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Abstract In this contribution dully automatic behavioral model genera-
tion algorithm for nonlinear analog circuits pesented. The
A fully automatic method for generating behavioral models for concept ofthis method is shown in Figure 1. Modelse gener-
nonlinear analog circuits is presented. This method is based oratedfor the input/output behavior of @malog circuit with re-
simplifications of thesystem of nonlinear differential equations spect to the DC-transfer (DT) characteristic and sevieeal
which is derived from a transistor level netlist. Generated models quencyresponses at different operating points (multiple AC). A

include nonlineadynamic behavior. Thegrecomposed ofym- SPICEnetlist of the circuit is taken as input. Therresponding

bolic equations comprising circuit parametefsccuracy and  system of nonlinear differential equationsbisilt up symbolical-

simulation speed-up are shown by several examples. ly using appropriate model equations for all circuit elements (e.g.
Gummel-Poon model for bipolétansistors). This system is ma-

1 Introduction nipulated and simplified preserving desirgcturacywithin the

) . . operating conditions. Derived models ammposed of symbolic
The need to simulate large and complex mixed-sigystems  equations comprising circuit parameters. The simplification steps
has prompted the development of high-level circuit representa-are controlled by an efficient error estimation algorithm. The
tions for analog components. These behavioral models capturgyroposed algorithm drastically redudee number of terms and

certain functional properties without using specific internal re- yriables. Thereby, simulation time decreases significa@ty-

lished to generate high level descriptidas analog circuits [1]. are suited for transient simulations.
Macromodelsare built upfrom SPICEprimitives like controlled The remainder of this paper is organized as follows. In Chapter
sources to describe circuit behavior. The well-kndayle op- 2 the behavioramodel generation algorithm is present&dl-

erational amplifier macromodel [2] is an excellent example for |owing, in Chapter 3 the feasibility ¢his approach is demon-

this type of modeling. Witlthe availability ofanalog hardware  gtrated by several benchmark circuits. Finasigme concluding
description languages (AHDLs) a second modeling method hasiemarks are given in Chapter 4.

been introduced. Systems of differential equatiarss used to
describe desired behavior. These modelsarmally referred to : :
as behavioral models. They allow efficient behavioral descrip- 2 Behavioral Model Generation

tion; onanyle;ve[ ofaccuracy. Adeep insight into nonlinear .dy- 21 Algorithm

namic behavior is necessary fbe development of a behavioral

model. Thus, behavioral modeling for nonlinear analog circuits is  In Figure 2 the behaviorahodel generation algorithm is pre-
still a manual task. Up toaow, automatic methods have been sented. For each simplification step the fundamental operation is
proposedonly for linear circuits.They include state space ap- printed in italics.

proaches [3, 4], symbolic analysis in conjunctieith several The modified nodal approach (MNA) is used to construct the
simplifications techniques [5] and model order reduction by mo- system of symbolic circuit equations [Fhis results in aystem
ment matching methodike AWE [6]. Optimization is used to  of n time-invariant differential equations

improve manually generateihear and nonlinear behavioral fx % @) =

models [7, 8]. (x.%,€)=0. @

Construct symbolic circuit equations using MNA
Transformations by substitutions
Construction of symbolic for all variab[es using vgriable rankiadg
circuit equa[ions Delete a” time derlvatlveS
T for all variables using variable rankiadg
Calculate mean value based on DT characteristic

Behavioral Model Generator

SPICE netlist —|

Element models -

Parameters —— | ¢ fr%ngg::fclzagf:ng;s L, i’%’mgﬂ,‘gu"gﬂe' Set variable to mean value
- Accuracy behavior Expand all equations into sum of product form
- Input and output for all terms using term ordeio
- DC-transfer range . .
- DC paints of AC analyses if estimate error = truthen
- Frequency range Delete term

for all nonlinear terms using term ordiy
if estimate error = truthen
Linearize term about mean value of variables
for all new terms using term orddo
if estimate error = truthen
Delete term
Transformations by substitutions

Figure 1: Concept of behavioral model generation

Figure 2: Behavioral model generation algorithm

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room useis granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copyingis
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or afee.
DAC 96 - 06/96 Las Vegas, NV, USA 01996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50



Here,x = x(t) is the vector of n independent circuit variables at
time t. Thevector x represents the time derivativesxofSince
in this contributiononly single-input/single-output systems are
considered e = e(t) is the input.

The first simplification stefnvolves transformations on (1). If
an equation can be solved explicitly for a variathle variable
can be substituted and the equation itself caneb@vedfrom
the system. Inhis way, e.g. variables which correspond dor-
rents through voltage sources are eliminated. sentedor the system of nonlinear algebraic equatig(s, ) =0

The second simplificatiostepinvolvesthe elimination of all ~ which has been obtainéwbm (1) bysetting all timederivatives
time derivatives of each variable if the AC error (see Chapter Of X to zero.

2.2) is not exceeded. Normallynly few variables determine the
dynamic behavior ahe circuit. In this case, theystem of equa-
tions can be simplified drastically. A special variable ranking is
used to obtain an appropriate order in which variahtegproc-
essed.

Next, variables are set to their mean values calculated from the
DT characteristic. This step aims at those variabtesespond-
ing to nodes of the circuit whichre usedor bias purposes.
Since these variables are koiown a prioriall variables are set
to their mean values whenever the maximum allowed error is not
exceeded. The variable ranking mentioned above is used again.

Following, all equations are expanded into sum pobduct
form. All further simplification steps are performed on individual
terms of these equations. An error estimation algorithm (see
Chapter 2.2) is used to decide whether a particular operation is
allowed or not. Terms are processed in the order of increasing
standard deviations calculatdcom the DT characteristic to
achieve maximum reductiorFirst, terms arecompletely re-
moved fromtheir equations. Next, all nonlinear terms &ne-
arized about the mean values of their variables. Since lineariza-
tion mayincrease the overall number of terms a second term de-
letion stepfollows for all new terms. Finally, transformations by
substitutions (seabove)are performed on theystem of equa-
tions again.

k+1)

©)

ool <laoa] - or [ xt<pe -x7,

where [l denotes an appropriate vector norm.

The DT error estimation algorithm is based on finet that
only one variabldthe output x,) of x defines the input/output
behavior. The solution ddll other variables is arbitrary desng
as convergence is achieved. In Figur¢h8 algorithm is pre-

for n points of DT characteristio
Calculate 2 Newton iterationg®(from DT characteristic)

Calculate|dxim| =|xim - xin;l| , "dxi" =||xi —xH" and ||g'||
if |dxfﬂ|2 2|dxﬁ1| and ||dx1||2||dx2|| and "91"2”92" then
Calculate new estimated DT point:= x + dx* +dx?
else if|dx§n|2|dxﬁ1| then
Calculate DT characteristic by exact DT analysis
break
else
return ( false )
if DT errore < maximum allowed errothen
return ( true )

else
return ( false )

Figure 3: DT error estimation algorithm

The algorithm is based on eonvergence check using (3)
which is performed after two Newton iterations have bescu-
lated. If no outputonvergence is detectélde algorithm termi-
nates immediately. Thisnay happen if the Jacobian is singular
or if the system solution changes significantly. If quadratic output
convergencand convergence odll other variables arachieved
it can be expectethat the simplification of theystem of equa-
tions has littlenfluence on the solution. If outpabnvergence is
detected, but theonvergenceate is slow, an examination by an

2.2 Error Estimation

All operations to simplify a system of equations will result in a
certain change dhe input/output behavior. An error prediction
algorithm is necessary to decide whether a simplificatidh
exceed the maximum error allowed. Generally, a toresuming

exact calculation using DT and multiple AC simulations to of the solution is impossiblor this case. During error estima-

exact DT analysis is carried out because in general the prediction

obtain the DT characteristic aricequency responses should be tjon a new estimated DT solution is calculated which is used as

avoided because dfie high number of simplification operations  starting pointfor the next error estimation. Due to thaet that
thathave to be performed. Thus, a special DT error estimationthe estimated DT solutiomayfail even if quadraticonvergence

algorithm has been developed. This algorithm is based on thejs achieved a periodic exact DT analysis has been implemented

Newton-Raphson method which is normallsed inSPICE-like
simulators to calculate the DT characteristic [9].

The Newton-Raphson methedes thdollowing iteration se-
qguence to calculate the solutignof a system of nonlinear alge-
braic equationg(x) = 0.

g(X) + M| QX" = x*) = 0. )

The superscript k denotes the k-th iteration. M isJdeobian
matrix ofg(x). The solution of (2) is normally carried out by LU
decomposition. Theonvergenceate ofx* towards the solution
Xs is at least quadratic if the initial starting poiftof (2) is suf-
ficiently close taxs [10]. Unfortunately, the prediction whethet
is a sufficient starting point implies thenowledge ofthe solu-
tion xs. Thus, it is impossible to predict tlkenvergence charac-
teristic of (2)for any giverstarting point. Instead, theonver-
gence of (2) is checked after each iteration using diffevemnt
vergence criteria like

to update the estimated DT solution. Thiay cause a backtrack
to undo simplification steps.

An AC error estimation is carried out followirige DT error
estimation. If the static part of tteystem of equations is not
changed by a particular simplification operataiy an ACerror
estimation is needed. Since the operating points of the multiple
AC analyses arknown fromthe DT error estimation thealcu-
lation of the frequency responsesjuires the solution @fystems
of linear equations only.

The DT and AC errors are calculated with respect todfes-
ence signals using a modified relative egor

-3

Xm IS the output variable and R = |[max(%)| - |Min(G, re)] iS
the range of the reference signal.

|X m, ref ~Xm, simJ

+R

|Xm, ref



2.3 Implementation A DT error ofe = 0.45% and an AC error ef= 2.3%have been

achieved.

The behavioral model generation algorithm has been imple-
mented using a symbolic compuédgebra package. All equation difpair DT o
manipulation steps mentionathoveare performed symbolically
resulting in a behavioral model which consistsyhbolic equa- %
tions. Numerical calculations based on the circuit pararmater a
ues are used during all decision steps like error estim&ince 1]
numerical calculations are usualslow in symbolic algebra 9
packageghe analog simulator Sabér[11] was chosen to per- 3:
form all DT and ACanalyses. In principlesvery analog simula- 6]
tor which incorporates aAHDL to describe arbitrary systems of 7
differential equations can be used for this task. 3,

To overcome convergence problems whighy arise during 2
the analysis of theystem of equations spec@nvergencaids T 00O
areautomatically inserted intthe AHDL description of the be- 250m -200m -150m -100m EOm 0 50m 100m 150m 200m 250m A(spvvin)(V)
havioral model. For a system of equations containing strong 0 vt W reference 7 @Omodel ©

linearities like exponentiaiunctions an efficient control of the
iteration step size of thé&lewton algorithm is necessary to
achieve convergence [9]. Therefotke system of equations is
reformulated forthe analysis task. Differences of variables are diffpar: AC
introduced as additional dependent variables. dftaéce of suit-
able variable differences is derivédm the structure of the
original circuit. For instance, in circuits containing bipolar tran-
sistors or diodesvery voltage across a pn-junctioruged as an
additional dependent variable in the reformulamdtem of
equations. These variables are subject eaton step limita-
tion which is provided by Sabér

Figure 4: DT simulation results of differential pair

3 Examples

A differential pair consisting ofour bipolar transistors has P W 0K a0k imeg  dmeg  lomeg dmeg  100meg i)
been chosen to demonstrdite behavioramodel generation in MAGH : tti2) (tyeforence ——  (model - -
detail. The bipolar transistors are described usingdhmmel- ) ] ) ] ] ) )
Poontransistor model [12]. The behavioral model is generated Figure 5: AC simulation results of differential pair

for the DT range of the inpwbltage vin from -0.25V to 0.25V

and one AC analysis at vin = OV. The maximum allowed DT and  Figure 6 showshe transient analysis of the behaviaraidel

AC error is each set to 2.5%. compared tdhe original circuit. A500kHz sine with an ampli-
Table 1 showsthe results of the simplification steps (see tude of 0.15V is used as input signal. Since the behavioral

Figure 2). The number of terms is obtairfesm the expanded modeling principle is based on simplifications of circuit equa-

equations, static terms include no time derivatives. tions the resulting behavioraiodel includes nonlineatynamic

behavior although thmodel generation itself isolely based on

DT and AC operating conditions.

Termg Linear Nonlinea
Step Var's| Total| StatiDyn. | Statig Dyn. pr—
Original 16 288 | 98 | 30 | 32 | 128 o
Transformationd 11 241 76| 27 26 11p i3
Derivatives 11 | 142 | 76 | 8 26 | 32 a
Set to mean 9 111 52 8 19 32 107
Delete terms 8 30 | 17] 0 6 7 1y
Linearize terms] 8 33 21| 4 5 3 8
Delete terms 8 29 | 21| 1 5 | 2 o
Transformationd 4 18 10| 1 5 2 4
.
Table 1: Model generation results of differential pair 7] \ \
I N~ N
(o) T T T T T T T T T
0 500n 1u 15u 2u 25u 3u 35u 4u 4.5u 5u (s
In this example the number of variables has been reduced by 409 (yefererce ——  (Jmodel - - ©

factor of 4,the number of terms byfactor of16. Overall, 124

error estimations have been carried out. 109 times (88%) the er-  Figure 6: Transient simulation results of differential pair

ror estimation algorithm successfully decided whether a simplifi-

cation operation is allowed (83 times) or not (26 times). Exact Table 2 shows behavioral model generatiesults of other

DT analyses were necessary for the remaining 12%. benchmark circuits. Circuits and nonlinear element models are
The simulation results of DT and AC analysis sinewn in the takenfrom [12]. All behavioral modelare generated using ap-

next two figures wherethe output of the original circuit propriate DT and AC operating conditions. The maximum al-

(reference) is compared toat of the behaviorahodel (model). lowed DT and AC error is each set to 5%.



Circuit Behavioral Model 100% 7 . .
Variables | Terms | Variables Termg 80% % 7 % % 7 %
rilinv 10 92 |4 16 60% % . % % / %
ccsor 12 95 3 9 zzlgz;o % ; % % ; %
diffpair |16 182 |4 15 Wi AR AR RRARN
eclgate | 20 433 5 20 L L e o @ o o~
rca3040 | 21 740 7 38 £ 32 g8 £ 35 T =8 8 R
ua733 26 205 5 18 e 5 3 g = = = =
ua709 28 1044 16 55
ua741 29 1409 18 61 Figure 9: Simplification operations without DT analysis
ua727 39 1564 15 63

Table 2: Model generation results of benchmark circuits 4 Conclusion

. . o A fully automatic algorithm for symbolic behavioral model
Rgducthn factors of terms and varlab&resh.own in Figure generation has been presented. The algorithm starts veigs-a
7. Simulation speed-up factors file DT analysis are presented tem of circuit equations which tuilt up from atransistor level
in Figure 8. netlist using accuratphysical element models. This system is
successively simplified using an efficient error estimatityo-
rithm. Derived models include nonlinedynamic circuit behav-

2 7 7 % 0o ior. The proposed method has been examined using several
520 % 7 7 % % 8 5 benchmark circuits. High reduction factors thie number of
515 % % % % % 6 g terms and variables have been achieved. This results in a large
“é 10 i ;% /% é g é é é 4 w“é simulation speed-up of the behavioral models.
Sl 0l OOl 00 O 7 =5
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