
Abstract -- The arithmetic functions, as a subclass of Boolean
functions, have very compact descriptions in the AND and XOR
operators. Any n-bit adder is a prime example. This paper presents
a multilevel logic synthesis method which is particularly suited for
arithmetic functions and utilizes their natural representations in
the field GF(2). Algebraic factorization is performed to reduce the
literal count. A direct translation of the AND/XOR representations
of arithmetic functions into multilevel networks often results in ex-
cessive area, mainly due to the large area cost of XOR gates. We
present a process of redundancy removal which reduces many
XOR gates to single AND or OR gates without altering the func-
tional behavior of the network. The redundancy removal process
requires only to simulate a small and decidable set of primary in-
put patterns. Preliminary results show that our method produces
circuits, before and after technology mapping, with area improve-
ment averaging 17% when compared to Berkeley SIS 1.2. The run
time is reduced by at least 50%. The resulting circuits also have
good testability and power consumption properties.

1. Introduction

The majority of the multilevel logic synthesis CAD tools cur-
rently on the market implement the methods based on techniques
described in [2] [4]. The central theme of the synthesis methods is
the factorization and decomposition of the original design
described by macro blocks, each block being in the Sum-of-Prod-
uct (SOP) form. Naturally, before the logic synthesis begins, it is
necessary to determine a compact and concise description of the
circuit’s functional behavior which is suitable for the tool. There-
fore, even the functions having their naturally compact descrip-
tions in AND/XOR forms are changed into equivalent AND/OR
forms and might be mixed into macro blocks with the rest of the
function. This is also true for arithmetic functions [17], such as
adders, multipliers, and error-correcting circuits that are originally
derived in the context of algebraic fieldGF(2). If input descrip-
tions of arithmetic functions are represented in forms different
from AND/XOR forms, e.g. two-level SOP forms, then the com-
pact descriptions of the original equations are completely lost. In
both cases, the synthesis tools rely entirely on the Boolean factor-
ization to include XOR gates. This may result in synthesized cir-
cuits with suboptimal area. We will use two examples from the
IWLS’91 benchmark set [22] to illustrate our observations.

Example 1: t481 is a 16-input, single-output function and is
listed in both the two-level and multilevel benchmark sets in [22].
The case name comes from the fact that there are481 irredundant,
prime cubes in the two-level SOP form. In the multilevel set, the
user’s guide listst481 as a circuit having2072 gates (no informa-
tion on the gate types). When we run the major scripts in the Ber-
keley SIS 1.2 to synthesize the function, the scriptrugged

generated the best result that has only237 2-input AND/OR gates.
The run time for the script is high with1372 CPU seconds. In con-
trast, t481 has only16 cubes in the well-known Fixed-Polarity
Reed-Muller (FPRM) form. The FPRM form is one of the many
two-level AND\XOR representations [18]. Factorization methods
from Elementary Algebra can be applied easily to generate a good
multilevel circuit. After certain redundant XOR gates are replaced
with AND/OR gates (we will explain the details later), the final
result is a multilevel circuit described by the following equation.

.

It can be implemented by25 2-input AND/OR gates if each
XOR gate is replaced by three AND/OR gates.

The adders have similar sub-optimal synthesis result when con-
ventional tools are used. This is due to the same problem as illus-
trated in the next example.

Example 2: z4ml is a3-bit adder with a carry-in bit and a carry-
out bit. Basic data [3] show that it has59 irredundant, prime cubes
in the two-level SOP form. In contrast, there are32 cubes in the
FPRM form. All the32 cubes have a special property (we will
explain this later) which facilitates the algebraic factorization
nicely. We have generated a multilevel circuit forz4ml with 21 2-
input gates and the synthesis process does not rely on any high
level description. The best result derived from SIS scripts has24
2-input gates. The run time for SIS is much higher than ours. The
difference in size increases (in terms of percentage) for larger cir-
cuits as is the case of the6-bit adderadd6.

In general, for arithmetic functions, the two-level SOP forms
contain large set of cubes and the irredundant prime covers are dif-
ficult to derive and store [5] [9]. On the other hand, the FPRM
forms of arithmetic functions have small sets of cubes [17]. The
FPRM form of any function is canonical with fixed polarity of
each variable, therefore the cubes in the FPRM form clearly indi-
cate the relations among variables. Both of the above examples
indicate these properties. For adders, e.g.z4ml, the FPRM forms
are the same as the original equations, in two-level form specifica-
tion. The transformation to SOP form will result in information
loss. Therefore, maintaining the original equations in the FPRM
forms for multilevel logic synthesis can shorten the synthesis time
and assist in deriving better results. Note that we use the FPRM
forms only as the initial specification.

The circuits implementing functions in FPRM forms, or any
related forms, have been considered by only a small group of
researchers besides Reed [15] and Muller [13]. Reddy [14] has
shown that the circuits implementing FPRM forms have extremely
good testability property. Recently, multilevel logic synthesis
methods with XOR operators [19] or related forms [1] [11] [16]
[17] [21] have achieved some good results, especially for Lookup
Table based FPGAs. However, for standard cells, most of the cur-
rent results assume that the XOR gate is a single entity. For arith-
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metic functions this will lead to additional cost, since each XOR
gate has a relatively large area in comparison to AND/OR gates.
Implementing an XOR gate by AND/OR gates is discussed in [1],
but the process of redundancy removal is not addressed. All of the
recently proposed multilevel synthesis methods with XOR gates
use various types of decision diagrams with fixed variable order-
ing, but none of them apply complete algebraic factorization. This
leads to suboptimal designs. Decision diagrams will not present
automatically a good factorization and changing the variables’
order does not solve the problem.

In this paper we propose a multilevel logic synthesis method for
arithmetic functions which formalizes our observations described
by the two examples above. The primary objective is to minimize
the area. However, the resulting circuits also possess good testabil-
ity properties and their estimated power dissipation is low. The test
set for these circuits can be determined without conventional test
generation methods [21]. The synthesis method is described in
Sections 2 to 4 and contains the following steps:

(1) The FPRM form is generated, if the original specification is
not in this form. We include this step in our experiment, since we
do not have any benchmark cases described in FPRM form. All the
cases inIWLS’91 are in SOP forms. (Section 2)

(2) Algebraic factorization is performed to minimize the literal
count and build the multilevel circuit. A set of rules to merge cubes
is also discussed. We present two methods for algebraic factoriza-
tion: the first method uses cubes directly and the second method
uses decision diagrams to derive initial networks. (Section 3)

(3) A set of primary input patterns is generated from the cubes
in the FPRM form and simulated. Based on the simulation results,
some of the XOR gates can be reduced to single AND or OR gates
without altering the functionality of the circuit. (Section 4)

Section 5 presents our experimental results. Conclusion and dis-
cussion of future improvements are in Section 6.

2. The FPRM Forms and their Functional Decision Diagrams

A FPRM form of a Boolean function is its representation as an
XOR sum of cubes, in which every variable has either positive or
negative (but not both) polarity in all the cubes. FPRM forms of a
function can be efficiently derived and the cubes retrieved from the
ordered functional decision diagram (OFDD) [12] [20] or directly
from any two-level SOP form [20]. In our experiment, we use the
OFDDs to derive the cubes for the first method of algebraic factor-
ization. For the second method of algebraic factorization, the
OFDDs are used to generate the initial multilevel networks. The
OFDD can be derived efficiently [20] from reduced ordered binary
decision diagram (ROBDD) [6]. In our implementation, we utilize
the SIS 1.2 ROBDD package augmented by a polarity vector. The
origination and structure of an OFDD is described as follows.

A FPRM form of a Boolean function is the expansion of each
variablexi with either the positive Davio expansion ,
or the negative Davio expansion  [8], where  and

 are cofactors of f and . For example,
 is the FPRM representation

of f in polarity(0 1 1).

With eachn-input function f we associate a binaryn-dimen-
sionalpolarity vector. An entry of the vector is0(1) if the corre-
sponding variable in the FPRM form is in the negative (positive)
polarity. Note the binary nature of the Davio expansions. Each
equation has two terms: one contains the literalti and the other
does not. Using the construction of ROBDDs as an analogy, the
variables are ordered and each variable is expanded by applying
one of the Davio equations. The FPRM form of a functionf can be
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expressed in a binary decision tree where terminal nodes1 and0
indicate the presence or absence of each path (cube) and the root of
the graph representsf. In this binary tree, each level represents a
variable and each node has a branch that contains the literal and a
branch that does not. The OFDD is derived from the binary deci-
sion tree with all isomorphic subtrees merged and only two termi-
nal nodes (0 and1) present. When two subtrees directly under a
nonterminal node are isomorphic, the node is eliminated and the
subtrees are merged. The nonterminal nodes in our OFDD have
branches labeled0 and1. Agreement of the branch label with the
polarity of the corresponding variable indicates the existence of
the literal in the cube. The other branch, with a label different from
the polarity, indicates the absence of the literal in the cube. Each
path from the root to the terminalone node represents a set of
cubes inf. Any missing node along a path corresponding to the
variablexj, represents two cubes in the FPRM form. One cube con-
tainsxj with the appropriate polarity and the other cube does not
havexj. Therefore, a path withk nonterminal nodes stands for a set
of 2n-k cubes in the FPRM. For example, the OFDD inFigure 1
represents  with polarity
vectorV = (0 1 1). In this OFDD, the path withx1 = 0, represents
the first four cubes and the path101 represents the cubex3. Note
that the same OFDD can represent a different function if the polar-
ity vector is different. Therefore, keeping a polarity vector with the
OFDD is essential. We will refer to [1], [8], [12], [13], [15], [18]
and [20] for more details on the FPRM forms and their OFDDs.

In the sequel, we will refer the dependent variables of a function
(cube) as thesupport set. Some cubes of the FPRM forms are
called prime cubes. A cubep is prime [7] in the functionf if the
support set ofp is not properly contained in any support set of the
remaining cubes. Csankyet al [7] have proved that every prime
cube occurs in all2n possible FPRM forms of a function. The set
of prime cubes indicate sets of variables that are related. For exam-
ple, z4ml is a three-bit adder that adds two binary numbers whose
consecutive bits arex2x3x1 andx5x6x4 and the carry-in isx7. The
outputs arex24, x25, x26, x27, wherex24 is the carry-out bit. The
output x26 of z4ml in the FPRM form is

, where all the cubes are
prime. All the cubes in each output function ofz4ml are primes.
This can be very useful for algebraic factorization. The same prop-
erty occurs in other arithmetic functions such as multipliers. In
t481, 10 of the16 cubes are primes.

3. Algebraic Factorization

There are exactly(m-1) XOR operators in a FPRM form withm
cubes. Therefore, the goal of factorization is to: (1) reduce as many
XOR gates as possible by merging cubes, and (2) factor out the
maximal number of variables from subsets of cubes. The multi-
level network is constructed during factorization. We propose two
factorization methods.

The first one is the cube method that takes all the cubes in the
FPRM forms as the input. First the cubes are divided into groups
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such that every two groups have disjoint supports. Each group is
factored separately and the resulting subnetworks are joined by a
balanced binary tree of XOR gates to form the complete network.

Let A, B andC be cubes or complex expressions and + repre-
sents the OR gate. The rules we apply to reduce the XOR gates are
as follows.

The Reduction rules are: (a) , (b)
, (c) .

The Factorization rules are:

(d) ,

(e) .

Note that rule (e) is used only after Reduction rules have been
applied. The two sets of rules are applied to the cubes iteratively
until no further factorization is possible. The first factorization
method is summarized in the following procedure:

Step 1: generate all the cubes in the FPRM form.

Step 2: divide the cubes into groups with disjoint support.

Step 3: for each group of cubes, divide the cubes into subgroups
with maximal common support.

Step 4: apply Reduction or Factorization rules to each subgroup
to generate subnetworks.

Step 5: merge subnetworks by a balanced, binary tree of XOR
gates to form the complete network.

The second factorization method uses the OFDD to generate the
initial, factored form. In the OFDD, any set of nodes that share a
common child node represents a factored subexpression similar to
the right hand side of the rule (d). The initial network is con-
structed by replacing each node of the OFDD with a set of one
AND gate and one XOR gate that implement the appropriate
Davio expansions. Note that, as described in the previous section,
the variables that are missing in each path of the OFDD should be
in some of the cubes; therefore, additional care is needed to
include them. The initial network can be constructed by a single
traversal of the OFDD. The following procedure summarizes the
second factorization method:

Step 1: traverse the OFDD and construct the initial network.

Step 2: traverse the initial network and apply the Reduction and
Factorization rules when possible.

We have implemented both of the factorization methods in our
experiment and the results are comparable but the second method
has better results on a few more test cases. For multioutput func-
tions, we do factorization for each output function and use the SIS
commandresub to merge the networks of all output functions.
Note that the missing variables in the paths of a multioutput OFDD
could result in a node being shared by two output functions with
different support variables; therefore, we can not use the multiout-
put OFDD to build the initial network directly.

In general, we believe that more elegant methods for algebraic
factorization are still possible, similar to the methods in [2], for
AND/XOR forms. The set of rules developed by Sasao [17] for
XOR related forms could serve as a base and the main factoriza-
tion technique could follow the methods in [2]. This new method
should be targeting designs that have high level descriptions in
macro blocks.

4. Redundancy Analysis of XOR Gates

The rules (a) to (c) of the previous section suggest that some of
the XOR gates can be removed or reduced to simple OR gates. In
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this section we will show a complete method for detecting such
reducible XOR gates in the entire network. For simplicity, in this
section we make the following assumptions:

(1) all the variables have positive polarities in the FPRM forms.
(Our results apply to FPRM forms with any polarity combinations)

(2) the cube1 in the FPRM form, if exists, is always imple-
mented as an inverter at the primary output (PO). This can be done
since .

(3) the multilevel network, calledNx, has been constructed by
applying the algebraic factorization described in Section 3, but
reduction rules (a) - (c) were not applied.

Hayes [10] has proved that for a two-input XOR gate imple-
mented by AND/OR gates, all four input patterns have to be
applied to test internal single stuck-at (s-a) faults and this is inde-
pendent of the implementation of the XOR gate. Therefore, the
internals-a faults can be partitioned into four classes of equivalent
faults; each class is detected by a particular input pattern. A class
of internal faults is untestable, if, and only if, the corresponding
input pattern is either: (a) uncontrollable, or (b) unobservable. An
s-a-0 untestable fault means the wire is redundant and can be set to
a constant0. Similarly, as-a-1 untestable wire can be set to a con-
stant1. The gate with redundant inputs can then be simplified. For
the XOR internal gates, if the whole class of faults corresponding
to a particular input pattern is untestable, then all the wires corre-
sponding to the faults can be set to constant values.

Let  be an internal XOR gate ofNx, whereg andh
are the output functions of the fanins. Similarly, let
and . Figure 2 shows the structure of the consecutive
XOR gates. Note that in the network built by the algebraic factor-
ization, there might be AND gates ing or h that implement some
subcube or subexpression; i.e.,  or

. However, we are concerned only with the con-
secutive XOR gates in the analysis; therefore, we do not showA
(B) in the figure.

Property 1 If all primary inputs (PI) are set to0, then the inputs
and output of every XOR gate are also0. This is true since we have
the assumptions (1) and (2) above. We will denote the all zero PI
pattern as AZ.

Property 2 For each two-input XOR gate inNx, at least three of
the four input patterns are controllable.

Proof: If less than three input patterns occur, than one of the
inputs or the output is a constant. However, none offxor, g, or h
should be constant, since each function is an XOR sum of a subset
of cubes from the canonical FPRM form. (QED)

Property 1 guarantees that the(0, 0) input pattern is always con-
trollable for any XOR gate inNx. Now we consider the remaining
three input patterns of any XOR gate inNx. Table 1 shows the
respective functions.

Property 3 If the input pattern(1, 1) is uncontrollable or unob-

f f 1⊕=

Figure 2 The structure of the XOR gates inside the network.
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servable, thenfxor = g + h; i.e., the XOR gate is reduced to an OR
gate.

Property 4 If the input pattern(0, 1) is uncontrollable or unob-
servable, thenfxor = g h; i.e., the XOR gate is reduced to an AND
gate. Similarly, if the input pattern(1, 0) is uncontrollable or unob-
servable, thenfxor = g h.

The following property ensures that the reductions of the XOR
gates can occur only in a certain order.

Property 5 A situation that an input pattern offxor is not observ-
able occurs only when redundancy was discovered at some of the
XOR gates in the transitive fanout offxor.

Proof: XOR gates do not have controlling value, therefore,
observability is changed only when a path to any primary output
contains some AND/OR gates. (QED)

When an XOR gatefxor is reduced to an OR or AND gate, the
observability atfxor will be dominated by the controlling value. In
the case wherefxor is changed to an OR gate, suppose that all the
PI patterns that set bothgl andgr to 1 also seth to 1, then the(1, 1)
input pattern ofg is unobservable and the XOR gateg can be
reduced. The following properties describe cases when redundan-
cies occur due to observability problems.

Property 6 Suppose that XOR gate was reduced tofxor = g + h.
When for all PI patterns controllinggl andgr to 1, his also set to1,
thengl = gr = 1 is unobservable andg is reduced to an OR gate.
Similarly, whengl = 0 andgr = 1 impliesh = 1, theng = gl gr.

Property 7 Suppose that XOR gate has been reduced tofxor = g
h. If all PI patterns controlling(gl, gr) to (0, 1) or (1, 0) also seth to
1, then one of(0, 1) or (1, 0) is not observable andg can be
reduced to an AND gate.

Similar properties can be derived for the case when the XOR
gate is reduced tofxor = g h.

For multioutput functions,Property 5 applies to all POs that
share thefxor subnetwork. If there exists a path fromfxor to any PO
that contains only XOR gates, then the observability of thefxor is
still maintained. In this case Properties 6 and7 do not apply.

The last three properties indicate that the observability redun-
dancies are the consequences of controllability redundancies and
they create a domino effect toward the PIs side.

Consider a single output function in its tree networkNx. For any
XOR gatefxor in Nx, as described above, theAZ pattern can set the
inputs g and h of fxor to 0. To decide the controllability of the
remaining three input patterns(0, 1), (1, 0) and(1, 1), we need an
efficient method to determine all the values ofg andh that can pos-
sibly occur. Ifg andh have totally disjoint support sets of PIs, then
all input patterns atfxor are controllable and observable and the
XOR gatefxor can never be reduced. For example, all the XOR
gates in a parity function are not reducible. As described in the
algebraic factorization, all the XOR gates in the balanced binary
tree that form the POs are irreducible. Therefore, we will not check
the redundancies of this type of XOR gates. In the remainder of
this section, we will assume that the support sets ofg andh have at
least one PI in common.

We will construct a PI pattern set as follows: for each cubeCi in

Table 1 Truth Table for XOR and three implied functions

values at g and h g + h gh g h
0, 0 0 0 0 0
0, 1 1 1 0 1
1, 0 1 1 1 0
1, 1 0 1 0 0

g h⊕

the FPRM form of the function, we create a PI patternPi where all
the variables inCi are set to1 and all the variables not inCi are set
to 0. We will call this set of PI patterns the one-cube (OC) set. All
the PI patterns inOC are simulated onNx. This will generate some
input patterns of each XOR gate. However, we must guarantee that
for each XOR gate all possible input patterns are determined; i.e.,
all possible PI combinations that could generate additional input
patterns offxor have been considered.

Property 8 There exists at least one PI pattern inOC set that
derives a1 at an XOR gatefxor.

Property 9 At least two of the three input patterns(0, 1), (1, 0)
and(1, 1) at each XOR gate are derived by patterns in theOC set.

For XOR gates that are in the direct fanout of two cubes, we
know that all three input patterns are always controllable, since the
one-cube PI pattern corresponding to each cube will derive(1, 0)
and(0, 1) input patterns, respectively. For the(1, 1) input, we will
simulate theAO pattern where all the variables are set to1.

After the simulation ofOC andAO patterns, one of the three
input patterns might not be derived at somefxor in the network.
Now the question is whether the missing input pattern is controlla-
ble. We know that based on the property of XOR operator, when
an odd number of cubes ing are set to1 and the rest of the cubes
are set to0 theng is 1. If an even number of cubes ing are set to1
theng is 0. Therefore, the input values atfxor are decided by the
parity of the cubes that are set to1 in g andh. Clearly we do not
have to consider PI patterns that can not set any cube to1 in Nx,
since their effect on the inputs of each XOR gate is identical to the
AZ pattern. However, there are still a large number of PI patterns
that could derive various parities of cubes atg andh. To avoid enu-
merating all the possible PI patterns explicitly, we have derived a
method that is based on the following strategies: (1) define an
ordering of the cubes in the function and enumerate the parity
value of cubes in order, and (2) maintain the record of only the
accumulated parity values ofg andh when at least one of them has
parity 1. Note that we do not have to simulate any PI pattern
explicitly, since the parity values are enough to decide the func-
tional values atg andh. The method is quite involved and we have
to cut this portion due to the space limitation. For any XOR gate
where one of the input pattern is missing, we apply the method to
decide whether the missing input pattern is controllable. If a parity
value combination ofg andh is derived that matches the missing
input pattern, then we generate a PI pattern by setting all the vari-
ables in all the related cubes to1 and all other variables to0.

With complete information of all possible inputs to every XOR
gate, the gate reduction is done as described in the following step.

1. Traverse the XOR gates starting from POs. For each XOR
gate, if any of the three input patterns is missing, reduce the XOR
gate to OR or AND based on eitherProperties 3 or Property 4,
respectively.

2. For each reduced gate, traverse backward toward PIs. For
each XOR gate not yet reduced, if any condition of Properties6 or
7 is satisfied, then reduce the XOR gate accordingly.

After redundancies are removed from XOR gates, the paths
from some first level AND gate to the PO might contain some
AND/OR gates. This could create redundancies in the fanins of
these AND gates. When this occurs as untestables-a-1 fault, then
the input can be set to the constant1 and eliminated. If the redun-
dancy occurs ass-a-0 fault untestable, then the fanin can be set to
the constant0 and the AND gate output is also set to constant0. To
verify the redundancy, for each inputxj in cubeCi, we generate a
PI pattern directly from pattern Pi (in setOC) by switching the cor-
responding bit ofxj to 0. For ak-variable cube, we will generatek



extra PI patterns. We will call this setSA1 for testings-a-1faults of
the fanins on the first level AND gates. The PI patterns inOC are
used fors-a-0 faults.

As before, we simulate the pattern setsOC andSA1. The redun-
dancy detection relies on the simulation results of the correspond-
ing PI pattern for a particular fault. For each fanin of the first level
AND gates, we check the simulation result along the path to the
POs. If there exists an AND or OR gate on the path where the side
input have the controlling value of the gate, then this gate will pre-
vent any fault effect from propagating forward. Therefore, the cor-
responding fault is untestable. The particular fanin can then be set
to constant and removed.

The following equalities show the order in which the redundan-
cies are discovered and the corresponding reductions:

.
Clearly, the Reduction rules (a) to (c) that are used in algebraic fac-
torization can reduce the number of PI patterns needed for redun-
dancy removal.

5. Experimental Results

We have implemented our method in C on a Sun Sparc 5 and
have run the program on a set ofIWLS’91 benchmark circuits. The
circuits derived from our program are compared with the original
circuits by using theverify command in SIS 1.2. We compare our
results with the best results of the three SIS scripts:rugged, bool-
ean and algebraic. To make fair comparisons, we also run
red_removal in SIS after the completion of the scripts to remove
all redundant wires in circuits generated by SIS. InTable 2, the
first column lists the names of the circuits (the known arithmetic
circuits are in bold face) and the second column (I/O) lists the
number of PIs and POs. The third and forth columns list the results
before the technology mapping stage. In each column we show the
number of literals of the circuits in 2-input AND/OR gates(lits)
and the CPU time for the results(time). The run time in our results
includes the time to generate the OFDDs and to extract all cubes.

To realistically measure the results, we use the SISmap com-
mand for technology mapping. We use the cell librarymcnc.genlib
that has (1)2-input XOR/XNOR gates, (2)2-input AND/OR gates,
(3) NAND/NOR gates of up to four inputs, and (4) four complex
cells such asAOI22. Columns 5 and 6 ofTable 2 list the gate count
(gates) and literal count(lits) of circuits after technology mapping.
The columnimprove%lits shows the percentage improvement (or
loss) of the mapped circuits when comparing our results with the
SIS results.

As part of our on-going research, we have also run the power
estimation for these circuits using SIS commandpower_estimate
with default options. The percentage improvement (or loss) in
power dissipation is listed in columnimprove%power.

The last two rows show the summation where the rowTotal
arith. is the sum of all arithmetic circuits and the last row is the
sum of all the circuits. The columns of improvements in these two
rows are the average improvements.

The experimental results generally support our observations
that XOR gates can be used to reduce circuit size in a more con-
structive way than the conventional synthesis methods do. Note
that some of the circuits are not listed as arithmetic functions [22]
and we do not know the functionality of these circuits.

6. Conclusions

In this paper we have proposed a method for multilevel logic
synthesis which is suited for arithmetic functions or any functions
with managable sizes of the FPRM forms. We have utilized the ini-
tial specifications of such arithmetic functions as adders and multi-

B C⊕( ) BC⊕ B C⊕( ) BC+ B C+( ) BC+ B C+= = =

pliers, by directly synthesizing the FPRM forms of Boolean
functions. Algebraic factorization of the FPRM forms are much
simpler then the factorization of SOP forms for arithmetic func-
tions. Properties derived for the XOR gates are used to identify
redundancies without test pattern generation. Our method is funda-
mentally different from conventional synthesis methods that are
based on SOP forms. This leads to solutions in different search
space and can be used to complement the weak points in the con-
ventional synthesis methods. Our method is particularly useful for
adders, multipliers, error checking circuits and functions related to
coding theory. Preliminary results show a good percentage
improvement as compared to SIS. We also note that our synthesis
method produces irredundant networks with a complete test pat-
tern set for single stuck-at faults.

The algebraic factorization and PI pattern set need further
improvement to synthesize large, multioutput functions more effi-
ciently. Other characteristics, such as power dissipation and delay,
of the synthesized circuits will also differ from the results of con-
ventional synthesis methods and need to be analyzed..
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Table 2 Test results before and after Technology Mapping

SIS Ours SIS Ours improve improve

Circuit I/O lits time lits time gates lits gates lits %lits %power
5xp1 7/10 213 6.7 181 5.21 78 207 66 161 22 16
9sym 9/1 414 14.5 156 2.45 139 372 64 146 61 57
adr4 8/5 62 1.8 48 0.45 28 59 23 48 19 31
add6 12/7 114 3.2 76 0.91 48 106 44 82 23 42

addm4 9/8 700 465.0 588 42.22 221 573 224 539 6 13
bcd-div3 4/4 52 0.9 52 0.43 20 51 22 54 -6 -1

cc 21/20 84 2.8 84 2.68 44 89 42 88 1 3
co14 14/1 128 5.8 88 2.73 50 118 50 98 17 14

cm163a 16/5 74 2.2 66 1.33 28 65 30 68 -5 13
cm82a 5/3 34 0.6 28 0.5 14 31 16 32 -3 29
cm85a 11/3 80 1.7 84 1.48 33 77 41 84 -9 1
cmb 16/4 86 2.2 37 0.22 32 83 17 50 40 35
f2 4/4 36 1.2 34 0.73 16 40 16 34 15 12

f51m 8/8 187 8.6 137 2.71 66 160 63 132 17 27
frg1 28/3 183 7.9 146 56.8 82 192 57 141 27 44
i1 25/13 70 2.1 61 1.9 33 73 34 69 5 3
i3 132/6 252 7.7 260 8.41 58 184 90 224 -22 24
i4 192/6 436 13.9 448 67.9 114 380 145 384 -1 7
i5 133/66 264 9.5 264 28.33 165 330 165 330 0 0

m181 15/9 148 5.1 148 5.17 54 144 56 162 -13 -4
majority 5/1 18 0.4 16 0.21 8 17 7 16 6 14

misg 56/23 138 4.4 100 6.11 52 132 41 95 28 27
mish 94/34 180 4.6 143 2.31 63 153 64 157 -3 0
mlp4 8/8 534 19.3 452 12.72 176 503 171 411 18 21

my_adder 33/17 336 6.9 224 13.04 111 290 113 226 22 38
parity 16/1 90 1.2 90 0.28 15 60 15 60 0 0
pcle 19/9 110 2.5 96 2.09 50 121 44 92 24 26

pcler8 27/17 156 4.8 135 5.12 73 153 73 137 10 4
pm1 16/13 69 2.8 65 1.44 33 67 39 73 -9 2
radd 8/5 64 2.7 48 0.41 26 58 25 52 10 41
rd53 5/3 52 2.0 50 0.33 24 53 25 50 6 0
rd73 7/3 108 9.3 90 0.87 46 103 41 88 15 9
rd84 8/4 256 97.2 138 1.11 83 225 66 137 39 38
shift 19/16 398 6.6 306 16.36 114 313 86 307 2 -8
sqr6 6/12 212 4.2 217 4.05 72 194 82 223 -15 1

squar5 5/8 92 2.7 104 0.90 37 92 46 104 -13 5
sym10 10/1 430 711.1 176 4.53 133 350 78 179 49 59
t481 16/1 474 1372.4 50 0.69 190 438 23 48 89 85
tcon 17/16 48 1.3 48 0.28 17 73 17 73 0 0

xor10 10/1 54 1692.1 54 0.56 9 36 9 36 0 0
z4ml 7/4 48 1.7 42 1.05 25 50 21 42 16 11

Total arith 4804 4435.6 3243 103.55 1667 4282 1343 3112 17.3 22.4
Total all 7484 4513.6 5630 307.02 2680 6815 2351 5532 11.9 18.0
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