
An O(n) Algorithm for Transistor Stacking with
Performance Constraints

Bulent Basaran and Rob A. Rutenbar

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract
We describe a new constraint-driven stacking algorithm for
diffusion area minimization of CMOS circuits. It employs an
Eulerian trail finding algorithm that can satisfy analog-specific
performance constraints. Our technique is superior to other
published approaches both in terms of its time complexity and in
the optimality of the stacks it produces. For a circuit with n
transistors, the time complexity is O(n). All performance
constraints are satisfied and, for a certain class of circuits,
optimum stacking is guaranteed.

1 Introduction
In the layout of custom CMOS cells,stacking is defined as merging
the diffusion regions of two or more transistors that have a common
node, e.g., series-connected transistors have one node in common
which can share a diffusion and save area. Since stacking has a dra-
matic impact on the total diffusion area and therefore on chip yield,
there has been an extensive amount of research on optimizing leaf-
cell layout through stacking. The original work of Uehara and van
Cleemput [1] first posed the problem and offered a heuristic solu-
tion for digital circuits. For this important two-row P-over-N layout
style, polynomial time algorithms were later discovered to arrange
series-parallel dual CMOS ([2] is a good survey here). When more
general aspects of the layout are to be optimized, e.g., wiring as
well as stacking, a variety of combinatorial search algorithms have
been used with success, e.g., [3].

In the analog domain, stacking is critical not only for area, but
also for circuit performance due to parasitic diffusion capacitances.
Unfortunately, the wider range of device sizes, and requirements
for device matching and symmetry render the simpler row-based
digital layout styles inadequate for analog. To address this, Cohnet
al. introduced a free form 2-D stacking strategy integrated with de-
vice placement [4]. Charbonet al. later introduced a technique to
satisfy performance constraints through constraint-driven stacking
during placement [5]. Both tools can generate high-quality layouts,
however, neither canguarantee a minimum diffusion area. More
recently, [6] introduced a new stacking style and a novel technique
to generateoptimum stacks that satisfy performance constraints, us-
ing a path partitioning algorithm. However, because it attempts to
enumerate all optimal stacks, runtime can be extremely sensitive to
the size of the problem. Symmetry and matching constraints can
greatly prune the search, but the basic algorithm has exponential
time complexity [6].

In this paper, we present a new algorithm to perform stack gen-
eration inlinear time. For a large class of circuits, our algorithm is
optimum with respect to total diffusion area and a cost function

modeling circuit performance. The cost function ensures that per-
formance constraints are, if possible, met. Device matching is also
guaranteed through symmetry and proximity constraints. The paper
is organized as follows. Section 2 describes the basic stacking strat-
egy. Section 3 explains how the circuit performance is modeled. In
Section 4, the new stack generation algorithm is presented. Some
results on industry-quality circuits are given in Section 4. Finally,
Section 5 offers some concluding remarks.

2 Basic stacking strategy
A stacking methodology is needed to model the circuit schematic in
a format appropriate for a graph algorithm to solve the layout prob-
lem effectively. Our strategy is similar to that introduced in [6] and
earlier in [4] in more general terms:

1. Divide the circuit intopartitions with respect to device type and
bias node (body node in MOS transistors).

2. Perform devicefolding: split large transistors into smaller par-
allel transistors. These are called “fingers” by designers; we re-
fer to these more generally asmodules as they are the compo-
nent pieces of our solution.

3. Perform further partitioning to reduce the variation on the mod-
ule widths in a partition,

4. Generate stacks that implement each partition.
In analog CMOS circuits, as in digital standard-library leaf-

cells, only transistors of the same type (e.g., NMOS), which share
a common well, can be stacked (i.e., their common diffusion nodes
can be merged in the layout to minimize diffusion area). In addition
in analog circuits, it is fairly common to have transistors of the same
type which require distinct body potentials, for example, to opti-
mize noise performance. Such transistors have their own isolated
wells and cannot be stacked with other transistors of the same type.
Therefore in the first step, we put such transistors in different parti-
tions. We also allow the designer to specify explicitly to have two
or more transistors in the same stack.

In the second step, large transistors are folded into fingers to
minimize the diffusion capacitances as well as to balance the aspect
ratio of the resulting module. This can either be done automatically
[6] or manually by the designer. It is important to note that, in this
stacking strategy, transistor folding is donea priori. The stack gen-
eration algorithm is given fixed-width modules as input – it does
not dynamically fold transistors. This is in contrast to tools such as
KOAN [4], in which the overall optimization loop treats stacking,
folding and placement simultaneously. Of course, such a separation
of design tasks is sub-optimal. One of our main motivations in this
paper is to devise a stacking strategy that is fast enough to be used
in the inner loop of a placement tool like KOAN.

In the third step, the partitions are examined again to account
for variations in module widths. If it is requested, modules with
widths significantly larger, or smaller, than others in a partition can
be put in a separate partition. This will result in a better utilization
of space, but it will have suboptimal diffusion sharing. If such a par-
titioning is not acceptable for performance reasons, this step may be

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

skipped.
In the fourth step, the stack generation algorithm (Section 4)

operates on each circuit partition separately. We note that a pair of
phases before and after the stacking algorithm may handle special
patterns required by some analog circuits: module interleaving (i.e.,
common-centroid or inter-digitated device pairs); devices with ra-
tio constraints to obtain precise current ratios (e.g., current mirrors)
[6]; multi-fingered devices with proximity constraints [7].

3 Modeling performance constraints
During stack generation, it is required that certain performance
specifications are considered and, if possible, met. The input to the
stack generation algorithm (Section 4) is a cost function based on
criticality weights on circuit nodes andsymmetry constraints on the
devices. In this section, we will briefly review how these parame-
ters are obtained from performance specifications. Our approach
follows [8] and [9].

The process of translating high-level circuit performance spec-
ifications into bounds on low-level layout parameters is calledcon-
straint generation. This process is traditionally done manually by
circuit designers. Recently, techniques have been proposed to auto-
mate this process using sensitivity analysis [8].

Constraint generation starts with small signal sensitivity analy-
sis of performance functions at the nominal operating point. Perfor-
mance constraints are defined as maximum allowed variations of
the performance functions around the nominal operating point.
These constraints can be mapped toparasitic capacitance con-
straintson certain nodes andmatching constraints on devices. The
parasitic capacitance constraints, together with bounds on estimat-
ed parasitic capacitances, can further be translated intocriticality
weights, denotedw, on nodes. The tighter the constraints, the closer
the minimum allowed performance to the estimated nominal value,
the higher the weights. A cost function evaluating a stacking solu-
tion is introduced in [6] that minimizes the parasitic capacitance of
critical nodes. We will use the same cost function to guide our stack
generation algorithm. It is shown in Eq. (1) for the sake of com-
pleteness.

(1)

Here, the summation is carried over all diffusion regions in the
stacks.w(diff) denotes the criticality weight on the node that corre-
sponds todiff. k(diff) is 1 ifdiff is a merged diffusion in the stacking.
Otherwise it is given byCext/Cint whereCext andCint ()
are the capacitances of an unmerged (external) and a merged (inter-
nal) diffusion, respectively. Note that whenw is 1, the cost function
minimizes only the total diffusion area.w is an effective way of pri-
oritizing critical nodes during stacking.

Matching constraints are translated into symmetry constraints
on devices and wiring and also to device proximity constraints. In
order to match devices, our stack generation algorithm employs
symmetry constraints on the devices of the circuit. The stacks ob-
tained with a stack generation algorithm should be symmetric
around a symmetry axis with respect to the twin transistors in them
(Fig. 1) [14]. Further matching can be enforced earlier in the parti-
tioning step of our stacking strategy as in [6] as well as later during
placement and routing [4][15].

The next section describes in detail how the cost function in Eq.
(1) is optimized and how the symmetry constraints are satisfied in
the stack generation algorithm.

Cost stacking() w diff() k diff()⋅
diff
∑=

Cext Cint≥

4 Stack generation algorithm
As introduced in [1], finding an Eulerian trail in a diffusion graph
is equivalent to minimizing the diffusion area of series-parallel stat-
ic CMOS circuits. Later [10] presented a simple linear time Euleri-
an trail finding algorithm for dynamic CMOS circuits consisting of
only one type of network (e.g., an nFET logic network). In our al-
gorithm, we use a similar algorithm for finding an Eulerian trail.
The main contributions of this algorithm are twofold:

1. Performance: We optimize a cost function that considers not
only area but also circuit performance – this was previously
achieved in exponential time [6],

2. Generality: Without any symmetry constraints, the algorithm is
optimum. With symmetry constraints, it is still optimum for a
large class of circuits.
Given a circuit partition, our algorithm first generates amodi-

fied diffusion graph, G,that represents the circuit partition.G incor-
porates the performance constraints in the form of criticality
weights as defined in Section 3, as well as the symmetry constraints
among transistors. Next a trail cover onG is found that satisfies the
symmetry constraints in the circuit. In the final step each trail in the
trail cover is converted to a transistor stack for layout. The outline
of our algorithm is given in Fig. 2.

Next we describe the modified diffusion graph and the sym-
metric trail cover finding step in detail and give an analysis of the
algorithm.

A The modified diffusion graph, G
Let ckt be the circuit partition for which we wish to generate the
transistor stacks.ckt can be represented with an undirected graph
G ́(possibly with parallel edges) called thesimple diffusion graph.
Each vertex inG ́corresponds to a diffusion node in the circuit, and
each edge inG ́corresponds to a transistor (Fig. 3).

Let v be a vertex inG ;́ v is labeled withw(v) ands(v). w(v) de-
notes the criticality weight on the node that corresponds to vertexv.
s(v)denotes the symmetric twin ofv. Let e be an edge inG ;́ e is
labeled withs(e) = e ,́ where (e, e)́ is a symmetric edge pair.s(e)=e´
⇒ s(e)́=e. Note that a diffusion graph with symmetry constraints

Fig. 1. Two symmetric transistor pairs (a) and their layout with
symmetric stacks. Stacks in (b) and (c) aremirror symmetricand
perfect symmetric, respectively.

 procedurestack(circuit_partitionckt)
1 generate the modified diffusion graph,G, fromckt
2 trail_cover =sym_trail_cover(G)
3 converttrail_cover into transistor stacks
4 return(transistor stacks)

Fig. 2. The stack generation algorithm.

M1 M2

M3 M4

M1 M2M3 M4

M1 M4M3 M2

(a)

(b)

(c)

must befully symmetric: all the edges must have symmetric twins.
Otherwise, the circuit must be partitioned further so that each par-
tition is fully symmetric (Fig. 4 (a)). A pair of symmetric edges are
calledcross-symmetric, if they cross the symmetry axis. A vertex is
calledself-symmetric,if s(v) = v. A self symmetric vertex is on the
symmetry axis which cuts the graph into two halves (vertexv7 in
Fig. 4 (a)).

First we introduce some terminology from graph theory that
will be used in the following sections. Atrail on a graph is a set of
edges (v0,e0,v1,e1,v2,..., vk-1, ek-1,vk), where ei=(vi,vi+1) is an edge
in the graph andei≠ej for all i≠j [12]. We may use the shorthand
(v0,v1,v2,...,vk) or (e0,e1,e2,...,ek-1) to denote a trail. Note that an
edge in a trail can not appear more than once but a vertex can appear
at more than one position. Each such position is called aterminalof
the vertex.vk andv0 are called theend terminals of the trail. The
trail is aclosedtrail, if vk=v0.

A set of trails,T={ ti} , is called acoverfor the graph if ,
 s.t. and , .T is called aminimum trail cover

if the number of the trails inT, or the cardinality ofT, , is the
smallest among all possible set of trails. For example, for the graph
of Fig. 4 (a), two trails(v1,e1,v3,e5,v7) and(v5,e3,v3) together with
their symmetric twins(v2,e2,v4,e6,v7) and (v6,e4,v4) cover the
whole graph. LetT1 denote the set of these trails. Note that

. Joining the first and the third trails atv7, their common
end terminal, we can reduce the cardinality ofT1 to 3 which is the
minimum for this graph.

A closed trail is anEulerian trail, if it touches all the edges in
the graph. A graph is calledEulerian if there exists a closed Euleri-

Fig. 3. A circuit partition and its simple diffusion graph. Each
node in the circuit,n, is mapped to a vertexv in the graph; each de-
vice,d, is mapped to an edgee.

Fig. 4. (a) A simple diffusion graph with symmetry constraints.
Note that pairs of edges with symmetry constraints are drawn sym-
metrically around the vertical symmetry axis. (b) The modified dif-
fusion graph obtained from (a). Gray lines are the super-edges.

n3

n2

n1

n4

n5

d1

d4

d3

d2

d5

e1

e2

e3

e4

e5

v1

v3

v2

v4

v5

e2
v2

v4

v1
e1

v3
e4

v5

e5

v6

e3

e6

v7

e2
v2

v4

v1
e1

v3
e4

v5

e5

v6

e3

e6

v7

vs

(a) (b)

e∀ G∈
ti∃ e ti∈ e tj∉ j i≠∀

T

T1 4=

an trail on it. The degree of a vertexv, denotedd(v), is the number
of edges adjacent to it. It is well known in graph theory that a graph
is Eulerian if and only if it is connected and all vertices in the graph
have even degree [13]. Obviously in an Eulerian graph we can al-
ways find a trail coverT1 with cardinality 1, since there is an Eule-
rian trail on it. It is also easy to see that in a graph that hasnodd ver-
tices with odd degree, the minimum trail cover has a cardinality of

(It is known thatnoddis always even).
Note that in general the simple diffusion graphG´ is not Eule-

rian. Letnodd denote the number of vertices with odd degree inG .́
If nodd> 0, we add a vertex, called asuper-vertex, vs, toG ́and we
make it Eulerian by adding a new edge (vs, vi), called asuper-edge,
for each odd-degreedvi. We setw(vs) to 0, since its criticality, by
definition, is zero. The graph obtained from the simple diffusion
graph,G ,́ by the addition of(1) the super-vertex and(2) the super-
edges for odd-degreed vertices is called themodified diffusion
graph and is denoted asG (Fig. 4 (b)).

B Finding a symmetric trail cover
If there are no symmetry constraints, we can find an Eulerian trail,
te, in G, using a recursive Eulerian trail finding algorithm [13]. Let
te be(vs,v1,v2,...,vk,vs). If we delete the super-edges inte, we obtain
a set of trails,Te, that has a cardinality ofnodd/2. Therefore,Te is a
minimum trail cover forG ,́ the simple diffusion graph.

However, when there are symmetry constraints, an arbitrary
Eulerian trail, in general, does not yield a feasible solution. Here,
we propose an algorithm which can be used to find a minimum trail
cover in the presence of symmetry constraints. Our symmetric trail
cover algorithm employs the same recursive algorithm for finding
an Eulerian trail with modifications to handle perfect and mirror
symmetry constraints. The outline of the algorithm is given in
Fig. 5.

The algorithmsym_trail_cover() starts by selecting the ver-
tex,v0, with the lowest criticality weight. Next it finds a set of trails,
cover_left, in Line 2 with the call to the recursive procedureeul-
er () (Fig. 6). Here we note that the first traileuler() generates,
first_trail, hasv0 at its end terminal; more on this in Section C. The
trail cover,cover_left, includingfirst_trail, covers only half of the
edges in the modified diffusion graph, since at each iteration of
Line 10 ineuler() we not only delete the edge that is inserted in
the trail but also its symmetric twin.

In Line 5 of sym_trail_cover() , the procedure
join_trails() concatenates the open trails incover_left at their
end terminals if possible (Fig. 7). This step is required due to the ex-
istence of cross-symmetric edges in the modified diffusion graph.

 proceduresym_trail_cover(G)
1 pickv0 s.t. w(v0) ≤ w(vi) for all i≠0
2 first_trail= euler(v0) // inserts open trails incover_left
3 insertfirst_trail in cover_left
4 remove the super-edges at the end terminals
5 join_trails (cover_left)
6 if there are symmetry constraints
7 foreach trailtr in cover_left
8 construct the symmetric trailtr´
9 if tr andtr´ have a common end terminal
10 join tr andtr´ at the common end terminal
11 insert the result intocover_all
12 else
13 insert tr and tr´ intocover_all
14 decompose all the trails by deleting the super-edges
15 return (cover_all)

Fig. 5. Finding a symmetric trail cover.

nodd 2⁄

Next, in Line 7-Line 13, symmetric twins of the trails in
cover_left are constructed. This is possible, since as a trail in
cover_left, tr, was being generated ineuler() , the edges required
to construct its symmetric twin,tr´, were preserved by deleting
them from the graph. This process can also be viewed as simulta-
neously generating two trails that traverse the two halves of the
graph in a synchronous and symmetrical way. Line 8 can construct
either a mirror symmetric trail or a perfectly symmetric trail. In
Line 9-Line 10 the trailtr and its symmetric twintr´ are joined, if
they have a common end terminal and if the operation does not vi-
olate a perfect symmetry constraint. Fig. 8 shows an example.

As a consequence of deleting both of the edges in a symmetric
pair,euler() may encounter a vertex with a zero degree while it is
trying to find a closed trail in thedo-while loop, Line 5-Line 12.
When such a vertex is reached,euler() detects that the current
trail has to be an open trail. For an open trail,euler() first recurses
on the vertices of the open trail, as is the case with closed trails, but
when the recursion terminates, it inserts the open trail in the trail
covercover_left and returns the initial vertex as a trivial trail to the
previous recursion level (for more details and some examples see
[18]). Note that in an Eulerian graph without symmetry constraints
there is always a closed trail; no open trails are detected andeul-
er() returns an Eulerian trail.

 recursive procedureeuler(vertexvin)
1 if d(vin) = 0 // no edges
2 return vin // trivial trail
3 // starting fromvin create a random trailtr:
4 vtemp = vin
5 do
6 if d(vtemp) = 0;
7 break; // open trail
8 insertvtemp into tr
9 pick an edge onvtemp, e=(vtemp, vneigh)
10 deletee, s(e), if exists, fromG
11 vtemp = vneigh;
12 while vtemp≠ vin // iterate until a closed trail is found
13 lettr = (vin,v1,v2,...vk)
14 find tr2 = euler(vin),euler(v1),euler(v2),...,euler(vk)
15 if vtemp = vin // closed trail
16 return concatenation oftr2 andvin: (tr2, vin)
17 else // open trail
18 inserttr2 into t_cover
19 return vin

Fig. 6. Finding an Eulerian trail with symmetry constraints.

 procedurejoin_trails (cover_left)
1 if there is only one trail in the list
2 return // no pairs to join
3 foreach trailtr=(v1,...,vk) in cover_left
4 let tr=(a,...,b) // a andb are end terminals
5 inserttr in list(a) and list(b)
6 foreach end terminalx
7 join trails inlist(x) pair-wise atx
8 update effected list
9 return (cover_left)

Fig. 7. Joining open trails.

C Analysis of the algorithm
Time-complexity: Thedo-while loop in Line 5-Line 12 of

euler() encounters each edge of the graph at most once, therefore
it has complexityO(n), wheren denotes the number of edges. The
two foreach loops injoin_trails() operate on each trail only for
a constant number of steps. Hence the complexity isO(m), wherem
denotes the number of trails. But sincem = O(n),the complexity of
join_trails() is O(n). It follows that the overall complexity of
the algorithm isO(n).

Optimality: If there are no symmetry constraints, it is easy
to see that the algorithm minimizes the cost function defined in Eq.
(1): euler() returns an Eulerian trail which is later decomposed by
deleting the super-edges (if any). Let us assume that the trail cover
hask trails after the decomposition; . Also
note that every vertexv in G must have at least terminals
in a trail coverT. First assume . If is odd, thenv has

 terminals in the trail cover. Otherwise it has
terminals. In either case the number of terminals is equal to the low-
er-bound given by . Now assume . The previ-
ous argument still holds for all vertices except the one at the end ter-
minals (Note that). But the vertex at the end terminal was
chosen to be the one with the lowest criticality weight, therefore the
cost function is minimized and the stacking is optimum. The cost
function in Eq. (1) is also minimized for a class of circuits with
symmetry constraints for which the corresponding modified diffu-
sion graph satisfies two conditions: (1) no cross-symmetric edges
(2) number of self-symmetric vertices with degrees

, is less then 4. Given these conditions
the optimum can be found in linear time by adding a post-process-
ing step to the algorithm which recombines certain trails to reduce
the cardinality further. The proof is rather long and will be present-
ed in another paper. When the second condition is waived, the op-
timum can still be found via a similar post-processing step, but with
a penalty in the time-complexity of the algorithm. Currently we are
working on a sufficient condition for optimality in the general case.

It is also worth noting that we do not evaluate the cost function
given in Eq. (1) insym_trail_cover() . After stacking, the perfor-
mance of the circuit can be evaluated using estimates on parasitic
diffusion capacitances and device matching, looking at the generat-
ed stacks [6]. If there is an unsatisfied performance constraint, then
the stack generation step indicates that the performance specifica-
tions were too tight and it is infeasible to meet them during the lay-
out phase; hence either the design or the specifications must to be
modified.

Fig. 8. (a) Perfect and (b) mirror symmetric trail covers;
Ta={(v5,v3,v7), (v6,v4,v7), (v1,v3), (v2,v4)},
Tb={(v5,v3,v7,v4,v6), (v1,v3), (v4,v2)}and the corresponding
stacks for the graph of Fig. 4 (a).

(b)

(a)

v5 v3 v7 v4 v6 v1 v3 v2v4

v5 v3 v7 v6 v4 v7 v1 v3 v4v2

k max 1nodd 2⁄{ , }=
d v() 2⁄

nodd 0> d v()
d v() 2⁄ 1+ d v() 2⁄

d v() 2⁄ nodd 0=

k 1=

d v() 2 2k 1+()= k 0≥

4 Results
The stack generation algorithm presented in this paper has been im-
plemented in C++ on an IBM PowerPC 604 (133MHz) based work-
station running AIX 4.1. We have tested the algorithm on various
circuits from the literature.

Table 1 lists some of these circuits that we obtained from the
literature [4][15][6] and shows some results. For all of the circuits
the number of stacks is optimum and hence equal to the results ob-
tained by [6]. Again note that the technique presented in [6] is enu-
merative and has exponential time complexity. We note that in the-
ory our algorithm can guarantee optimality for only some classes of
circuits. But still it could find the optimum results for all the circuits
that were available to us, since most practical circuits indeed fall
into the class for which our technique is proved to be optimum. Sen-
sitive circuit nodes are maximally merged, and estimated perfor-
mance degradation, as computed by Eq. (1), is equivalent to that in
[6]. The run time is very low (less then 100ms per circuit). This
compares favorably to [6] which employs an exponential-time al-
gorithm; e.g., forComp3, our optimum stack generation algorithm
found a solution in less than 100msec while the technique in [6] re-
ports 7.5sec, a difference of approximately two orders of magni-
tude1. For bigger circuits, higher savings can be expected.

Fig. 9 shows a multiplier circuit [15]. It is a typical analog cir-
cuit that was used as a benchmark in KOAN [4] as well as in other
constraint-driven layout research [15]. The stacking solution gener-
ated with our algorithm is shown in Fig. 10. The number of stacks
found is 3, which is the theoretical optimum. As a comparison, the
number of stacks found in the KOAN layout is 72.

Fig. 11 shows another analog cell, a comparator which is high-
ly sensitive to device mismatch and parasitic capacitance
[4][15][6][16]. The stacking generated by our algorithm is shown
in Fig. 12. Again, compared to KOAN, our algorithm found a better
stacking, with 3 fewer stacks.

1. Also note that in [6], an enumerative algorithm is utilized which can
find all optimum solutions whereas our technique finds only one.
2. We note that this is not a fair comparison, since KOAN integrates stack
generation with placement.

Table 1.Stacking results.

Circuit Ref.
of

devices
of

modules
of ckt.
partitions

 # of
stacks

Opamp1 [4] 10 22 2 4
Opamp2 [6] 29 32 5 9
Opamp3 [5] 11 30 3 3
Opamp4 [4] 27 40 3 11
Opamp5 [6] 25 36 9 10
AB [6] 15 29 6 9
Comp2 [4,6] 15 25 4 5
Comp3 [6] 19 33 4 4
Mult [15] 12 46 2 3
Buffer [15] 10 53 2 4

Fig. 9. TheMult circuit.

Fig. 10. The optimum stacking generated forMult.

Fig. 11. TheComp circuit.

M112 M113 M122 M123

M111 M121

M114 M124

M115 M124

M116 M126

Vdd

111 112

Ib1

122121

Vi- Vi+Vda+

Vda-

Vss

115
125

Io-Io+Ib2

M122M123

M112 M125 M114

M116

M126

M112M113

M111

M115 M124

M21 M22

Vdd

M20 M23

Vss

M26 M25

M1 M2

M4
M6M7

M8M9

M10 M11

Vb2

out2

out1

in2in1

Vb1

clk2

clk1

5 Conclusions
First-generation custom analog cell layout tools relied on simulta-
neous stacking, folding and placement of devices to achieve accept-
able density and performance. The disadvantage of these approach-
es is the lack of any guarantees on the achievable circuit perfor-
mance, and (due to their annealing-based formulations) the
variability in layout solutions, run to run. Second-generation tools
have focused on two-phase approaches, in which a partition of the
devices into optimal stacks is performed first, and subsequent
placement manipulates a palette of alternative stacks. The advan-
tage is more predictable circuit performance, and these techniques
can be fast for small circuits. But the runtime to generate all stack
partitions can be extremely sensitive to circuit size due to the expo-
nential algorithms at the core of these approaches. In this paper we
introduced an effective stacking strategy that is fast enough to be
exploited in the inner loop of a device placer, yet still respects ana-
log node criticality information. In comparison with the 2-D free-
form stacking style of [4], our approach is faster and can find better
results. In comparison with the branch-and-bound technique of [6]
which enumerates all optimum solutions, our approach can find a
single solution of equivalent cost, for most practical circuits, but in
linear-time with respect to the circuit size.

Our long term goal in this work is to integrate this stacking al-
gorithm into a device placer in the style of [4], replacing random
search for good merges with directed search among local clusters
of devices. Instead of finding all stacking alternativesa priori, we
only stack those local sets of devices that the placer tells usought
to be stacked. This should yield improved analog cell layout tools,
and digital cell layout tools as well. Complex dynamic-logic CMOS
cells are increasingly analog in character, and we believe that a
combination of aggressive search (for device placement and fold-
ing) coupling with simultaneous, dynamic stacking proposed in
[17] (to optimally arrange local clusters of devices) is an attractive
strategy here.

Acknowledgments
We are grateful to Prof. Ron Bianchini and Pinar Keskinocak
(CMU) for helpful discussions on Eulerian trails. We thank Prof.
Rick Carley (CMU) and Dr. John Cohn (IBM) for giving us some
of the circuits used in this paper. We thank Mehmet Aktuna for
fruitful discussions. Pinar Keskinocak and Aykut Dengi also helped
to improve the presentation by reading an earlier draft of the paper.
We would also like to acknowledge MPI, Germany for their LEDA
library which was of great assistance in prototyping with graph al-
gorithms and basic data structures. This work is supported in part
by the Intel Corporation and the Semiconductor Research Corpora-
tion.

Fig. 12. The optimum stacking generated forComp.

M2

M1

M21

M22 M26

M23

M20 M25

M9 M6

M10

M11

M7 M8

M4

p1:

p3:

p2:

p4:

References
[1] T. Uehara and W. M. vanCleemput, “Optimal Layout of

CMOS Functional Arrays”,IEEE Transactions on Computers,
Vol. C-30, No. 5, May 1981, pp. 305-312.

[2] R.L. Maziasz, J.P. Hayes,Layout Minimization of CMOS Cells,
Kluwer Academic Publishers, Boston/London, 1992.

[3] S. Wimer, R.Y. Pinter, J.A. Feldman, “Optimal Chaining of
CMOS Transistors in a Functional Cell”,IEEE Transactions
on Computer-Aided Design, Vol. CAD-6, September 1987, pp.
795-801.

[4] J. M. Cohn, D. J. Garrod, R. A. Rutenbar and L. R. Carley,
“KOAN/ANAGRAM II: New Tools for Device-Level Analog
Placement and Routing”,IEEE Journal of Solid-State Circuits,
Vol. 26, No. 3, March 1991, pp. 330-342.

[5] E. Charbon, E. Malavasi, U. Choudhury, A. Casotto, A. San-
giovanni-Vincentelli, “A Constraint-Driven Placement Meth-
odology For Analog Integrated Circuits”,IEEE Custom
Integrated Circuits Conference, May 1992, pp. 28.2/1-4.

[6] E. Malavasi, D. Pandini, “Optimum CMOS Stack Generation
with Analog Constraints”,IEEE Transactions on Computer-
Aided Design, Vol. 14, No. 1, Jan. 1995, pp. 107-122.

[7] M.J.M. Pelgrom et al., “Matching Properties of MOS Transis-
tors”, IEEE Journal of Solid-State Circuits, Vol. sc-24, October
1989, pp. 1433-1440.

[8] U. Choudhury and A. Sangiovanni-Vincentelli, “Automatic
Generation of Parasitic Constraints for Performance-Con-
strained Physical Design of Analog Circuits”,IEEE Transac-
tions on Computer-Aided Design, Vol. 12, No. 2, February
1993, pp. 208-224.

[9] E. Charbon, E. Malavasi, A. Sangiovanni-Vincentelli, “Gener-
alized Constraint Generation for Analog Circuit Design”,Pro-
ceedings of the IEEE/ACM ICCAD, Nov. 1993, pp. 408-414.

[10]S. Chakravarty, X. He, S.S. Ravi, “On Optimizing nMOS and
Dynamic CMOS Functional Cells”,IEEE International Sym-
posium on Circuits and Systems, Vol. 3:, May 1990, pp. 1701-
1704.

[11]S. Chakravarty, X. He, S.S. Ravi, “Minimum Area Layout of
Series-Parallel Transistor Networks is NP-Hard”,IEEE Trans-
actions on CAD, Vol. 10, No. 7, July 1991.

[12]J.A. Bondy and U.S.R. Murty,Graph Theory with Applica-
tions,Elsevier Science Publishing, New York, 1976.

[13]C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimi-
zation: Algorithms and Complexity,Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey 07632, 1982.

[14]J. M. Cohn, “Automatic Device Placement for Analog Cells in
KOAN”, PhD dissertation, Carnegie Mellon University, Febru-
ary 1992.

[15]B. Basaran, R. A. Rutenbar and L. R. Carley, “Latchup-Aware
Placement and Parasitic-Bounded Routing of Custom Analog
Cells”, Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, November 1993, pp. 415-
421.

[16]E. Charbon, E. Malavasi, D. Pandini, A. Sangiovanni-Vincen-
telli, “Simultaneous Placement and Module Optimization of
Analog IC's”,Proceedings of the IEEE/ACM Design Automa-
tion Conference, June 1994, pp. 31-35.

[17]B. Basaran and R. A. Rutenbar, “Efficient Area Minimization
for Dynamic CMOS Circuits”,IEEE Custom Integrated Cir-
cuits Conference, May 1996.

[18] B. Basaran and R. A. Rutenbar, “An O(n) Algorithm for Tran-
sistor Stacking with Performance Constraints”,Research
Report No. CMUCAD-95-56, Carnegie Mellon University,
1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

