
 Abstract

Accurate power estimation is essential for low power digital
CMOS circuit design. Power dissipation is input pattern depend-
ent. To obtain an accurate power estimate, a large input vector
set must be used which leads to very long simulation time. One
solution is to generate a compact vector set that is representative
of the original input vector set and can be simulated in a reason-
able time. In this paper, we propose an input vector compaction
technique that preserves the statistical properties of the original
sequence. Experimental results show that a compaction ratio of
100X is achieved with less than 2% average error in the power
estimates.

1. Introduction
The major source of power dissipation in digital CMOS cir-

cuits is the charging and discharging of capacitances during logic
transitions and is calculated for each gate in the circuit as:

(1)

whereCL is the load capacitance seen by the gate,Vdd is the sup-
ply voltage, f is the clock frequency, andE(switching) is the
expected number of output transitions per clock cycle.

Circuit level simulation based techniques [3][4] have been
developed which can capture the fine details of the transistor
model. These methods are accurate but suffer from high compu-
tational cost and memory overhead, which limits the size of the
input vector set to hundreds or thousands of vectors. This results
in inaccuracy in the power estimation process as described next.
Power consumption in digital circuits is input pattern dependent,
i.e. depending on the input vectors applied to the circuit input,
very different power estimates may be obtained. To obtain an
accurate average power consumption, a set of input vectors that
resemble the characteristics of data for typical applications is
required. Usually these characteristic input vector set has a size
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of millions of vectors. Input vector size of hundreds or thousands, if
selected arbitrarily, may not be able to capture this typical behavior
and may thus lead to underestimation or overestimation of the
power consumption of the circuit. One method for solving this
problem is to compact the millions of input vectors into a character-
istic stimulus vector set which has a much smaller size, yet is statis-
tically equivalent to the original larger vector set.

Gate-level power estimation uses eitherdynamic or static tech-
niques. Dynamic techniques explicitly simulate the circuit under a
gate-level logic model with a typical input vector sequence (or
input stream). Statistical techniques such as Monte Carlo simulation
approach [1] alleviate the above mentioned problem of pattern
dependence. This method however assumes that the signal and tran-
sition probabilities of the primary inputs are independent and may
therefore give inaccurate estimates.

Static techniques do not explicitly simulate the circuit. Instead,
they rely on statistical information (such as the mean switching
activity and correlations) about the input stream and then calculate
the same statistical information for the internal nodes of the circuit
in order to obtain the average power consumption of the circuit
[2][5][6]. The problem of input dependence is alleviated by using
appropriate statistical information that captures the characteristics
of the input vector. These methods are fast, but the accuracy is in
general not as high as that obtained from explicit simulation.

In conclusion, to achieve accurate power estimates (e.g. esti-
mating the power consumption of the chip before taping out),
explicit simulation is a better choice. To reduce the simulation time,
a compact input vector set that can capture the power consumption
behavior of the given input data has to be derived. In this paper, we
investigate and identify factors and properties of the input vector set
that influence the power consumption of the digital circuit and
develop an algorithm to compact a set of input vectors such that
thesepower-determining properties are preserved. In particular, the
spatiotemporal correlations of the inputs have direct impact on the
power consumption [6]. We describe a method of compacting a set
of input vectors such that the spatiotemporal correlations are pre-
served. From the experimental results, a compaction ratio of 100X
can be easily achieved with a less than 2% average error in the
power estimates.

2. Factors Affecting the Dynamic Power Consumption

Logic transition at the output of a node can be viewed as a prob-
abilistic event and hence the expected number of these transitions
over a period of time can be estimated by the transition probability
of the node. Under the assumption that the primary inputs are tem-
porally uncorrelated, the transition probability at the output of an
internal node (gate)n is given by:
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(2)

whereTPn andPn are the transition and signal probabilities ofn,
respectively. The signal probability depends on whether the inputs
of n are correlated or not. The assumption of spatial and temporal
independence is however not always true. Indeed, in most applica-
tions, only some input patterns out of all possible input patterns are
feasible and the sequence of the input patterns is far from random.
For example, in the microprocessor domain, input patterns are gen-
erated from architectural level traces which are driven by the
instruction opcodes and the instruction mix of typical applications.

Signal correlations among inputs of a gate are generated from
two sources. The first is the structural dependency due to reconver-
gent fanout. The second is the stochastic dependency due to the pri-
mary input correlations, that is, input lines that are structurally
independent may become correlated because of the circuit input
correlations [6].

If the circuit inputs are not temporally independent, the switch-
ing activity has to be captured by the transition probability which
depends on the sequence of input patterns applied and hence the
transition probability of the primary inputs. In [7], it is shown that
reshuffling the input vector sequence to achieve a different temporal
correlation while preserving the input signal probabilities leads to
large variations in the circuit power consumption. Similarly, in [6],
it is shown that spatiotemporal correlations at the primary inputs
have a significant impact on the power consumption of the circuit.
For an input sequence having high correlations (generated by a
sequence counter), the power consumption can be as low as 5% of
the power consumption for another input sequence which has low
correlations (generated by a random number generator).

Accounting for the all possible correlations is practically
impossible even for small circuits. In [6], correlations are approxi-
mated by considering only pairwise signal correlations. This gives
rise to sixteen correlation coefficients corresponding to the sixteen
possible transitions of a pair of signals (x,y). In [5], it is shown that
the accuracy in estimating the switching activity of individual
nodes in a circuit improves by an average factor of 6X compared to
the approaches that do not account for any of the correlations.

To summarize, signal probabilities, transition probabilities and
spatiotemporal correlations are the important properties of the pri-
mary inputs which affect the power consumption of the circuits.
Note that given the spatiotemporal correlations between two input
signalsx andy, the signal and transition probabilities ofx andy can
be easily calculated [6].

3. A Vector Compaction Algorithm

The problem of vector compaction is stated as follows:

Vector Compaction Problem 1: Given an input vector sequence
S1 of length L1 with some property P1, compact or reconstruct
another vector sequence S2 of length L2 with property P2 such that
P1 and P2 are the same (or nearly the same).❒

The compaction ratio is equal toL1/L2. For power estimation,
relevant properties are the joint transition probabilities of the signal
lines (which are related to their spatiotemporal correlation in a
straight-forward manner [6]). As it is difficult to account for the
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exact joint transition probabilities, we use the pairwise transition
probabilities as an approximation.

From the discussion in Section 2, if we closely capture the
pairwise transition probabilities, the compacted vector set should
represent the power-determining behavior of the original vector
set. To measure how closely the compacted vector set resembles
the original vector set, we use a metricC1 which measures the
absolute error in pairwise transition probabilities among all possi-
ble combinations of inputs and is given by the following equation:

(3)

whereDiff(xi,xj) is equal to:

(4)

xi is the ith input signal,P1
x(a->b),y(c->d) andP2

x(a->b),y(c->d) are
the pairwise transition probabilities of signalsx and y for S1 and
S2, respectively.

The vector compaction problem for power estimation is there-
fore formulated as follows.

Vector Compaction Problem 2:Given an input vector
sequence S1 of length L1 and a compaction ratio R, generate an
output vector sequence S2 of length L2 where L1/L2 = R and such
that C1, as defined in equations (3) and (4), is minimized.❒

We cast the problem of observing pairwise transition proba-
bilities to that of observing pairwise signal probabilities as fol-
lows. The four types of signal transitions,0->0, 0->1,1->0, 1->1
are encoded by 4 symbols,a, b, c,d, respectively. The pairwise
transition probability of two signalsx and y is then translated to
the pairwise signal probabilities of this two signals with the new
signals taking on values (a,b,c,d) instead of (0,1). For example,

(5)

Generating a vector sequence that satisfies the pairwise transi-
tion probabilities is thus reduced to generating a vector set of
symbols that satisfies the pairwise signal probabilities. After the
generation of the sequence of symbolic vectors, we have to con-
vert it back to a sequence of binary vectors for the simulation pur-
pose. If we have n-1 symbolic vectors, we should be able to
reconstruct n binary vectors accordingly. However, the consecu-
tive symbolic vectors may not be “temporally compatible” and
thus we may fail to generate a valid binary vector. The following
example illustrates the incompatibility problem. Letαi

n-1 andαi
n

be two consecutive symbols for signali. If αi
n-1 = a, then the cor-

responding binary bit pairbi
n-1 andbi

n is (0,0).αi
n is then used to

generate the binary bit pair (bi
n, bi

n+1). Butbi
n is already bound to

0 byαi
n-1, soαi

n can only bea or b since it corresponds to binary
pairs (0,0) and (0,1). Therefore only the following pair of symbols
are temporally compatible:(a,a), (a,b), (b,c), (b,d),(c,a),(c,b),
(d,c),(d,d).

One method for solving this problem is to neglect the tempo-
ral incompatibility between pairs of consecutive symbolic vec-

C1 Diff xi xj,( )

j i 1+=

n

∑
i 1=

n 1–

∑=

P1
xi a b→( ) xj c d→( )

P2
xi a b→( ) xj c d→( )

–

d 0=

1

∑
c 0=

1

∑
b 0=

1

∑
a 0=

1

∑

Px 0 0→( ) y 1 0→( )
P x a=( ) y c=( )∧( )=



tors. Instead of connecting the pairs of binary vectors generated
from the two consecutive symbol vectors, two separate pairs of
binary vectors are generated (we will refer to this technique as the
unconstrained symbolic vector compaction). In this case we gener-
ate2n binary vectors. When the vectors are input to the simulator,
only the power consumption due to alternative pairs of vectors will
be included. This method has a drawback that2n binary vectors will
be generated instead ofn. Therefore the compaction ratio will be
reduced by a factor of 2.

Another method for solving this problem is that when we gener-
ate the symbolic vectors, we make sure that the consecutive vectors
are temporally compatible (we will refer to this technique as the
constrained symbolic vector compaction).

 3.1. The Compaction Algorithm

First information on the pairwise transition probabilities (or
pairwise symbolic probabilitiesP(x=α^y=β)) is collected. The next
phase of the process is the vector generation stage which takes the
pairwise transition probabilities and a user-given compaction ratio
R and generates a set of symbolic vectors.

For the unconstrained symbolic vector compaction, a row based
construction is used in which one vector is built at a time until all
required vectors are generated. The objective of the construction
process is to maintain the pairwise transition probabilities. During
the vector construction process, a symbol is selected for each input
bit as follows. For the first bitx0, the symbolα that has the maxi-
mum transition probability(P(x0=α)) is picked.

For an input bitxj (j>0) the symbol that has the largest sum of
joint pairwise symbolic probabilities with the symbols that have
already been picked for the previous input bits(xi,i<j)  is selected.
In other words, the following objective functionF1 is maximized:

(6)

whereα is the symbol being considered forxj andβi is the symbol
already chosen for bitxi.

After symbols are chosen for all the bits for the first vectorV1,
the pairwise symbolic probabilities are different for the remaining
vectors since some symbolic pairs have already occurred inV1. The
pairwise symbolic probabilities have to be updated as follows. Let
L1 be the number of vectors to be generated andαi andβj be the
symbols chosen for bitxi andxj in V1, respectively. Before generat-
ing V1, the number of occurrences ofxi = αi andxj = βj in L1 vectors
is given by . After they are chosen
for V1, the number of occurrences ofxi = αi and xj = βj in the
remaining L1−1 vectors is equal to

. Therefore the pairwise sym-
bolic probability of xi = αi and xj = βj has to be updated as

.

Other pairwise symbolic probabilities ofxi = α andxj = β where
α ≠ αi or β ≠ βj are updated as

.
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The final phase is translating the symbolic vectors into binary
vector pairs which is a simple decoding mechanism.

For the constrained symbolic compaction, we ensure that the
symbolic vector generated at stept is temporally compatible with
the one generated at stept-1 as described next. When selecting a
symbolαi

t for bit xi for the tth vector, we can only choose from
the symbols that are temporally compatible with the symbolαi

t-1

for bit xi whereαi
t-1 is the symbol ofxi selected for the t-1th vec-

tor. We choose the symbol that is temporally compatible and has
the maximumF1 value as given in equation (6). Because of the
temporal compatibility restriction, the symbolic vectors generated
do not necessarily result in minimum C1. It is a difficult problem
to optimizeC1 for the constrained symbolic compaction. Here we
propose a greedy mechanism. After we obtain the first symbolic
vector sequence, we translate them to a binary vector sequenceS.
For each binary vector, we calculate the gainGi of changing the
value of bit xi. The gain is the change inC1 if xi is flipped. The bit
that has the largest positive gainG is chosen to change value. The
gains of the rest of the bits are recalculated after the value ofxi is
changed. The process is repeated for every bit that has a positive
gain. Then we go to the next vector and repeat the bit changing
mechanism. After we try on every vector, the whole process is
iterated again until no reduction inC1 is observed or the number
of iterations exceeds a user-specified number.

4. A Paradigm for Efficient and Accurate Multi-level
Power Estimation

Modern VLSI chips may contain millions of transistors. Even
though we may compact the input vectors to a few hundreds, it is
still very time consuming to simulate the whole chip at the circuit
(or even the gate) level. An efficient but accurate chip level power
estimation paradigm which addresses this problem is described
next.

The chip is first divided into building blocks. Each building
block has a detailed structural model at the gate or circuit level. A
behavioral model of the chip is built using the building blocks as
components. Simulation is then carried out at the behavioral level
(as it will be significantly faster than gate or transistor level simu-
lation). The input vectors to the simulator are derived from the set
of typical benchmark applications that the chip is designed for. A
statistical data collection agent is then used to collect the bit
switching statistics for the buses or nets that are connected to the
inputs of each building block. After the statistical data is col-
lected, the vector compaction program is used to generate the
compacted input vector set for each building block which can
then be fed to the corresponding low level simulator to estimate
the power consumption of each building block. The total power
consumption of the whole chip can be obtained by adding the
power consumption of all building blocks and the power con-
sumed at the buses which connect the building blocks.

5. Experimental Results

To demonstrate the effectiveness of the vector compaction
program (calledvcct), we carried experiments on MCNC-91
benchmark circuits and some datapath circuits such as adders and
multipliers.



The first experiment uses two sets of vectors, each having
100,000. The first one is a counter sequence with the sequence
restarting at a random number after a fixed number of vectors are
generated. The second vector set consists of a highly correlated vec-
tor set used for testing purpose. The vectors are fed to a gate-level
logic simulator which can measure real delay dynamic power con-
sumption. A clock frequency of 20MHz is assumed and all power
values are in mW. The results presented here are for the uncon-
strained symbolic vector compaction which has a faster runtime and
better accuracy than constrained symbolic vector compaction. This
experiment shows the importance of preserving the spatiotemporal
correlations during the vector compaction process. We compact the
vector set with a compaction ratio of 100X. Table 1 summarizes the
results. For each vector set, we provide the compaction results cor-
responding to when we account for both spatial and temporal corre-
lations (sp_te column) and when we only account for temporal
correlations (te onlycolumn). It can be shown that by considering
spatiotemporal correlations using pairwise transition probabilities,
the compacted vector gives a very accurate power estimation when
the vectors are pumped through the logic simulator.

The second experiment usesPowermill [4], a circuit level
power simulator which is the industrial standard for power estima-
tion. Two sets of vector sequences are used. Each has 4000 vectors.
The first set is a highly biased vector set and the second set is a ran-
domly-generated vector set. Each vector set is compacted by 20X.
Table 2 summarizes the results. Power is measured by the average
current drawn from the power supplies and accounts for both capac-
itive and short-circuit currents. The result clearly shows the effec-
tiveness of thevcct program in preserving the power-determining
behavior of the original sequence. The maximum error is below 5%
while the average error is less than 2%.

6. Conclusion

We presented a method of compacting a large vector set into a
characteristic vector set with smaller number of vectors. By doing
so, the number of simulation cycles required for obtaining accurate
power estimation is dramatically reduced. We showed that by keep-
ing the pairwise transition probabilities during the vector compac-
tion, the average error in power estimation using the compacted
vector is within 2% of that using the original vector.

Acknowledgement

The authors would like to thank Deo Singh of Intel Corp. for
posing the problem to us and Qing Wu of USC for helping with the
PowerMill runs.

Bibliography
[1] R. Burch, F. Najm, P. Yang and T. Trick, “A Monte

Carlo approach for power estimation”, IEEE Transaction on VLSI
Systems, vol. 1, no. 1, pp. 63-71, March,1993

[2] C-Y. Tsui, M. Pedram and A. M. Despain, “Efficient
Estimation of Dynamic Power Dissipation under a Real Delay
Model”, in Proceedings of IEEE International Conference on Com-
puter-Aided Design, pp. 224-228, Nov., 1993

[3] F. Rouatbi, B. Haroun and A. J. Al-Khalili, “Power
Estimation Tool for Sub-Micron CMOS VLSI Circuits”, in Proceed-
ings of European Design Automation Conference, pp. 204-209,
1992

TABLE 2. Current Estimation by PowerMill

current(mA) for
biased seq.

current(mA) for ran-
dom seq.

circuit original comp. original comp.

C432 0.407 0.411 0.775 0.748

C880 0.779 0.765 1.467 1.516

C1355 1.124 1.136 2.018 2.013

C1908 1.282 1.254 1.923 1.936

C3540 3.397 3.480 5.718 5.822

C6288 14.57 13.83 47.60 47.62

mul2 0.070 0.070 0.096 0.097

mul4 0.579 0.582 0.839 0.833

mul8 3.185 3.131 6.305 6.315

Avg.
% Error

1.78 1.28

[4] C. Deng, “Power Analysis for CMOS/BiCMOS Cir-
cuits”, in Proceedings of International Workshop on Low Power
Design, pp. 3-8, April, 1994

[5] R. Marculescu, D. Marculescu and M. Pedram, “Logic
level power estimation considering spatiotemporal correlations”, in
Proceedings of IEEE International Conference on Computer-Aided
Design, pp. 294-299, Nov., 1994

[6] R. Marculescu, D. Marculescu and M. Pedram, “Effi-
cient power estimation for highly correlated input streams”, in Pro-
ceedings of the 32nd IEEE Design Automation Conference, pp.
628-634, June, 1995

[7] S. Rajgopal and G. Mehta, “Experiences with Simula-
tion-Based Schematic Level Current Estimation“, International
Workshop on Low Power Design, pp. 9-14, April,1994

Table 1: %Error in power estimation using unconstrained
symbolic vector compaction: Real Delay Gate Level
Simulation (sp-te: spatiotemporal correlations; te:

temporal correlation only)

Cir.

vector sequence S1 vector sequence S2

Power
Est.

%Error

Power
Est.

%Error f

te
only

sp-
te

te
only

sp-
te

C432 856.8 24.94 1.72 701 9.60 0.43

C880 1403.2 3.00 0.98 1282.2 3.74 0.44

C1355 4499.6 19.96 2.77 3538.4 4.76 6.90

C1908 1173.7 7.85 0.38 1110.9 8.60 0.40

C3540 11985 13.36 0.58 13517 3.65 2.02

C6288 98573 0.25 3.25 122789 44.21 0.57

add16 1368.7 3.98 0.77 1286.2 16.39 0.49

mul2 153.1 75.31 0.52 140.9 2.63 0.92

mul4 770.2 14.31 0.52 879.8 15.51 1.07

mul8 5206.1 8.45 1.14 6193.6 11.05 0.28

mul16 27815 18.67 5.07 37552 40.70 0.36

parity 292.5 1.88 1.20 256.1 61.69 12.3

x1 2379.1 2.53 1.65 2147.1 9.27 0.15

apex7 1725.6 8.19 0.31 1653.4 6.35 1.14

Aver. 14.48 1.51 17.01 1.96


	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index


