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abstract
Transistor-level power simulators have been popularly used to

estimate the power dissipation of a CMOS circuit. These tools
strike a good balance between the conventional transistor-level
simulators, such as SPICE, and the logic-level power estimators
with regard to accuracy and speed. However, it is still too time-
consuming to run these tools for large designs. To simulate one-
million functional vectors for a 50K-gate circuit, these power
simulators may take months to complete. In this paper, we propose
an approach to generate a compact set of vectors that can mimic
the transition behavior of a much larger set of functional vectors,
which is given by the designer or extracted from application
programs. This compact set of vectors can then replace the
functional vectors for power simulation to reduce the simulation
time while still retaining a high degree of accuracy. We present
experimental results to show the efficiency and accuracy of this
approach.

1.  Introduction
For a CMOS circuit, power dissipation is caused by three

major types of currents: leakage current, short-circuit current, and
dynamic transition current. The leakage current (or static current)
is smaller than the other two types of currents by several orders of
magnitude, and thus, is usually ignored. The short-circuit current
occurs whenever a path from Vdd to ground is conducted at a

device. In some cases, short-circuit current cannot be ignored.
However, only the transistor-level simulators with continuous-
time modeling of the device can take this part into consideration
[3,4]. Logic-level power estimators completely ignore the short-
circuit current and focus on the dynamic transition current, which
is well recognized as the most dominating factor of power
dissipation in a CMOS circuit.

Dynamic transition power is strongly related to the transition
density of each internal signal [1]. Several methods
[5,6,7,8,9,10,11,12,13] have been proposed to estimate the
transition density of each internal signal at the logic level.
However, these logic-level approaches suffer from the drawback
of inaccuracy.
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The inaccuracy of logic-level approaches is caused by the
following reasons: (1) These approaches assumed each logic
toggle count represents a full swing of Vss to Vdd or vice-versa.

This assumption may not be true for glitches (partial voltage
swing). (2) The power consumed by charge/discharge at internal
nodes of complex CMOS gates is ignored. (3) Short-circuit current
is ignored. (4) The toggle power consumed by glitches or hazards
is sensitive to the accuracy of delay models.

Stat-of-the-art transistor-level power simulators (e.g.,
PowerMill [14]), which will be referred to aspower simulators for
the rest of the paper, are approximately 2 to 3 orders of magnitude
faster than SPICE. On the other hand, their accuracy is much
higher than that of the logic-level power estimators because
glitches and short-circuit current are also considered. These tools
strike a good balance between speed and accuracy, and are more
suitable for estimating the power dissipation of a design when
high accuracy is required.

For power simulators, a set of simulation vectors which can
characterize the typical behavior of the circuit is required. Such
simulation vectors may be generated from a program which
analyzes the circuit’s high-level model or be provided by the
designer. Also, in the cases of processors, a good set of vectors
could be derived from a set of target application programs.
Usually this set of simulation vectors is very large, hence the time
of running it on a power simulator is still prohibitively high. For
instance, a rough estimation shows that simulating 1,000,000
vectors for a 50K gate may take up to 3 months to complete [3]. In
these cases, a designer cannot afford to run a power simulator
using the original set of simulation vectors. One simple solution to
resolve this problem is to select a small subset from the original
set of vectors for power simulation. However, such vectors do not
represent theaveragebehavior of the circuit. Power estimation
based on such randomly selected vectors could produce biased
results.

In this paper, we propose a new methodology for power
estimation that combines the advantages of the logic-level
approaches and the power-simulator-based approaches. We first
use a logic simulator to simulate the entire set of functional
vectors and derive thetransition profileof the internal signals. We
then generate a new and compact set of vectors that would
produce an identical or similar transition profile as the original set
of vectors. Then we use such compact set of vectors for transistor-
level power simulation. Since the compact set mimics the original
(and large) set of functional vectors, it can be regarded as a good
representative of thetypical operations from the viewpoint of
power dissipation. The generated set of vectors is much smaller
than the original set of functional vectors, and thus, the transistor-
level power simulation time is reduced significantly.
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The rest of this paper is organized as follows. In Section 2, we
describe the logic-level power dissipation model used in our
approach. In Section 3, we formally describe the problem of
generating the compact set of vectors and propose an algorithm to
solve this problem. In Section 4, we present the experimental
results. Section 5 gives the concluding remarks.

2.  Logic-level Power Measure
Almost all logic-level power analysis approaches use the

following formula to model the power dissipation:

, where i is the index of an internal

signal,f andVdd are the clock rate and the supply voltage, andTi

and Ci are the transition density and loading capacitance,

respectively. It has been reported that glitches could be an
important factor of the total dynamic power dissipation in some
cases. The amount of glitches varies with different delay models.
No glitch is considered if a zero-delay model is used. To estimate
the glitches more accurately, a variable delay model should be
used at the cost of longer simulation time. According to a delay
model, we first run a logic-level simulator for the given set of
vectors and measure the transition density at each node of the
circuit. For the rest of this paper, we denote the original set of
simulation vectors given by the user asVoriginal and the new

compact set of simulation vectors to be generated asS.
We assume that a delay model is selected beforehand and used

implicitly whenever the logic-level simulation is mentioned for
the rest of this paper. The transition density of a signalg obtained
by logic simulation on a set of vectorV is denoted asT(V, g). For
each signal, transition density with respect toVoriginal is referred to

as thedesired transition density.
Definition 1: (Transition measure)The transition measure with
respect to a vector setV is defined as follows:

, where i is the index of an

internal signal,T(V, i) is the transition density established byV,
andCi is the loading capacitance, respectively.❏

Definition 2: (Model error)  For a vector setS, the model error
associated with this set is defined as the difference between the
transition measure ofS andVoriginal, i.e.,

∆Φ(S) = (Φ(S) − Φ(Voriginal)). ❏

3.  The Algorithm

3.1  Problem formulation
Our goal is to generate a compact set of vectors S that can

match Voriginal according to the above definition of logic-level

transition measure, i.e., to find a small set of vectorsS such that
the model error ∆Φ(S) is minimized. Our vector generation
algorithm generates one vector at a time. During the iterative
process, we denote the accumulated set of vectors generated so far
asScurrent. In the following, we first introduce some notations and

then discuss an algorithm to solve this problem.
Definition 3: (Transition momentum) For a signal g, the
transition momentum, denoted asTmmt(g), is the difference

between thedesired transition density and the transition density
with respect toScurrent, i.e.,

Pd f Vdd
2⋅

i
∑ Ti Ci⋅( )⋅=

Φ V( ) T V i,( ) Ci⋅( )
i

∑=

Tmmt(g) = T(Voriginal, g) − T(Scurrent, g). ❏

The value of a signal’s transition momentum is within [-1, 1].
If a signal has a positive transition momentum, then its desired
transition density is higher than the transition density established
by Scurrent. In other words, it is “under-transitioned” so far and the

vectors generated in the following iterations should increase its
transition activity. On the other hand, if a signal has a negative
transition momentum, then it is “over-transitioned”. Fig. 1 shows
the profiles of thedesired density and current transition density for

a set of internal signals. Signals 1-7 have positive transition
momentums and signals 8-10 have negative transition
momentums. To generate high quality vectors, the under-
transitioned (with positiveTmmt) signals should toggle in response

to the next vector to reduce the overall model error. Similarly, the
over-transitioned (with negativeTmmt) signals should not toggle

for the next vector. For each signal, the expected value for the next
vector is a function of the transition momentum as well as the
stable value at this signal produced by the last vector ofScurrent. In

the following, we define signal momentum to reflect a signal’s
expected value for the next vector during the vector generation
process.
Definition 4: (Signal Momentum) For a signalg, the signal
momentum denoted asSmmt(g), is a number within [-1, 1]. It is

computed by the following rules:
(1) If the stable value at signalg produced by the last vector is ‘0’,
thenSmmt(g) = Tmmt(g).

(2) If the stable value at signalg produced by the last vector is ‘1’,
thenSmmt(g) = − Tmmt(g). ❏

Intuitively, the signal momentum describes the expected value
for a signal. If it is positive (negative), then the signal expects a ‘1’
(‘0’) for the next vector. Once we have characterized the expected
value for each signal, generating the next vector can be regarded
as a search process for a vector that can produce the expected
value for as many signals as possible. Since usually it is
impossible to find a vector that produces expected values for all
signals, priorities should be assigned. Signals with larger loading
capacitance would have more influence on transition measure,
therefore they should be assigned a higher priority. Also one of
our goals is to match each internal signal’s transition density, a
signal with a larger absolute value of signal momentum (Smmt)

should be given a higher priority in our algorithm. Therefore, to
consider both effects, we use the product of a signal’s momentum

signal

desired transition-profile

current transition profile

transition

Transition
density

momentum

index

Fig 1: Illustration of the transition momentum during the
          process of generating power simulation vectors.
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and loading capacitance, i.e,Weight(g) = (Smmt(g)* Cg) to reflect

its priority during the search process of the next vector.

3.2  Backward weight propagation
Given a desired transition profile, we first compute the

transition momentum and the signal momentum to decide the
weight for each signal. After that, we use a technique, called
backward weight propagation, to combine the weight of every
signal to the primary inputs. Finally, we observe the combined
weights at the primary inputs to decide an input pattern that can
produce expected values at maximum number of signals.
Therefore, in a single traversal of the circuit from the primary
outputs towards the primary inputs, a new vector that attempts to
achieve maximum reduction in the model error established by the
current set of vectors is generated.

Consider a target signal that is visited during this back-
propagation process. We add up the original weight of this signal
with the weights propagated from each of its fanout signal(s). The
resulting weight, referred to asaccumulated weight, reflects the
combinedexpectations at this signal and its fanout-cone. We
further propagate this accumulated weight backward across the
current gate/signal based on a rule derived from the following
observations: Suppose the target node is an AND gate, and the
accumulated weight is positive (expecting a ‘1’ for the next
vector). Because value ‘1’ is the non-controlling value for an
AND gate, all its fanins should be ‘1’ to meet the expectation.
Therefore, we assign this accumulated weight to each of its fanins.
On the other hand, if the accumulated weight at this signal is
negative (expecting a ‘0’ for the next vector), then a ‘0’ at any of
its fanins will suffice to satisfy this condition because ‘0’ is the
controlling value for an AND gate. In this case, wesplit the
accumulated weight evenly among its fanins. Similar rules can be
derived for the other types of gates. We summarize the back-
propagation rules as follows: (1) For a buffer: simply assign
weight to its fanin. (2) For an inverter: simply assign (− weight) to
its fanin. (3) For an AND (OR) gate: if the expected value is the
non-controlling value, then copy the accumulated weight to each
fanin of the target signal. On the contrary, if the expected value is
the controlling value, then divide the accumulated weight evenly
among the target signal’s fanins. The above discussion assumes
that the network has been decomposed into simple primitive gates.

Once the accumulated weight reaches the primary inputs, we
simply convert the weights into binary values by taking their
signs. Since the generated vectors are for power simulation, we
assume all flip-flops are controllable. That is, all outputs of flip-
flops are regarded as primary inputs for the cases of sequential
circuits.
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Fig. 2: An example to illustrate the backward weight propagation.
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Fig. 2 shows an example of this back-propagation process. It
starts from the primary output signalo whose weight is assumed
to be 0.8 (computed by taking the product of the signal
momentum and its loading capacity). Since this corresponds to an
expected value of ‘1’, which is a controlling value for an OR gate,
the weight 0.8 is divided evenly and we assign 0.4 to its faninsf
andg. Similar operations are executed for signalsf, g, e.In Fig. 2,
the notationw + w’ = w’’ associated with each signal means that
the individual weight derived before back-propagation isw, the
weight that propagated from its fanout-cone isw’, and the final
accumulated weight isw’’. Signal e is an arbitration point because
its two fanout branches have different expected values (- 0.1 from
the branch tof and 0.15 from the branch to g). In this case, the
fanout branch frome to g dominates, and thus, the expected value
of signal f is sacrificed. Note that signalo tries to assert an
expected value ‘1’ by propagating a split weight 0.4 to both fanins
f and g, and indeed this goal is satisfied by the fanin signalg.
Therefore, the only signal that is not satisfied in this example is
signalf. After all signals’ weights are combined and propagated to
the primary inputs, an input vector is decided by the rule of
translating a weight to an expected value. For the example in
Fig. 2, the vector generated is (abcd) = (0111).

The complete algorithm of power vector generation is
summarized as follows. Given a large set of original simulation
vectors, we first derive its transition profile by a logic simulator
using an appropriate delay model. Then we assign one starting
vector and then iteratively generate the power vectors one at a
time using the back propagation technique we just described. This
algorithm continues until one of the following 2 stopping criteria
is satisfied: (1) The model error is smaller than a user-specified
threshold. (2) A limit on the number of generated vectors is
reached.

4.  Experimental Results
We implemented the proposed algorithm and tested it on a set

of ISCAS89 benchmark circuits. We assume a fixed probability at
each primary input to generate 1000 original vectors (the reason
for generating only 1000 vectors asVoriginal will be discussed

later). We regard this set of vectors as the original set of functional
vectors. The desired transition profile of internal signals are
derived by logic simulation. Then we run our program to generate
a compact set of vectors. As mentioned earlier, for sequential
circuits, we assume each flip-flop is fully controllable, and thus,
we can explore the freedom of assigning values to the present state
lines in our algorithm. We use a zero-delay model in the current
experiment.

The results are shown in Table 1. It can be seen that the model
errors can be reduced to below 2 or 3% with only 200 vectors for
all the benchmark circuits. Note that power vector generation
times listed in the last column (seconds on a Sun-Sparc5) are
small as compared to the times of running PowerMill as shown in
Table 2. Table 1 also shows the average of the absolute transition
density error between the original set and the generated vectors,
which is computed byΣi( | T(S, i)-T(Voriginal, i) | ) / n, wheren is

the total number of signals. It is only slightly higher than the
model error.

To run PowerMill, we translate each primitive gate to its
transistor level counterpart using standard device parameters. For
example, an AND gate is converted to a NOR gate with inverting



input signals. The width and length dimensions of p-channel and
n-channel transistors used are (1000, 100) and (500, 100)µm,
respectively.

We run PowerMill on these 200 vectors for each circuit. For
comparison, we also run PowerMill on the original vectors. Note
that in this experiment we only generate 1000 vectors as the
reference vector set. We have also generated a much larger set of
vectors and found that our program produces very similar results
to those presented in Table 1. However, due to the long simulation
time of PowerMill, we could not afford to simulate such long
vector set for comparison. Table 2 shows the results of running
PowerMill on Voriginal (1000 vectors) andS (200 vectors). The

average ground current are obtained by assuming the clock rate is
1MHz. The last column shows the ratio of current obtained by
running PowerMill on S versus that obtained by running
PowerMill onVoriginal, i.e.,

ratio = Ignd(S) / Ignd(Voriginal).

5.  Conclusions
Power simulators offer an accurate solution to estimate power

dissipation for CMOS circuits. However, for larger designs, it is
common that the given set of functional vectors which
characterizes the typical operations of a circuit is too long for such
tools to handle. On the other hand, logic-level approaches, though
efficient, may not be able to provide accurate estimation due to
some inherent limitations. In this paper, we propose a method that
combines the advantages of the logic-level and the transistor-level

Circuit Model
error

abs. transi-
tion error

Time
(seconds)

s1196 0.4% 2.0% 66
s1238 1.3% 2.5% 78
s1423 1.5% 2.5% 78
s1488 1.2% 3.5% 162
s1494 0.9% 3.6% 112
s5378 2.2% 3.2% 170
s9234 1.5% 2.4% 290
s13207 0.8% 1.2% 682
s15850 1.3% 1.5% 770
s35932 1.1% 4.4% 2006
s38417 1.3% 3.7% 1567
s38584 1.1% 2.8% 1910
Average 1.2% 2.8% ---

Table 1: Results of generating 200 power vectors.
(The size ofVoriginal is 1000)

Circuit

Ignd
(Vorig)
(mA)

Ignd
(S)

(mA)

ratio
(S/Vorig)

Time
(Vorig)
(sec)

Time
(S)

(sec)

s1196 0.052 0.052 1.01 773 162

s1238 0.050 0.051 1.02 737 156

s1423 0.047 0.050 1.06 601 134

s1488 0.053 0.052 0.97 713 141

s1494 0.188 0.187 0.99 2413 489

s5378 0.874 0.848 0.97 1253 266

s9234.1 1.821 1.759 0.96 2470 484

s13207.1 0.975 0.922 1.06 1410 269

Table 2: Results of running PowerMill.
(S: compact set)
(Vorig: original set)

approaches. Our approach generates a compact set of vectors that
reflects a similar transition profile as the one produced by the
given set of simulation vectors. We developed an iterative
algorithm to generate this compact set of vectors. In each iteration,
we compute the expected value of each signal based on a guidance
called transition momentum. Then we perform the backward
weight propagation to generate a high quality vector. Our
experimental results show that this is a promising approach for
using transistor-level power simulators for large designs to obtain
accurate power estimation within reasonable time budget.
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