
A Satis�ability-Based Test Generator for Path Delay Faults in

Combinational Circuits
�

Chih-Ang Chen and Sandeep K. Gupta

Electrical Engineering { Systems

University of Southern California

Los Angeles CA 90089-2562

Abstract

This paper describes a new formulation to gener-
ate robust tests for path delay faults in combinational
circuits based on Boolean satis�ability. Conditions to
detect a target path delay fault are represented by a
Boolean formula. Unlike the technique described in [16],
which extracts the formula for each path delay fault, the
proposed formulation needs to extract the formula only
once for each circuit cone. Experimental results show
tremendous time saving on formula extraction compared
to other satis�ability-based ATPG algorithms. This also
leads to low test generation time, especially for circuits
that have many paths but few outputs. The proposed for-
mulation has also been modi�ed to generate other types
of tests for path delay faults.

1 Introduction

The problem of automatic test pattern generation
(ATPG) for a target fault in a circuit is to �nd a set of

assignments at the primary inputs such that the fault

is excited, and the fault e�ect is propagated to the pri-

mary output(s). In the past two decades, tremendous

progress has been made on the design of e�cient ATPG

algorithms, which can be broadly categorized as struc-
tural, algebraic, or satis�ability-based.

Structural algorithms [9, 10] directly analyze the

gate-level description of a circuit and implicitly enumer-

ate possible input combinations to �nd test patterns.

Extensions of these techniques to generate two-pattern

tests for delay faults are also well studied [8, 14]. E�-

ciency of these approaches often relies on the \bags of

tricks" to avoid entering the non-solution area [5].

�This research was funded by NSF Research Initiation Award

no. MIP-9210871 and NSF CAREER Award no. MIP-9502300.

An algebraic algorithm converts the test generation

problem into an algebraic formula and applies alge-

braic techniques to simplify and then solve the formula

to obtain a test. Early algebraic techniques based on

Boolean di�erence [18] were not practical due to their

high computational complexity. Recent developments

in e�cient circuit representations by binary decision di-
agrams (BDDs) [4] have inspired many algebraic ATPG

algorithms for single stuck-at faults [19, 20] and delay

faults [1]. These techniques work well for circuits that

can be e�ciently represented by BDDs. For some cir-

cuits, however, the BDD representations are impracti-

cally large, making the BDD-based techniques inappli-

cable to these circuits.

Satis�ability-based algorithms [5, 12, 21] translate

the test generation problem into a formula in conjunc-
tive normal form (CNF) [7]. A branch-and-bound strat-

egy is then used to �nd a satisfying assignment, which
corresponds to a test for the target fault. The per-

formance of the implementation described in [21] com-

pares favorably to the best known structural algorithms.

An extension of satis�ability-based ATPG algorithms to

generate robust tests for path delay faults has been re-

ported in [16]. It was proven that a robust path delay

fault in a circuit is detectable, if and only if an equiv-

alent stuck-at fault is detectable in a modi�ed circuit,

which has at most four times the number of gates in the

original circuit. A robust test for the path delay fault

can then be determined by generating a test for the

equivalent stuck-at fault in the modi�ed circuit using

the technique described in [21]. Typically, 70% to 80%

of the overall test generation time for stuck-at faults is

spent on CNF formula extraction. In test generation for

single stuck-at faults, the time required for formula ex-

traction is compensated by a faster satis�ability solver.

A test generator for path delay faults, however, may

need to consider an exponential number of paths. Due

to this fact, a large amount of time is spent on CNF for-

mula extraction using the approach described in [16],

thereby adversely a�ecting the overall test generation

time for circuits with a large number of paths.

This paper describes a new CNF formulation for path

delay faults that can be extracted much more e�ciently,

making it practical for circuits with a large number of

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

paths. Unlike other satis�ability-based techniques, the

proposed formulation needs to extract the formula only

once for each cone. All path delay faults in a cone use

the same CNF formula merely by making appropriate

on-path and o�-path value assignments before solving

the CNF formula. Experimental results show tremen-

dous time saving on formula extraction compared to

other similar techniques. This also leads to signi�cant

savings on overall test generation time, especially for cir-

cuits with many paths but few outputs. The proposed

formulation has also been modi�ed to generate di�er-

ent types of tests for path delay faults, e.g. hazard-free
robust, robust, and non-robust tests [15].

The paper is organized as follows. Section 2 describes

the basic terminology used in this paper. Formulation of

the ATPG problems for stuck-at faults and path delay

faults as the Boolean satis�ability problem is presented

in Sections 3 and 4, respectively. Experimental results

are given in Section 5. Finally, conclusions are presented

in Section 6.

2 Basic Terminology

A literal is a Boolean variable or its negation (e.g. a or
a). AnOR-clause is an OR of one or more literals. An n-

clause is an OR-clause with exactly n distinct literals. A

Boolean formula is in conjunctive normal form (CNF),
if it is expressed as an AND of OR-clauses. A Boolean

formula is in n-CNF, if each OR-clause is an n-clause.

An assignment for a Boolean formula is a set of Boolean

input values (0 or 1). A satisfying assignment for a

single-output Boolean formula y is an assignment such

that y evaluates to 1. A Boolean formula is satis�able if
it has a satisfying assignment. The problem of Boolean
satis�ability is to determine whether a Boolean formula

is satis�able. As an example, the Boolean formula y =

(a+b+d)(a+c+d) is in 3-CNF. The formula is satis�able

with the satisfying assignment fa = 1; c = 0g.

3 ATPG Formulation: Stuck-at Faults

Test generation based on satis�ability can be divided

into two independent steps: extraction of the CNF

formula and identi�cation of a satisfying assignment.

This section describes CNF formula extraction for sin-

gle stuck-at faults. Much of the description is due to [12]

and is included here to delineate later discussion on test

generation for path delay faults.

First, consider a 2-input AND gate represented in

equation form by y = ab. Alternatively, the equation

can be written in CNF as

(a+ y)(b+ y)(a + b+ y) = 1: (1)

Note that only the values in the truth table of an AND

gate, where the output y has a determined binary value

0/1, can satisfy the CNF formula. The CNF formulas

for other basic gates with multiple inputs can be derived

similarly.

A Boolean network consists of gates interconnected

by wires with possible fanout stems. The network can

a
b
c

y

d

e

Figure 1: Example circuit

a
b
c

e

d

y

d y
f

f

s-a-1

Figure 2: Faulty circuit for d s-a-1

be represented in CNF by concatenating the CNF for-

mula for each individual gate. For example, the circuit

shown in Figure 1 can be written in CNF as

Cg = (a+ d)(b+ d)(c + d)(a+ b+ c+ d)| {z }
AND

(c+ e)(c + e)| {z }
NOT

(d+ y)(e + y)(d+ e+ y)| {z }
NOR

= 1: (2)

To model a faulty circuit, the gates and lines in the

transitive fanout of the fault site are duplicated and a

new literal is introduced for each duplicate line. For

example, the faulty circuit for the fault d stuck-at-1 in

the example circuit is shown in Figure 2. The CNF

formula for the duplicate circuit is given by

Cf = (d
f
+ y

f
)(e + y

f
)(d

f
+ e + y

f
) = 1: (3)

The new variables df and yf (faulty variables) are intro-

duced to indicate that lines d and y may have di�erent

values in the normal and faulty circuits.

The e�ect of fault propagation can be formulated by

introducing active variables and active clauses. For each
line l in the transitive fanout of the fault site, an active

variable la is de�ned. If l is on the fault propagating

path, then the good value l and the faulty value lf are

di�erent. The active clauses for the faulty circuit in

Figure 2 are given by

Ca = (d
a
+d+d

f
)(d

a
+d+d

f
)(y

a
+y+y

f
)(y

a
+y+y

f
) = 1:

(4)

To detect a fault, the fault site must have di�erent

values in the good and faulty circuits, and the fault

e�ect must be propagated to the primary output(s). For

the fault d s-a-1, line d must have the value 0 in the

good circuit and 1 in the faulty circuit (i.e. d
a
= 1,

d = 0, and df = 1). Since y is the only output, the fault

e�ect must be observed at y (i.e. y
a
= 1). Overall, test

generation for the fault d s-a-1 in the example circuit has

been translated to the problem of �nding a satisfying

Table 1: Implication table for AND gate

s0 s1 s0 s1 x0 x1 xx

s0 s0 s0 s0 s0 s0 s0 s0

s1 s0 s1 s0 s1 x0 x1 xx

s0 s0 s0 s0 s0 x0 s0 x0

s1 s0 s1 s0 s1 x0 s1 xx

x0 s0 x0 x0 x0 x0 x0 x0

x1 s0 x1 s0 s1 x0 x1 xx

xx s0 xx x0 xx x0 xx xx

Table 2: Encoding for L7

s0 s1 s0 s1 x0 x1 xx

s 1 1 0 0 x x x

v 0 1 0 1 0 1 x

assignment for the CNF formula given by

CgCfCad
a
dd

f
y
a
= 1: (5)

Simple branch-and-bound heuristics can then be used to

search for satisfying assignments. One possible solution

is given by fa = 0; c = 1; da = 1; d = 0; df = 1; e =

0; y
a
= 1; y = 1; y

f
= 0g, which corresponds to the test

fa = 0; b = x; c = 1g.
The technique described in [16] to generate a robust

test for a path delay fault uses the above formulation to

�nd a test for an equivalent stuck-at fault in the modi-

�ed circuit. The equivalent stuck-at fault is located on

the I-edge of the target path P , which is either a pri-

mary input or the output of an inverter fed by a primary

input. In general, a stuck-at fault away from the pri-

mary outputs requires more memory to store the CNF

formula and it may be harder to �nd a satisfying as-

signment, when compared to another fault closer to the

primary outputs. In the following section, we will show

how faulty and active variables can be eliminated in the

proposed ATPG formulation for path delay faults.

4 Proposed ATPG Formulation: Path

Delay Faults

CNF formula extraction for a path delay fault has

the following major di�erences from that for a stuck-

at fault: (1) the logic system used to represent signal

values is di�erent; (2) the fault propagation path of a

path delay fault is known; and (3) a path delay fault

can be detected by satisfying the on-path and o�-path

values. Due to the last two di�erences, extracting the

CNF formula for a path delay fault is in fact simpler

than that for a stuck-at fault as will be shown below.

4.1 Logic Systems

Many logic systems, which range from 5-valued to 23-

valued, have been proposed in the literature [2, 8, 13,

14]. The proposed formulation uses the 7-valued logic
system L7 proposed in [13]. According to [8], L7 can

be partitioned into 4 basic values and 3 composite val-

ues as L7 = ffs0; s0; s1; s1g; fx0; x1; xxgg. The second
element of each value, which indicates the �nal value

of a two-pattern test, is either 0, 1, or x (don't care).

The �rst element of each value is either s (static), s (not

static), or x (unknown). A signal line has the basic value

s0 (s1), if both its initial and �nal values are 0 (1) and

no transient hazard exists during the entire time inter-

val. A signal line has the basic value s0 (s1), if the line

has the �nal value 0 (1) but not s0 (s1). The implica-

tion table for a 2-input AND gate using L7 is shown in

Table 1. Table 2 shows a simple encoding scheme using

two ternary variables s and v to represent the �rst and

second elements of each value in L7, respectively. This
encoding is carefully chosen to minimize the number of

clauses in the resulting CNF formulas. For each line l

in a circuit, a two-tuple (ls; lv) is used to represent the

code of the value on l.

4.2 Normal Circuit

For a 2-input AND gate represented by y = ab, the

two-tuples (as; av), (bs; bv), and (ys; yv) are used to rep-

resent the codes on lines a, b, and y, respectively. Based

on the implication table in Table 1 and the encoding in

Table 2, the variables ys and yv can be represented by

y
s

= a
s
b
s
+ a

s
a
v
+ b

s
b
v

(6)

y
v

= a
v
b
v
: (7)

Equivalently, the two equations can be written as

(a
s
b
s
+ a

s
a
v
+ b

s
b
v
)

M
y
s

= 0 (8)

a
v
b
v
M

y
v

= 0: (9)

After some Boolean manipulation, the equations can be

represented in CNF by

EAND(a; b; c) =

(a
s
+ b

s
+ y

s
)(a

s
+ a

v
+ y

s
)(b

s
+ b

v
+ y

s
)

(a
s
+ b

s
+ y

s
)(a

s
+ b

v
+ y

s
)(a

v
+ b

s
+ y

s
)

(a
v
+ y

v
)(b

v
+ y

v
)(a

v
+ b

v
+ y

v
) = 1: (10)

Note that only those values in Table 1, where both y
s

and yv have determined binary values, can satisfy the

CNF formula. The CNF formulas for other basic gates

can be derived similarly. For a 2-input basic gate, there

are 9 clauses in its CNF formula extracted for delay

testing, of which 7 clauses have 3 literals and 2 clauses

have 2 literals. A 1-input gate (an inverter or a bu�er)

is a special case which has 4 clauses, each with 2 literals.

A direct extension of the above approach to derive

the CNF formula for an n-input basic gate leads to an

exponential number of terms. Alternative, an n-input

basic gate can be decomposed into (n�1) 2-input gates

as shown in Figure 3. Such a decomposition neither

changes the number of paths in the circuit nor does it

x

x
x

x

n

n-1

n-2

1 y

x
x
x

x

n

n-1

n-2

1 y

x
x
x

x

n

n-1

n-2

1 y

x

x
x

x

n

n-1

n-2

1 y

(a) AND gate (b) NAND gate

(c) OR gate (d) NOR gate

Figure 3: Decomposition of n-input gates

a�ect the detectability of the path delay faults [11]. The

CNF formula for the n-input gate can then be obtained

by concatenating the CNF formula for its constituent

2-input gates.

For a single-output circuit, the CNF formula for each

individual gate can be concatenated to form a CNF for-

mula for the circuit. The number of clauses and literals

remains polynomial in terms of the number of gates in

the circuit, as stated in the following theorem.

Theorem 1 For a single-output circuit with N =Pn

i=1Ni gates, where Ni is the number of i-inputs gates,
there are RN = 9(N � n+ 1)� 5N1 clauses in its CNF
representation for delay testing, of which 7(N�n+1)�
7N1 clauses have 3 literals and 2(N�n+1)+2N1 clauses
have 2 literals.

For a circuit with multiple outputs, the CNF formu-

las must be extracted once for each cone. If a gate G

belongs to k cones, then the CNF formula for G must

be extracted k times. In the worst case where all the

m cones in an m-output circuit completely overlap, the

number of clauses that need to be extracted is given by

mRN . Since m << N , the number of clauses and liter-

als remains polynomial in terms of the number of gates

for a general circuit.

4.3 Fault Excitation

During test generation, the literals are assigned val-

ues corresponding to the necessary conditions to detect

the target path delay fault. By carefully implementing

the path enumeration algorithm, the computation re-

quired to determine the necessary conditions for each

path delay fault can be kept small. During traversal of

the circuit to enumerate a path P1, the necessary as-

signments to detect a delay fault on P1 can be stored

in a stack. Since only a few nodes need to be modi�ed

in depth-�rst search to identify the next path P2, the

stack can be updated incrementally and the necessary

conditions for P2 can be quickly determined.

Di�erent types of tests for path delay faults have

been proposed in the literature. In this paper, we con-

sider three kinds of two-pattern tests: restricted delay

Table 3: Constraints on o�-path input values

RDTP Robust Non-robust
rising falling

AND/NAND s1 x1 s1 x1
OR/NOR s0 s0 x0 x0

y
c

a

b

e

daI

Figure 4: Decomposition of example circuit

test pairs (RDTPs) [17], robust tests, and non-robust

tests, which di�er on the constraints on the o�-path in-

put values as shown in Table 3. These o�-path input

constraints can be uniformly represented by �xing the

variables for the o�-path inputs before solving the CNF

formula to �nd the two-pattern tests.

Consider the circuit shown in Figure 4, which can be

written in CNF by

EAND(b; c; aI)EAND(a; aI ; d)

ENOT (c; e)ENOR(d; e; y) = 1: (11)

A robust test for the slow-to-rise delay fault on path

a{d{y can be generated by �xing the on-path vari-

ables: (as; av) = (0; 1); (ds; dv) = (0; 1); (ys; yv) =

(1; 0); and the o�-path variables: a
v
I = b

v
= c

v
=

1; (es; ev) = (1; 0). These constraints can be repre-

sented by adding the clauses a
s
avd

s
dvy

s
y
v
avIb

vcvese
v

to Eq. 11. A possible satisfying assignment is given by

(as; av) = (0; 1); (bs; bv) = (x; 1); (cs; cv) = (1; 1); which

corresponds the robust test fa = s1; b = x1; c = s1g.
Using the same CNF formula, a non-robust test for

the same path delay fault can be generated by chang-

ing the o�-path variables: avI = bv = cv = 1; ev = 0.

A possible satisfying assignment is given by (a
s
; a

v
) =

(0; 1); (b
s
; b
v
) = (c

s
; c
v
) = (x; 1); which corresponds to

the non-robust test fa = s1; b = x1; c = x1g.

Since the circuit in Figure 4 has a single output, the

CNF formula extracted in Eq. 11, together with addi-

tional clauses corresponding to the necessary conditions

for detection of the target fault, can be used to gen-

erate tests for other path delay faults in the circuit.

For example, to generate a robust test for the slow-

to-rise delay fault on the path c{aI{d{y, the clause

c
s
cva

s
Ia

v
Id

s
d
vy

s
y
v
avbvese

v
can be added to Eq. 11.

Since no satisfying assignment can be found, no robust

test exists for the path delay fault. However, by adding

the clauses c
s
c
v
a
s
Ia

v
Id

s
d
v
y
s
y
v
a
v
b
v
e
v
to Eq. 11, a non-

robust test fa = x1; b = x1; c = s1g can be derived for

the path delay fault.

4.4 Boolean Satis�ability

After an ATPG problem has been converted into a

satis�ability problem, any satis�ability solver can be

used to �nd a satisfying assignment that corresponds

to a valid test, irrespective of the original circuit struc-

ture and the types of tests desired. E�cient branch-

and-bound algorithms have been developed to avoid the

exponential worst-case run time for solving the satis�-

ability problem. Extensive experiments have been per-

formed in [21] to compare di�erent search strategies that

determine variable order for branching. In [5], the tran-
sitive closure of the implication graph derived from the

2-clauses in a CNF formula is used to determine global

signal dependencies. These techniques can be applied

directly to solve the CNF formulas extracted for path

delay faults.

5 Experimental Results

The proposed ATPG program for path delay faults

has been implemented and tested on the combinational

parts of the ISCAS89 [3] circuits. The experimental re-

sults presented in the following are obtained using an

HP-710 with 32 Mbytes of memory. The program con-

sists of a front-end clause extractor that extracts the

CNF formulas from the gate-level descriptions of the

circuits. A path delay fault is activated by �xing val-

ues at the on-path and o�-path inputs. Three kinds

of two-pattern tests | RDTPs, robust tests, and non-

robust tests | can be generated in current implemen-

tation. The satis�ability solver is based on the imple-

mentation in [21], originally integrated in an ATPG for

single stuck-at faults.

The experimental results for test generation of robust

tests are shown in Table 4. After the circuit name, the

number of detected, untestable, and aborted path delay

faults are shown in columns 2{5, respectively, followed

by the total number of faults considered. In the exper-

iments, each path delay fault is individually targeted.

Note that the proposed technique is able to �nd a ro-

bust test or prove that no robust test exists for every

path delay fault in these circuits. Columns 6{7 show the

time spent on extraction of CNF formulas (CNF) and

identi�cation of satisfying assignments (SAT), followed

by the total test generation time. The percentage of the

formula extraction time over the total test generation

time is also included. As shown in the table, formula

extraction (CNF) accounts for 10% of the total compu-

tation time on the average, compared to 63% reported

in [16]. The formula extraction time can be reduced

signi�cantly, because the formula extraction needs to

be performed only once for each cone and the necessary

conditions to detect the path delay faults can be quickly

determined and updated.

One important feature of the proposed technique is

that the time spent on formula extraction does not grow

rapidly with the number of paths in the circuit. Con-

sider the circuits s1238 (with 428 gates and 32 outputs)

and s1423 (with 490 gates and 79 outputs) in Table 4.

The number of paths in s1423 is about 12.6 times that

in s1238. Though s1423 has more gates and outputs

than s1238, the formula extraction time for s1423 is

only about 7.7 times that for s1238, while the percent-

age of the formula extraction over the total test gener-

ation time increases only slightly from 5.12% to 5.62%.

Similar experiments have been performed to gener-

ate RDTPs and non-robust tests for the benchmark cir-

cuits. The results can be found in [6]. In summary, no

fault is aborted for all types of tests and the number

of untestable faults increases (decreases) as more (less)

restricted tests are generated for the path delay faults.

The total run time and the percentage of the formula

extraction over the total run time are about the same

for di�erent types of tests for path delay faults.

6 Conclusion

In this paper, the problem of ATPG for path de-

lay faults has been converted to a Boolean satis�ability

problem. Any set of input assignments that satis�es the

CNF formula is a test for the target fault. The proposed

formulation is simpler and faster than the technique pro-

posed in [16]. Unlike their technique which extracts the

CNF formula for each path delay fault, the proposed for-

mulation needs to extracts the CNF formula only once

for each cone. All path delay faults in the same cone

can use the same CNF formula, but only di�er on the

on-path and o�-path input constraints. Experimental

results show tremendous time savings on formula extrac-

tion. The proposed formulation has also been modi�ed

to generate other types of tests for path delay faults.

Satis�ability-based ATPG algorithms have the ad-

vantages of simplicity and uniformity, and is very well

suited for path delay faults because no faulty or active

variables is required. The formula extraction time is

proportional to the number of circuit's outputs and is

typically small even for circuits with a large number of

paths. The proposed formulation can also be used to

solve many design-for-testability problems. Some pre-

liminary results can be found in [6].

References

[1] D. Bhattacharya, P. Agrawal, and V. D. Agrawal. De-

lay Fault Test Generation for Scan/Hold Circuits using

Boolean Expressions. In Proc. IEEE-ACM Design Au-

tomation Conference, pages 159{164, 1992.

[2] S. Bose, P. Agrawal, and V. D. Agrawal. Logic Systems

for Path Delay Test Generation. In Proc. European De-

sign Automation Conf., pages 200{205, 1993.

[3] F. Brglez, D. Bryan, and K. Kozminski. Combinational

Pro�les of Sequential Benchmark Circuits. In IEEE Int.

Symp. on Circuits and Systems, pages 1929{1934, 1989.

[4] R. E. Bryant. Graph-Based Algorithms for Boolean

Function Manipulation. IEEE Trans. on Computers,
C-35(8):677{691, Aug. 1986.

[5] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler.
A Transitive Closure Algorithm for Test Generation.

IEEE Trans. on CAD, 12(7):1015{1028, July 1993.

Table 4: Test generation for robust tests

Ckt path delay faults CPU time (sec) CNF /
det. untst. ab. total CNF SAT total total (%)

s344 611 99 0 710 0.35 3.24 3.59 9.75

s349 611 119 0 730 0.29 3.31 3.60 8.06

s382 667 133 0 800 0.38 2.49 2.87 13.24

s386 413 1 0 414 0.30 1.57 1.87 16.04

s400 663 233 0 896 0.41 2.69 3.10 13.23

s420 738 0 0 738 0.33 5.19 5.52 5.98

s444 586 484 0 1070 0.47 3.44 3.92 11.99

s510 729 9 0 738 0.47 6.21 6.68 7.04

s526 694 126 0 820 0.42 3.39 3.81 11.02

s641 1979 1509 0 3488 2.98 34.91 37.89 7.87

s713 1184 42440 0 43624 25.69 126.20 151.89 16.91

s820 980 4 0 984 0.62 9.02 9.65 6.42

s832 984 28 0 1012 0.82 9.60 10.42 7.87

s838 2018 0 0 2018 1.91 31.59 33.50 5.70

s953 2302 10 0 2312 1.99 24.63 26.62 7.47

s1196 3581 2615 0 6196 8.40 152.28 160.68 5.22

s1238 3589 3529 0 7118 10.08 186.78 196.86 5.12

s1423 28696 60756 0 89452 78.09 1310.32 1388.41 5.62

s1488 1875 49 0 1924 1.52 20.26 21.78 6.98

s1494 1882 70 0 1952 1.45 20.79 22.24 6.52

s5378 18656 8428 0 27084 42.33 524.61 566.94 7.46

s9234 21389 468319 0 489708 1629.09 8575.07 10204.16 15.96

[6] C.-A. Chen and S. K. Gupta. A Satis�ability-Based
Test Generator for Path Delay Faults in Combinatio

nal Circuits. Technical Report CENG 96-07, Univ. of

Southern California, 1996.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-

troduction to Algorithms. The MIT Press, New York,

NY, 1992.

[8] K. Fuchs, F. Fink, and M. H. Schulz. DYNAMITE: An

E�cient Automatic Test Pattern Generation System for
Path Delay Faults. IEEE Trans. on CAD, 10(10):1323{

1335, Oct. 1991.

[9] H. Fujiwara and T. Shimono. On the Acceleration of

Test Generation Algorithms. IEEE Trans. on Comput-

ers, C-32(12), Dec. 1983.

[10] P. Goel. An Implicit Enumeration Algorithm to Gen-

erate Tests for Combinational Logic Circuits. IEEE

Trans. on Computers, C-30(3), Mar. 1981.

[11] S. Kundu, S. M. Reddy, and N. K. Jha. Design of

Robustly Testable Combinational Logic Circuits. IEEE

Trans. on CAD, 10(8):1036{1048, Aug. 1991.

[12] T. Larrabee. E�cient Generation of Test Patterns Us-

ing Boolean Di�erence. In Proc. IEEE Int. Test Conf.,

pages 795{801, 1989.

[13] C. J. Lin and S. M. Reddy. On Delay Fault Testing in
Logic Circuits. In Proc. IEEE Int. Conf. on Computer-

Aided Design, pages 148{151, 1986.

[14] C. J. Lin and S. M. Reddy. On Delay Fault Testing in
Logic Circuits. IEEE Trans. on CAD, CAD-6(5):694{

703, Sept. 1987.

[15] A. K. Pramanick and S. M. Reddy. On the Design

of Path Delay Fault Testable Combinational Circuits.

In Proc. IEEE Int. Conf. on Computer-Aided Design,
pages 374{381, 1990.

[16] A. Saldhana, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Equivalence of Robust Delay Fault and Sin-

gle Stuck Fault Test Generation. In Proc. IEEE-ACM

Design Automation Conference, 1992.

[17] J. Savir and W. H. McAnney. Random Pattern Testa-

bility of Delay Faults. In Proc. IEEE Int. Test Conf.,
pages 263{273, 1986.

[18] F. F. Sellers, Jr., M. Y. Hsiao, and L. W. Bearnson.
Analyzing Errors with the Boolean Di�erence. IEEE

Trans. on Computers, C-17(7):676{683, July 1968.

[19] S. Srinivasan, G. Swaminathan, J. H. Aylor, and M. R.

Mercer. Combinational Circuit ATPG Using Binary

Decision Diagram. In IEEE VLSI Test Symposium,
pages 251{258, 1993.

[20] T. Stanion and D. Bhattacharya. TSUNAMI: A Path
Oriented Scheme for Algebraic Test Generation. In

Proc. IEEE Int. Conf. on Fault-Tolerant Computing,

pages 36{43, 1991.

[21] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli. Combinational Test Generation using Sat-

is�ability. Technical Report UCB/ERL M92/112, Univ.

of California, Berkeley, 1992.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

