate that the observability redun- 1 Tyayverse the XOR gates starting from POs. For each XOR
dancies are the consequences of controllability redundancies aNlgate, if any of the three input patterns is missing, reduce the XOR

they create a domino effect toward the Pls side. gate to OR or AND based on eitHeroperties 3or Property 4,
Consider a single output function in its tree netwidgkFor any respectively.
XOR gatefyor in Ny, as described above, th& pattern can set the 2. For each reduced gate, traverse backward toward Pls. For

input§g andh of fyor t0 0. To decide the controllability of the  o53ch XOR gate not yet reduced, if any condition of PropeStigs
remaining three input patter(®, 1) (1, 0)and(1, 1) we need an 7 s satisfied, then reduce the XOR gate accordingly.
efficient method to determine all the valueg ahdh that can pos-

sibly occur. Ifg andh have totally disjoint support sets of Pls, then ~ After redundancies are removed from XOR gates, the paths
all input patterns at, are controllable and observable and the from some first level AND gate to the PO might contain some
XOR gatef,,, can never be reduced. For example, all the XOR AND/OR gates. This could create redundancies in the fanins of
gates in a parity function are not reducible. As described in thethese AND gates. When this occurs as untestahbld fault, then
algebraic factorization, all the XOR gates in the balanced binary the input can be set to the constarind eliminated. If the redun-
tree that form the POs are irreducible. Therefore, we will not check dancy occurs as-a-Ofault untestable, then the fanin can be set to
the redundancies of this type of XOR gates. In the remainder ofthe constand and the AND gate output is also set to condafio

this section, we will assume that the support setsapfdh have at verify the redundancy, for each inpytin cubeC;, we generate a
least one PI in common. PI pattern directly from pattei (in setOC) by switching the cor-

. ) responding bit okj to 0. For ak-variable cube, we will generake
We will construct a Pl pattern set as follows: for each ¢ijtie



extra Pl patterns. We will call this seA1for testings-a-1faults of
the fanins on the first level AND gates. The PI patterr@Qare
used fors-a-Ofaults.

As before, we simulate the pattern @andSA1l The redun-
dancy detection relies on the simulation results of the correspond-
ing Pl pattern for a particular fault. For each fanin of the first level
AND gates, we check the simulation result along the path to the
POs. If there exists an AND or OR gate on the path where the side
input have the controlling value of the gate, then this gate will pre-
vent any fault effect from propagating forward. Therefore, the cor-
responding fault is untestable. The particular fanin can then be se
to constant and removed.

The following equalities show the order in which the redundan-
cies are discovered and the corresponding reductions:
(BOC)OBC= (BOC)+BC= (B+C)+BC =B+C.

Clearly, the Reduction rules (a) to (c) that are used in algebraic fac-
torization can reduce the number of Pl patterns needed for redun
dancy removal.

5. Experimental Results

We have implemented our method in C on a Sun Sparc 5 anc
have run the program on a setWLS’91benchmark circuits. The
circuits derived from our program are compared with the original
circuits by using theerify command in SIS 1.2. We compare our
results with the best results of the three SIS scriptged, bool-
ean and algebraic To make fair comparisons, we also run
red_removalin SIS after the completion of the scripts to remove
all redundant wires in circuits generated by SISTable 2 the
first column lists the names of the circuits (the known arithmetic
circuits are in bold face) and the second colum@)(lists the

pliers, by directly synthesizing the FPRM forms of Boolean
functions. Algebraic factorization of the FPRM forms are much
simpler then the factorization of SOP forms for arithmetic func-
tions. Properties derived for the XOR gates are used to identify
redundancies without test pattern generation. Our method is funda-
mentally different from conventional synthesis methods that are
based on SOP forms. This leads to solutions in different search
space and can be used to complement the weak points in the con-
ventional synthesis methods. Our method is particularly useful for
adders, multipliers, error checking circuits and functions related to
coding theory. Preliminary results show a good percentage
improvement as compared to SIS. We also note that our synthesis
method produces irredundant networks with a complete test pat-
tern set for single stuck-at faults.

The algebraic factorization and Pl pattern set need further
improvement to synthesize large, multioutput functions more effi-
ciently. Other characteristics, such as power dissipation and delay,
of the synthesized circuits will also differ from the results of con-
ventional synthesis methods and need to be analyzed..
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9sym 9/1 414 14.5 156 2.45 139 372 64 146 61 57
adr4 8/5 62 1.8 48 0.45 28 59 23 48 19 31
addé 12/7 114 3.2 76 0.91 48 106 44 8p 23 42
addm4 9/8 700 465.00 588 4222 221 543 224  5B39 6 1
bcd-div3 4/4 52 0.9 52 0.43 20 51 22 54 -6 -1
cc 21/20 84 2.8 84 2.68 44 89 42 84 1 3
col4d 14/1 128 5.8 88 2.73 50 118 50 98 17 14
cml63a 16/5 74 2.2 66 1.33 28 64 30 68 -5 13
cm82a 5/3 34 0.6 28 0.5 14 31 16 32 -3 29
cm8b5a 11/3 80 1.7 84 1.48 33 71 41 84 -9 1
cmb 16/4 86 2.2 37 0.22 32 83 17 5 40 35
f2 4/4 36 12 34 0.73 16 40 16 34 15 12
f51m 8/8 187 8.6 137 271 66 160 63 132 17 27
frgl 28/3 183 7.9 146 56.8 82 192 57 141 27 44
il 25/13 70 2.1 61 1.9 33 73 34 69 5 3
i3 132/6 | 252 7.7 260 8.41 58 184 90 224 -22 24
i4 192/6 | 436 13.9 448 67.9 114 38D 145 384 -1 7
i5 133/66| 264 9.5 264  28.33 165 330 165 330 0 0
m181 15/9 148 5.1 148 5.17 54 144 56 162 -13 -4
majority 5/1 18 0.4 16 0.21 8 17 7 16 6 14
misg 56/23 | 138 4.4 100 6.11 52 132 41 9% 28 27
mish 94/34 | 180 4.6 143 2.31] 63 153 64 1%7 -3 0
mlip4 8/8 534 19.3 452 12.77 176 508 171 411 18 21
my_adder|| 33/17| 336 6.9 224 13.04 111 290 113 226 22 3
parity 16/1 90 1.2 90 0.28 15 60 15 60 0 0
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Total arith 4804 4435.§ 3243 103.535 1667 4282 1343 312 17.3 22.4
Total all 7484 4513.6 5630 307.02 2680 6815 2351 5532 119 18.0




	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index


