
Equation-Based Behavioral Model Generation for Nonlinear Analog Circuits

Carsten Borchers, Lars Hedrich and Erich Barke

Institute of Microelectronic Systems, University of Hanover, 30167 Hanover, Germany
Email: borchers@ims.uni-hannover.de

Abstract
A fully automatic method for generating behavioral models for

nonlinear analog circuits is presented. This method is based on
simplifications of the system of nonlinear differential equations
which is derived from a transistor level netlist. Generated models
include nonlinear dynamic behavior. They are composed of sym-
bolic equations comprising circuit parameters. Accuracy and
simulation speed-up are shown by several examples.

1 Introduction
The need to simulate large and complex mixed-signal systems

has prompted the development of high-level circuit representa-
tions for analog components. These behavioral models capture
certain functional properties without using specific internal re-
presentations. Two different modeling methods have been estab-
lished to generate high level descriptions for analog circuits [1].
Macromodels are built up from SPICE primitives like controlled
sources to describe circuit behavior. The well-known Boyle op-
erational amplifier macromodel [2] is an excellent example for
this type of modeling. With the availability of analog hardware
description languages (AHDLs) a second modeling method has
been introduced. Systems of differential equations are used to
describe desired behavior. These models are normally referred to
as behavioral models. They allow efficient behavioral descrip-
tions on any level of accuracy. A deep insight into nonlinear dy-
namic behavior is necessary for the development of a behavioral
model. Thus, behavioral modeling for nonlinear analog circuits is
still a manual task. Up to now, automatic methods have been
proposed only for linear circuits. They include state space ap-
proaches [3, 4], symbolic analysis in conjunction with several
simplifications techniques [5] and model order reduction by mo-
ment matching methods like AWE [6]. Optimization is used to
improve manually generated linear and nonlinear behavioral
models [7, 8].

In this contribution a fully automatic behavioral model genera-
tion algorithm for nonlinear analog circuits is presented. The
concept of this method is shown in Figure 1. Models are gener-
ated for the input/output behavior of an analog circuit with re-
spect to the DC-transfer (DT) characteristic and several fre-
quency responses at different operating points (multiple AC). A
SPICE netlist of the circuit is taken as input. The corresponding
system of nonlinear differential equations is built up symbolical-
ly using appropriate model equations for all circuit elements (e.g.
Gummel-Poon model for bipolar transistors). This system is ma-
nipulated and simplified preserving desired accuracy within the
operating conditions. Derived models are composed of symbolic
equations comprising circuit parameters. The simplification steps
are controlled by an efficient error estimation algorithm. The
proposed algorithm drastically reduces the number of terms and
variables. Thereby, simulation time decreases significantly. Gen-
erated models include nonlinear dynamic behavior. Thus, they
are suited for transient simulations.

The remainder of this paper is organized as follows. In Chapter
2 the behavioral model generation algorithm is presented. Fol-
lowing, in Chapter 3 the feasibility of this approach is demon-
strated by several benchmark circuits. Finally, some concluding
remarks are given in Chapter 4.

2 Behavioral Model Generation

2.1 Algorithm
In Figure 2 the behavioral model generation algorithm is pre-

sented. For each simplification step the fundamental operation is
printed in italics.

The modified nodal approach (MNA) is used to construct the
system of symbolic circuit equations [9]. This results in a system
of n time-invariant differential equations

f x, x, 0(&)e = . (1)

Behavioral Model Generator

SPICE netlist

Element models

Symbolic model
of input/output
behavior

Construction of symbolic
circuit equations

Simplification of
symbolic equationsParameters

 - Accuracy
 - Input and output
 - DC-transfer range
 - DC points of AC analyses
 - Frequency range

Figure 1: Concept of behavioral model generation

Construct symbolic circuit equations using MNA
Transformations by substitutions
for all variables using variable ranking do

Delete all time derivatives
for all variables using variable ranking do

Calculate mean value based on DT characteristic
Set variable to mean value

Expand all equations into sum of product form
for all terms using term order do

if estimate error = true then
Delete term

for all nonlinear terms using term order do
if estimate error = true then

Linearize term about mean value of variables
for all new terms using term order do

if estimate error = true then
Delete term

Transformations by substitutions

Figure 2: Behavioral model generation algorithm
33rd Design Automation Conference

Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

Here, x = x(t) is the vector of n independent circuit variables at
time t. The vector &x represents the time derivatives of x. Since
in this contribution only single-input/single-output systems are
considered e = e(t) is the input.

The first simplification step involves transformations on (1). If
an equation can be solved explicitly for a variable the variable
can be substituted and the equation itself can be removed from
the system. In this way, e.g. variables which correspond to cur-
rents through voltage sources are eliminated.

The second simplification step involves the elimination of all
time derivatives of each variable if the AC error (see Chapter
2.2) is not exceeded. Normally, only few variables determine the
dynamic behavior of the circuit. In this case, the system of equa-
tions can be simplified drastically. A special variable ranking is
used to obtain an appropriate order in which variables are proc-
essed.

Next, variables are set to their mean values calculated from the
DT characteristic. This step aims at those variables correspond-
ing to nodes of the circuit which are used for bias purposes.
Since these variables are not known a priori all variables are set
to their mean values whenever the maximum allowed error is not
exceeded. The variable ranking mentioned above is used again.

Following, all equations are expanded into sum of product
form. All further simplification steps are performed on individual
terms of these equations. An error estimation algorithm (see
Chapter 2.2) is used to decide whether a particular operation is
allowed or not. Terms are processed in the order of increasing
standard deviations calculated from the DT characteristic to
achieve maximum reduction. First, terms are completely re-
moved from their equations. Next, all nonlinear terms are line-
arized about the mean values of their variables. Since lineariza-
tion may increase the overall number of terms a second term de-
letion step follows for all new terms. Finally, transformations by
substitutions (see above) are performed on the system of equa-
tions again.

2.2 Error Estimation

All operations to simplify a system of equations will result in a
certain change of the input/output behavior. An error prediction
algorithm is necessary to decide whether a simplification will
exceed the maximum error allowed. Generally, a time consuming
exact calculation using DT and multiple AC simulations to
obtain the DT characteristic and frequency responses should be
avoided because of the high number of simplification operations
that have to be performed. Thus, a special DT error estimation
algorithm has been developed. This algorithm is based on the
Newton-Raphson method which is normally used in SPICE-like
simulators to calculate the DT characteristic [9].

The Newton-Raphson method uses the following iteration se-
quence to calculate the solution xs of a system of nonlinear alge-
braic equations g(x) = 0.

g x x x 0x() ()k k kM k+ ⋅ − =+1 . (2)

The superscript k denotes the k-th iteration. M is the Jacobian
matrix of g(x). The solution of (2) is normally carried out by LU
decomposition. The convergence rate of xk towards the solution
xs is at least quadratic if the initial starting point x0 of (2) is suf-
ficiently close to xs [10]. Unfortunately, the prediction whether x0

is a sufficient starting point implies the knowledge of the solu-
tion xs. Thus, it is impossible to predict the convergence charac-
teristic of (2) for any given starting point. Instead, the conver-
gence of (2) is checked after each iteration using different con-
vergence criteria like

g x g x() ()k k+ <1 or x x x xk k k k+ −− < −1 1 , (3)

where ⋅ denotes an appropriate vector norm.

The DT error estimation algorithm is based on the fact that
only one variable (the output x m) of x defines the input/output
behavior. The solution of all other variables is arbitrary as long
as convergence is achieved. In Figure 3 the algorithm is pre-
sented for the system of nonlinear algebraic equations g(x, e) = 0
which has been obtained from (1) by setting all time derivatives
of x to zero.

for n points of DT characteristic do
Calculate 2 Newton iterations (x0 from DT characteristic)

Calculate dx x xm
i

m
i

m
i= − −1 , dx x xi i i= − −1 and g i

if dx dxm m
1 2 2≥ and dx dx1 2≥ and g g1 2≥ then

Calculate new estimated DT point: x x dx dx= + +1 2

else if dx dxm m
1 2≥ then

Calculate DT characteristic by exact DT analysis
break

else
return (false)

if DT error ε < maximum allowed error then
return (true)

else
return (false)

Figure 3: DT error estimation algorithm

The algorithm is based on a convergence check using (3)
which is performed after two Newton iterations have been calcu-
lated. If no output convergence is detected the algorithm termi-
nates immediately. This may happen if the Jacobian is singular
or if the system solution changes significantly. If quadratic output
convergence and convergence of all other variables are achieved
it can be expected that the simplification of the system of equa-
tions has little influence on the solution. If output convergence is
detected, but the convergence rate is slow, an examination by an
exact DT analysis is carried out because in general the prediction
of the solution is impossible for this case. During error estima-
tion a new estimated DT solution is calculated which is used as
starting point for the next error estimation. Due to the fact that
the estimated DT solution may fail even if quadratic convergence
is achieved a periodic exact DT analysis has been implemented
to update the estimated DT solution. This may cause a backtrack
to undo simplification steps.

An AC error estimation is carried out following the DT error
estimation. If the static part of the system of equations is not
changed by a particular simplification operation only an AC error
estimation is needed. Since the operating points of the multiple
AC analyses are known from the DT error estimation the calcu-
lation of the frequency responses requires the solution of systems
of linear equations only.

The DT and AC errors are calculated with respect to the refer-
ence signals using a modified relative error ε.

ε =
−

+∑
x x

x R

m ref m simp

m ref

, ,

,

,

xm is the output variable and R = |max(xm, ref)| - |min(xm, ref)| is
the range of the reference signal.

2.3 Implementation
The behavioral model generation algorithm has been imple-

mented using a symbolic computer algebra package. All equation
manipulation steps mentioned above are performed symbolically
resulting in a behavioral model which consists of symbolic equa-
tions. Numerical calculations based on the circuit parameter val-
ues are used during all decision steps like error estimation. Since
numerical calculations are usually slow in symbolic algebra
packages the analog simulator Saber [11] was chosen to per-
form all DT and AC analyses. In principle, every analog simula-
tor which incorporates an AHDL to describe arbitrary systems of
differential equations can be used for this task.

To overcome convergence problems which may arise during
the analysis of the system of equations special convergence aids
are automatically inserted into the AHDL description of the be-
havioral model. For a system of equations containing strong non-
linearities like exponential functions an efficient control of the
iteration step size of the Newton algorithm is necessary to
achieve convergence [9]. Therefore, the system of equations is
reformulated for the analysis task. Differences of variables are
introduced as additional dependent variables. The choice of suit-
able variable differences is derived from the structure of the
original circuit. For instance, in circuits containing bipolar tran-
sistors or diodes every voltage across a pn-junction is used as an
additional dependent variable in the reformulated system of
equations. These variables are subject to a Newton step limita-
tion which is provided by Saber.

3 Examples
A differential pair consisting of four bipolar transistors has

been chosen to demonstrate the behavioral model generation in
detail. The bipolar transistors are described using the Gummel-
Poon transistor model [12]. The behavioral model is generated
for the DT range of the input voltage vin from -0.25V to 0.25V
and one AC analysis at vin = 0V. The maximum allowed DT and
AC error is each set to 2.5%.

Table 1 shows the results of the simplification steps (see
Figure 2). The number of terms is obtained from the expanded
equations, static terms include no time derivatives.

In this example the number of variables has been reduced by a
factor of 4, the number of terms by a factor of 16. Overall, 124
error estimations have been carried out. 109 times (88%) the er-
ror estimation algorithm successfully decided whether a simplifi-
cation operation is allowed (83 times) or not (26 times). Exact
DT analyses were necessary for the remaining 12%.

The simulation results of DT and AC analysis are shown in the
next two figures where the output of the original circuit
(reference) is compared to that of the behavioral model (model).

A DT error of ε = 0.45% and an AC error of ε = 2.3% have been
achieved.

diffpair: DT characteristic

 (-) : /v(spv.vin)(V) (1) reference (2)model
-250m -200m -150m -100m -50m 0 50m 100m 150m 200m 250m /v(spv.vin)(V)
0
1
2
3
4
5
6
7
8
9

10
11
12
13

 (-)

Figure 4: DT simulation results of differential pair

diffpair: AC characteristic

MAG(-) : f(Hz) (1)reference (2)model
10k 30k 100k 300k 1meg 3meg 10meg 30meg 100meg f(Hz)

-10

0

10

20

30

40

50

60

70

80

90
MAG(-)

Figure 5: AC simulation results of differential pair

Figure 6 shows the transient analysis of the behavioral model
compared to the original circuit. A 500kHz sine with an ampli-
tude of 0.15V is used as input signal. Since the behavioral
modeling principle is based on simplifications of circuit equa-
tions the resulting behavioral model includes nonlinear dynamic
behavior although the model generation itself is solely based on
DT and AC operating conditions.

diffpair: TR characteristic

 (-) : t(s) (1)reference (2)model
0 500n 1u 1.5u 2u 2.5u 3u 3.5u 4u 4.5u 5u t(s)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

 (-)

Figure 6: Transient simulation results of differential pair

Table 2 shows behavioral model generation results of other
benchmark circuits. Circuits and nonlinear element models are
taken from [12]. All behavioral models are generated using ap-
propriate DT and AC operating conditions. The maximum al-
lowed DT and AC error is each set to 5%.

Terms Linear Nonlinear
Step Var’s Total StaticDyn. Static Dyn.
Original 16 288 98 30 32 128
Transformations 11 241 76 27 26 112
Derivatives 11 142 76 8 26 32
Set to mean 9 111 52 8 19 32
Delete terms 8 30 17 0 6 7
Linearize terms 8 33 21 4 5 3
Delete terms 8 29 21 1 5 2
Transformations 4 18 10 1 5 2

Table 1: Model generation results of differential pair

Reduction factors of terms and variables are shown in Figure
7. Simulation speed-up factors for the DT analysis are presented
in Figure 8.

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

rt
lin

v

cc
so

r

di
ffp

ai
r

ec
lg

at
e

rc
a3

04
0

ua
73

3

ua
70

9

ua
74

1

ua
72

7

Te
rm

re
du

ct
io

n
fa

ct
or

V
ar

ia
bl

e
re

du
ct

io
n

fa
ct

or

0

5

10

15

20

0

2

4

6

8

10

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

25

AAA
AAA
AAA
AAA
AAA
AAA

Figure 7: Reduction of variables and terms

rt
lin

v

cc
so

r

di
ffp

ai
r

ec
lg

at
e

rc
a3

04
0

ua
73

3

ua
70

9

ua
74

1

ua
72

7

D
T

sp
ee

d-
up

 fa
ct

or

0

2

4

6

8

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

10

Figure 8: DT simulation speed-up

Obviously, only a small part of the circuit determines its be-
havior. Higher term reduction factors are achieved for larger cir-
cuits since they normally contain more parts which have no influ-
ence on their input/output behavior. The variable reduction factor
decreases with increasing size of the behavioral model because
less transformations by substitutions can be performed on the
system of equations. The results show that simulation speed-up
is mainly determined by the term reduction factor. Summarizing,
large reduction of terms and variables results in a high simula-
tion speed-up. The construction of behavioral models that only
include terms which determine the input/output behavior seems
to be very efficient since this can be fully automated.

Finally, in Figure 9 the overall performance of the error esti-
mation algorithm is shown. No DT analysis is necessary for a
particular simplification operation whenever the error estimation
can predict its influence on the circuit behavior. Obviously, for a
great number (average: 92%) of terms of the equations it can be
accurately predicted that they either have no influence or have
strong influence on the circuit behavior.

rt
lin

v

cc
so

r

di
ffp

ai
r

ec
lg

at
e

rc
a3

04
0

ua
73

3

ua
70

9

ua
74

1

ua
72

7

0%
20%

60%
80%

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

40%

100%

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Figure 9: Simplification operations without DT analysis

4 Conclusion
A fully automatic algorithm for symbolic behavioral model

generation has been presented. The algorithm starts with a sys-
tem of circuit equations which is built up from a transistor level
netlist using accurate physical element models. This system is
successively simplified using an efficient error estimation algo-
rithm. Derived models include nonlinear dynamic circuit behav-
ior. The proposed method has been examined using several
benchmark circuits. High reduction factors of the number of
terms and variables have been achieved. This results in a large
simulation speed-up of the behavioral models.

References
[1] I. Getreu and D. Teegarden, "An Introduction to Behav-

ioural Modelling", Microelectronics Journal, vol. 24, no. 7,
pp. 708-716, 1993

[2] G. R. Boyle, B. M. Cohn, D. O. Pederson and J. E. Solo-
mon, "Macromodeling of Integrated Circuit Operational
Amplifiers", IEEE Journal of Solid-State Circuits, vol. 9,
no. 6, pp. 353-365, 1974

[3] B. A. A. Antao and F. M. El-Turky, "Automatic Analog
Model Generation for Behavioral Simulation", Proc. Cus-
tom Integrated Circuits Conference, pp. 12.2.1-4, 1992

[4] C. Visweswariah, R. Chadha and C.-F. Chen, "Model De-
velopment and Verification for High Level Analog Blocks",
Proc. 25th Design Automation Conference, pp. 376-382,
1988

[5] G. Gielen and W. Sansen, Symbolic Analysis for Automated
Design of Analog Integrated Circuits, Kluwer Academic
Publishers, 1991

[6] V. Raghavan, R. A. Rohrer, L. T. Pillage, J. Y. Lee, J. E.
Bracken and M. M. Alaybeyi, "AWE-inspired", Proc. Cus-
tom Integrated Circuits Conference, pp. 18.1.1-8, 1993

[7] V. M. Ma, J. Singh and R. Saleh, "Modeling, Simulation
and Optimization of Analog Macromodels", Proc. Custom
Integrated Circuits Conference, pp. 12.1.1-4, 1992

[8] G. Casinovi and A. Sangiovanni-Vincentelli, "A Macro-
modeling Algorithm for Analog Circuits", IEEE Trans. on
Computer-Aided Design, vol. 10, no. 2, pp. 150-160, 1991

[9] J. Vlach and K. Singhal, Computer Methods for Circuit
Analysis and Design, Van Nostrand Reinhold, 1983

[10] H. R. Schwarz, Numerical Mathematics (in german), B. G.
Teubner, 1988

[11] Analogy Inc., Saber Reference Manual, Release 3.2,
1993

[12] L. W. Nagel, "SPICE2: A Computer Program to Simulate
Semiconductor Circuits", Memorandum No. ERL-M520,
University of California, Berkeley, 1975

Circuit Behavioral Model
Variables Terms Variables Terms

rtlinv 10 94 4 16
ccsor 12 95 3 9
diffpair 16 182 4 15
eclgate 20 433 5 20
rca3040 21 740 7 38
ua733 26 205 5 18
ua709 28 1044 16 55
ua741 29 1409 18 61
ua727 39 1564 15 63

Table 2: Model generation results of benchmark circuits

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

