
Abstract - Logic-level modeling of asynchronous circuits in the
presence of races frequently gives rise to oscillation. A new
method for solving oscillation occurring in feedback loops (FLs)
is presented. First, a set of graph traversal algorithms is used to
locate the FLs and order them with respect to a dominance rela-
tion. Next, a sequence of resimulations with the feedback vertices
forced into stable states is performed. The proposed method can
handle noncritical races occurring in asynchronous circuits and
has applications in feedback bridging fault simulation.

I. INTRODUCTION

 Oscillation control is the process of detecting oscillation during
simulation and taking the appropriate corrective actions. There are
many situations that cause uncontrolled oscillation in logic-level
modeling (at the gate or switch level) of circuits that containFeed-
back Loops(FLs). For instance, standard logic-level models lack the
capability of modeling noncritical races in asynchronous circuits.
Noncritical races are common in redundant networks, such as self-
checking logic [1], in which there are several legal stable states.

The oscillation control in existing simulators consists only of a
detection mechanism, which is triggered when the number of events
exceeds a predefined limit or when too long time has passed without
reaching a stable state [2]-[4]. The oscillating signals are set to the
unknown logic state (X), and no further analyzing is performed to
solve the situation. Any circuit node logically sensitized by an X state
node is also set to X. This spread of X values is a pessimistic
approach and implies that logic-level design verification of many
types of asynchronous circuits is not possible. Several studies have
addressed the management of X values [5]-[8]. However, these meth-
ods are not sufficient when oscillating signals are present. No sys-
tematic strategy for handling oscillation in FLs has so far been
proposed.

This paper presents a general method for global oscillation control
in feedback loops consisting of several logic stages. Any number of
oscillating FLs can be handled, and a graph that captures the logical
dependencies among the FLs is dynamically created when oscillation
occurs.

In the context of fault simulation, the bridging and transistor
stuck-on fault models are known to be representative for a sizeable
class of failures occurring in CMOS circuits [9]. These fault types
often introduce FLs dynamically for certain input patterns [10]-[14].
If an FL consists of an even number of inverting stages, called an

 *) This work was funded by the Swedish Research Council for Engineering
Science (TFR) under contract #95-608.

EFL, an originally combinational or synchronous circuit is then
likely to become a circuit with asynchronous “memory” behavior.

In a single EFL, the logical effects can be traced to the primary
outputs by forcing the EFL into the two possible stable internal states
and resimulating the network twice. On the other hand, if the FL con-
sists of an odd number of inverting stages, it is uncertain whether the
loop will oscillate or settle in a stable state, possibly with some nodes
set to intermediate values. Which of the two situations occurs
depends on the electrical characteristics, such as the effective propa-
gation delay of the loop relative to the rise and fall times [15], which
are difficult to capture at the logic level in general situations.

For example, consider the end-around carry (eac) adder in Fig. 1a,
which is commonly used for one’s complement arithmetic. The input
vector transition (0011)→ (0110) in () results in oscilla-
tion in a standard logic-level simulator. Given the initial state
()=(01), the right adder generates and the left adder gen-
erates . In the next step, the two adders generate and

 and the network is back into its initial state. Hence, an oscil-
lation between the two unstable states (01) and (10) will occur, as can
be seen in the simplified flow table in Fig. 1b, in which there is a
cycle in the column for the input vector (0110). However, any of the
two stable states ()=(00) or (11) is an acceptable steady-state
response because they result in the output patterns ()=(11) and
(00), respectively, both of which represent the value zero. In a real
circuit, the race that occurs for the transition (01)→(10)→(01) etc. in
() will result in the network reaching one of the stable states irre-
spective of the effective propagation delays of the two adders. How-
ever, the idealistic timing model at the logic level prevents the
network from reaching a stable state. There is no model described in
the literature that can handle this phenomenon. When several FLs are
included in the network, the situation becomes even more compli-
cated because the FLs may be logically dependent on one another.

x1y1x0y0

q1 q0 q0
+

0=
q1

+
1= q0

+
1=

q1
+

0=

q1 q0
z1 z0

q1 q0

(b) Next state (

Fig. 1. (a) Oscillation in an end-around-carry adder. (b) Flow table.

q1q0

x1y1x0y0

0000 0011 0110 0111 0010 . . .

00 00 01 00 01 00

. . .01 00 01 10 11 00

11 00 01 11 11 01

10 00 01 01 01 01

q1
+

q0
+

)

FA

x1

cin

y1

z1

scout
FA

x0

cin

y0

z0

scoutq1 q0

(a)

0→1 1→00 1

= stable
state

Oscillation Control in Logic Simulation using Dynamic Dominance Graphs*

Peter Dahlgren
Department of Computer Engineering, Chalmers University of Technology

S-412 96 Gothenburg, Sweden

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

The method for oscillation control proposed in this paper consists
of four operations: 1) detecting the oscillation, 2) locating the FLs, 3)
analyzing dependencies among the FLs and 4) resimulating the net-
work with feedback loops cut.

In the first operation, a directed graph called the Y graph is con-
structed. In this graph, all oscillating FLs and their logical implica-
tions on sensitized combinational paths are represented. During the
next operation, an algorithm identifies the cycles in the Y graph, a
process similar to the problem of finding a minimum set of feedback
vertices in a directed graph [16]-[18]. If there exists more than one
cycle, the third operation analyzes the logical and structural depen-
dencies among the cycles and orders the cycles with respect to a
dominance relation. The graph of this relation is then used to deter-
mine in which order the FLs must be processed.

For example, a common building block in error-detecting VLSI
systems is the residue generator, which generates the check symbol
to the residue code [1][19]. A residue generator is often implemented
as a tree of eac adders, as shown in Fig. 2. In the generator in Fig. 2a,
oscillation can occur in all three EFLs and the behavior of the lower
EFL is logically dependent on the upper two EFLs, which means that
the twodominant EFLs must be processed first.

Finally, in the fourth operation, the feedback loops are broken and
a series of resimulations with the feedback nodes set to definite logic
values is performed.

Section II reviews the event-driven algorithm used as the basis for
the proposed simulation strategy. Section III presents a method for
oscillation detection and defines the Y graph. Section IV presents a
graph traversal algorithm for locating FLs in the Y graph. Section V
concentrates on the logical dependencies among the FLs, and a
graph-based strategy for systematically processing the FLs is pro-
posed in Section VI. Finally, some simulation results are given in
Section VII.

II. BASIC LOGIC-LEVEL SIMULATION ALGORITHM

The main procedure of a standard event-driven logic simulator is
outlined in Fig. 3 (see for instance [2][20]). This procedure is per-
formed for each input vector. Initially, all input nodes that change
state are put in a time ordered queue (ev_list).

The predict_node_event procedure tests the new situation that
has arisen as an effect of the node value assignment on a gate input
node by computing the output value of that gate. An event is gener-
ated and put inev_list if the new logic value differs from the current
value of the node. The standard set of logic states is: L, H and X,
where the L (low) and H (high) states are referred to asdefinite logic
states. A gate in the basic algorithm may be acomplex gate that
implements an arbitrary logic function. A network is represented by
a number of interconnected complex gates.

Furthermore, by introducing the concept ofChannel-connected
Blocks, CBs (or transistor groups), [5], in switch-level networks, it is
possible to describe algorithms that are applicable to both the switch
and gate levels because the signal propagation between two CBs is
unidirectional. Only channel-connected MOS transistors are
included in a CB, and any gate terminal of a transistor within a CB is
defined as an input to that block. An event at the gate level corre-
sponds to aninter-CB propagation at the switch level, which may
consist of several local events within a CB. The algorithm descrip-
tions that follow use complex gates (CGs) as the smallest compo-
nents. It is therefore irrelevant whether a CG represents a logic gate
or a CB. Details about the simulator into which the proposed algo-
rithm was implemented are given in [21].

III. DETECTION ANDREPRESENTATION OF ANOSCILLATING
CIRCUIT, THEY GRAPH

The detection of oscillation can be performed by counting the
number of events generated. Oscillation has occurred when the event
counter exceeds a predefined value, . In order to abort the
oscillation and to further analyze the feedback situations that cause
the oscillation, a graph called theY graph is defined. By introducing
an additional logic state, the Y state, this graph can be constructed
automatically when the oscillation is detected by a few simple mod-
ifications of the basic algorithm. The Y state is similar to the X state
when applied as input to a CG but can prohibit the event generation.
The modifications of the basic algorithm in Fig. 3 are as follows:

(1) If the maximum number of events has exceeded then:
(a) Inset_node_state, if the logic state predicted fornd

differs from the current state, set the node to the Y state.
(b) In predict_node_event, if the node is already assigned

 the Y state, prohibit event generation on that node.
(2) If the number of events is less than then:

During the simulation, any Y state node is changed to the X
state and the node evaluation continues in the normal mode.

By this scheme, the event generation will eventually fade out and a
steady state will be reached. Any output node that is logically depen-
dent on any of the oscillating nodes will be set to the Y state. When
a new input vector is applied, the current FLs may be cut and/or new
FLs may be created. Modification (2) together with setting the event
counter to zero for each new input vector assure that the event gener-
ation will continue normally when a new input vector is applied.

All nodes assigned the Y state in the original network can be
viewed as a directed graph where each vertex,vi, corresponds to a
CG, CGi, whose output node is assigned the Y state. A directed edge
exists from vertexvi tovj iff: i) the output of CGi is directly connected
to the input of CGj in the corresponding network and ii) the output of
CGj is logically sensitized by the output of CGi. (ii) means that the Y
state input to CGj must not be logically masked by the other inputs
of CGj. A directed cyclic path corresponds to a potentially oscillating
FL in the original network. The Y graph forms a dynamic model of
the oscillation situation for the current input state and includes the

i7 i6 i5 i4

FA FA

FA FA

FA FA

Transformer

| I | 3

11 to 00

FA FA

Transformer

| I | 3

11 to 00

i15 i8

R_tree8

...
i7 i0

R_tree8

...i3 i2 i1 i0

R_tree8

(a) (b)

Fig. 2. Modular implementation of an (a) 8-bit and (b) 16-bit
residue-3 generator.

simulate(ev_list)
While(ev_listnot empty)

let nd =get_event(ev_list)
set_node_state(nd)
Foreach(Fan out Gate, G, driven bynd)

predict_node_event(G, nd)
end foreach

end while

Fig. 3. Basic event-driven simulation algorithm.

NCGmax

NCGmax

NCGmax

logical implications of the FLs on all sensitized signal paths in the
original network.

Fig. 4a shows the Y graph of the oscillating adder in Fig. 1. A full
adder implementation that consists of four CGs (the inverse carry and
sum generation blocks and two inverters [6]) was used. The defini-
tion of the Y graph implies that the primary inputs are never included
in a Y graph. Note that the two edgese1 ande2 in Fig. 4a correspond
to the same network node (q1), which is connected to the input of two
subsequent CGs. Fig. 4b shows a simplified Y graph in which each
full adder has been replaced by a single CG.

IV. LOCATING FEEDBACK LOOPS IN ALOGICNETWORK

Locating the FLs that are potentially oscillating corresponds to
finding all directed cycles in the Y graph. Only one cycle through any
vertex is allowed. This single-cycle restriction is imposed because it
must be possible to order the cycles with respect to a dominance rela-
tion prior to the processing of them (see Section V). Finding cycles
in a Y graph is similar to the problem of finding a minimum set of
feedback vertices, which is known to be an NP complete problem
[22]. However, the single-cycle restriction significantly reduces the
ways in which cycles can be formed. Moreover, a set of feedback ver-
tices is not sufficient to represent the cycles; all vertices belonging to
each cycle must be considered (see Section V).

Here, a graph traversal algorithm is presented that repeatedly tries
to build cycles by assigning a unique number to all vertices belonging
to a particular path. A predecessorvp of a vertexvs is a vertex for
which there exists a directed edge fromvp to vs. The graph tracing is
performed in reverse order of the directed edges, starting with the
output vertices and recursively continuing with the predecessors.
This is basically a depth-first search with a termination condition
based on a vertex enumeration scheme. Each vertex can be assigned
three different types of identifiers: 1) no assignment, 2) a number,m,
or 3) a number with a bar,m. A global variablegc is used to select
new numbers for the vertices when there is more than one predeces-
sor. The variablegc can be increased by one at any instance of the
algorithm. Thetrace algorithm, given in Fig. 5, is invoked for one
output vertex at a time. Before each of these initiating calls is per-
formed,gc is increased by one and the output vertex is set to the cur-
rent value ofgc.

Condition 3 in Table 1 indicates that a cycle has been found for the
path numberedm and a new procedure,mark_cycle, is initiated
which searches through the cycle once more and marks all vertices
that belong to that cycle bym. In Conditions 1 and 2 in Table 1,gc is
increased by one and a new path is started if there is more than one
predecessor in the Y graph. For instance, vertexv in Fig. 4a has two
predecessors. Condition 4 indicates that a vertex that already belongs
to a cycle has been reached and the single-cycle restriction implies
that the search along this path can be terminated. Condition 6 means
that the entire cycle has been located in themark_cycle procedure
and all vertices have been markedm.

As an example, Fig. 6 shows thetrace algorithm applied to the Y
graph of the residue-3 generator in Fig. 2a for the situation in which
all three FLs are oscillating. The boldfaced numbers indicate the cur-
rent value of the vertices and the encircled numbers show the order
in which the various steps are carried out in thetrace algorithm.
Steps 1-4 in Fig. 6a all satisfy Condition 1 in Table 1. In step 5, cycle
C1 is found and marked, i.e. Condition 3 is satisfied and vertexa is
logged as theFeedback Vertex (FV) of C1. Next, in Fig. 6b, vertexb
is subjected to Condition 4 and not processed. As step 6, there is
therefore only one predecessor to select which is assigned the value
2. There are three possible predecessors to select, as step 7. Assum-
ing that the path to vertexc is selected, cycleC2 is found in step 9 and
c is logged as an FV. In step 10 in Fig. 6c, Condition 2 is satisfied and
the vertex number atd is overwritten. Finally, in step 12, cycleC3 is
found withd logged as an FV. No further paths are possible to trace
because all predecessors of any vertex are subjected to Condition 4.
Next, calling trace from output vertexI0 results in vertexe being set
to 4. No more paths are possible to trace, and the final state is given
in Fig. 6d.

Fig. 4. (a) Y graph for the oscillating eac adder.
(b) Simplified Y graph.

(a) (b)

z0z1

z1 z0

e1 e2

= Primary

= CG

output
v

Fig. 5. Algorithm: Locating feedback loops.

trace(v: vertex)
Foreach(predecessor, vpi , of v)

check vertex vpi and perform operations
according to Table 1 (Conditions1-4).

end foreach
mark_cycle(v: vertex)

Foreach(predecessor, vpi , of v)
check vertex vpi and perform operations
according to Table 1 (Conditions5-7).

end foreach

Table 1. Primitive operations performed for various situations in
thetrace (Conditions 1-4) andmark_cycle (Cond. 5-7)
algorithms.

Cond. Current situation Operations performed

1

2

3

4 No operation

5

6

7 All other situations No operation

v vpi... ...
m v vpi... ...

m m
a)

If vpi is first predecessor at this

else:
b) trace(vpi)

v vpi... ...
m gc

b)

c) trace(vpi)

a) gc=gc+1

instance oftrace:

v vpi... ...
m k

k¹≠ m

v vpi... ...
m m

v vpi... ...
m m

a)

b) mark_cycle(vpi)

v vpi... ...
m k

v vpi... ...
m m

v vpi... ...
m m

a)

b) mark_cycle(vpi)

v vpi... ...
m m Exit frommark_cycle.

Save vertex vpi as FV for cyclem.
Log the cycle length.

Fig. 7a shows an example of another asynchronous circuit. Let the
output z0 of the eac adder in Fig. 1a be connected to the input as
shown in Fig. 7a. Moreover, assume that the adder is oscillating and
that (meaning thats=r=1). Fig. 7b shows the resultant Y graph
when the transition 0→1 occurs atc. Applying thetrace algorithm
results in either the situation in Fig. 7c or 7d, depending on the order
in which the predecessors are processed. The fact that the set of
cycles and FVs is not unique is of no major importance as cycles that
are mutually dependent on one another are merged into a single
cycle, as described in Section V.

V. ORDERING OFCYCLES UNDER ADOMINANCE RELATION

Given that the cycles in the Y graph have been located, the next
step is to process the FLs by forcing the network nodes correspond-
ing to FVs into definite logic values and resimulating the network.
However, when there are several cycles, the processing of the FLs
must be performed in a certain order because there may be logical
dependencies among various FLs. Furthermore, several FVs may be

processed simultaneously if they are independent of one another. A
dominance relation is therefore defined that describes the logical
dependencies among the cycles in the Y graph.

A. Dominance between Feedback Loops
A cycle C1 dominates another cycleC2, written asC1→ C2, if

there exists a directed path in the Y graph from a vertex inC1 to a
vertex that belongs toC2. For example, the dominance relations in
Fig. 6d are:C1→ C3 andC2→ C3. The dominance relations between
all connected cycles in a Y graph can be obtained by the traversal
algorithm given in Fig. 8. For a given cycle, all paths originating
from vertices belonging to the cycle are traversed in reverse order
depth-first, and the search terminates when either another cycle is
found or the path returns to the original cycle.

B. Cycle Dominance Graphs
The set of relations between neighboring cycles obtained by the

cycle_depend algorithm can be represented as aCycle Dominance
Graph (CDG). In a CDG, each vertex represents a cycle in the Y
graph, and there is a directed edge from vertexCk to Cp iff Ck→ Cp.

The assignment of definite logic values to the nodes in one loop
that dominates another loop can result in the elimination of the dom-
inated FL owing to logical properties of the Y state (which are iden-
tical to those of the X state). Given that there are no directed cycles
in the CDG, there is a unique order in which the FVs must be pro-
cessed without violating the logical implications. A root vertex of a
CDG is a cycle in the Y graph that is not dominated by any other
cycle. Fig. 9a shows the CDG of the Y graph in Fig. 6d, and Fig. 9b-
c shows the CDGs for the two sets of cycles in Fig. 7c-d.

Given that the CDG is acyclic, let thevertex distance of a
vertexCp be defined by themaximum number of vertices that can be
included in a directed path between a root vertex andCp. All FLs that
correspond to vertices which are located at the same distance in a

(b)

Feedback

(a)

Fig. 6. (a)-(c) Thetrace andmark_cycle algorithms applied to the
residue-3 generator. (d) Final state.

I0I1

(d)

1 e
3

3

4
C1: a
C2: c
C3: d

ca

d

(c)

C1 C2

C3

1 4

2 21 1

I0I1

1

1

1 1

1

2

3 4 5

a

C3

C2
C1

1 I0I1

1

1

1

b

2

22

6

78

9 c

1

1

I0I1

2 2

1

310

11 3
12

c

d

1

1 1

vertices

i

k current
vertex identifierk, =

operation
order

=

c 0=

Fig. 7. (a) An asynchronous circuit that results in overlapped
cycles. (b) Y graph. (c)-(d) Results oftrace algorithm.

(a) (b)

(c) (d)

FVs: va, vb, vc FVs: va, vb

& s

&&

&

r

c
z0

0→1

z0

s

r

3

3

11

2 2

va vc
vb

2

2

11

11

va
vb

cycle_depend
Foreach(cycle, C)

let u denote the value of the vertices in C
Foreach(vertex, vci , that belongs to C)

search_dominant_cycles(vci , u)
end foreach

end foreach
search_dominant_cycles(v: vertex,z: vertex_number)

Foreach(predecessor, vpi , of v)
if (vertex identifier of vpi is of typek)

then
if (z ≠ k) then Save relation “Ck → C ”

(* cyclek dominates C *)
end if

else search_dominant_cycles(vpi , z)
end if

end foreach

Fig. 8. Algorithm: determining cycle dominance relations.

C3

C2

C3

C2C1

C1

C2

C1

(c)(a) (b)

Fig. 9. Examples of cycle dominance graphs.

Cp[]

CDG can be processed simultaneously because they are logically
independent of one another. The distance to each vertex can be
obtained by theget_distance algorithm given in Fig. 10, which
searches through all directed paths depth-first and assigns a number
to each vertex. The number is increased by one each time a vertex is
passed and, if the number is less than or equal to the current value of
the vertex, the search is terminated. Initially, assume that all vertices
have been assigned the value zero. Next,get_distance is called from
each root vertex with a zero as argument.

As an example, Fig. 11 shows theget_distance algorithm applied
to a CDG. Fig. 11a shows the values at the vertices after the call
get_distance(Ca,0), and Fig. 11b shows the final state after the call
get_distance(Cj,0).

All vertices in a CDG can be divided into classes with respect to
the vertex distance. Let thevertex distance class Dk be defined by all
verticesCp for which . Fig. 11c shows the vertex distance
classes of the example.

If there are directed cycles in a CDG, they must be eliminated
before the vertex distance classes can be determined because directed
cycles indicate that there are mutual dependencies among various
FLs. All vertices belonging to a directed cycle in the CDG are
replaced by a single vertex. This is the reason for the single-cycle
restriction in thetrace algorithm. The process of locating cycles in a
CDG is similar to thetrace algorithm in Section IV. For instance, in
Fig. 9b, the two verticesC1andC2 are merged into a single vertex and
the topology of the resultant graph becomes identical to that shown
in Fig. 9c.

VI. PROCESSINGFEEDBACK LOOPS ANDRESIMULATION

Two approaches are proposed for the solution of FLs represented
as a CDG:A) finding one stable solution andB) evaluating all possi-
ble solutions.

A. Finding one Stable State
The basic principle here is to cut all FLs corresponding to the ver-

tices in a given distance class, to force the FVs associated with each
FL into a definite logic state and then to resimulate the network. The
distance classes,Di, are processed one at a time in increasing order
of the class indexi. As only one solution is considered, the logic state
to which an FV is set can be chosen as the latest definite logic state
assigned to the corresponding network node. The maximum number
of simulations is given by the number of vertices in the longest
directed path between any root vertex and a leaf vertex in the CDG.
In the procedure given in Fig. 12, letL denote a list of all FVs and the
corresponding definite logic states to which they will be set.Lk
denotes the list of logic state assignments for the vertices that belong
to the distance classDk.

The procedureprocess_loops is aborted as soon as a stable solu-
tion has been found, regardless of the number of distance classes pro-
cessed. Furthermore, loops corresponding to vertices at a greater
distance class number may be stabilized owing to the cycle domi-
nance. This is checked incut_and_gen, in which the logic state is
changed and an event is generated only for those network nodes
whose values are still oscillating. For example, in the situation shown
in Fig. 9a, the FVs corresponding toC1 andC2 are processed simul-
taneously in the first step. In the next step, whenC3 is to be pro-
cessed, this FL may already be stabilized, meaning that no further
operations are necessary.

B. Evaluating all Possible Solutions
In the general case that all stable solutions must be found, the

process_loops procedure must be called for each possible assign-
ment of logic states to the vertex nodes inL. Next, the set of output
vectors obtained for each solution of the algorithm in Fig. 12 must be
evaluated. If there are output vectors for which the logic state of a
given bit position differs, the value of this bit position must be set to
X, which means that this output value is dependent on the internal
state of the network. Of course, this approach, which is similar to
evaluating all possible function values of an element with X values
as input, may be very time-consuming if there are many cycles. How-
ever, in many applications, one stable solution is sufficient or only a
few cycles need to be considered. For instance, in conventional
bridging fault simulation, the Y graph consists of only a single cycle,
which means that only two solutions are required.

get_distance(C: vertex,n: number)
Let n= n+1
Foreach(successor, Cs , of C)

if (n > current value of Cs)
then Assign the value n to Cs

get_distance(Cs , n)
end if

end foreach

Fig. 10. Algorithm: Computing vertex distance classes.

Cj Ck

Cl Cm

Cb Cc

Cd Ce

Ca

Cf

Cg

Ch

Ci

D0 = { Ca, Cj }

1

1

1

2

2

3

0 0

0

0 0 0

00

indicates that m has been
replaced by a greater=m

Cj Ck

Cl Cm

Cb Cc

Cd Ce

Ca

Cf

Cg

Ch

Ci

1

1
3

3

0 4

3

2 0 1

21 1

31

2

4

(a)

(b) (c)

Fig. 11. (a)-(b) Determining the vertex distances in a CDG.
(c) Resultant distance classes.

D1 = { Cb, Cf, Ck, Cl }

Distance classes

D2 = { Cg, Cm }
D3 = { Cc, Ce, Ce }
D4 = { Cd, Ci }

 number in a later step.

Cp[] k=

process_loops(D: set of distance classes,L: list of node states)
let i = 0
let max_dist = number of distance classes
while (network is not free from oscillation andi ≤ max_dist)

cut_and_gen(Di , Li)
simulate(ev_list) (* See Fig. 3 *)
i = i + 1

end while
cut_and_gen(Dk: vertex distance class, Lk: list of node states)

Foreach(vertex, Ci , in Dk)
let nd = the network node corresponding to the FV of Ci
if (nd is not assigned a definite logic state)

then setnd to the logic state Lki
put an event fornd in globalev_list

end if
end foreach

Fig. 12. Algorithm: Processing feedback loops.

VII. EXPERIMENTAL RESULTS

The simulation strategy proposed in Sections III-VI was imple-
mented in the switch-level simulator described in [21] and various
asynchronous circuits were simulated. Tables 2 and 3 show the
results of an experiment in which 1,000 randomly chosen input vec-
tors were applied to the tree-based networks in Fig. 2. It can be seen
that, for the traditional models, the oscillation resulted in output X
values for 25%-70% of all input vectors applied. On the other hand,
the proposed method predicted the correct results for all input vec-
tors. Furthermore, it can be seen in Table 3 that, on average, two
oscillating feedback loops were found for the 545 input vectors that
gave rise to oscillation in the res_gen16 network. The strategy for
finding one stable solution only (Section VI.A) was used. The low
number of additional calls tosimulate (639) implies that, in most
cases, the network became stable after only one resimulation step in
the algorithm in Fig. 12. The author is not aware of any other logic-
level simulator that can handle the types of networks given in Fig. 2.

VIII. DISCUSSIONS

All operations but the assignment of definite logic states to FVs in
Fig. 12 are also applicable to FLs containing an odd number of
inverting stages. If more accurate timing information were provided,
the proposed method could be extended to predict whether such FLs
would oscillate or settle and, in the latter case, determine the stable
state. Odd numbered FLs can then be managed in a way similar to
that for EFLs.

IX. CONCLUDING REMARKS

A new method for handling oscillation occurring in feedback
loops was presented. The proposed simulation strategy extends the
class of asynchronous circuits that it is possible to analyze at the
logic level by modeling races and has applications in the simulation
of feedback faults. Two types of graphs were defined to represent all
potentially oscillating loops and the logical dependencies among
them. A set of simple graph traversal algorithms was presented to
locate the feedback loops and to determine the order in which they
must be processed. An arbitrary number of oscillating loops can be
handled, and the method can easily be implemented in standard
event-driven simulators.

ACKNOWLEDGMENTS

The author would like to thank Eskil Johnson at Chalmers Univer-
sity of Technology and Peter Liden at AB Volvo for their valuable
criticism and stimulating discussions.

a. In the basic algorithm, one call to simulate is done for each input vector.

REFERENCES

[1] M. J. Ashjaee and S. M. Reddy, “On totally self-checking check-
ers for separable codes”,IEEE Trans. on Comp., Vol. 26, Aug.
1977, pp. 737-744.

[2] M. Abramovici, M. A. Breuer and A. D. Friedman,Digital Test-
ing and Testable Design, Computer Science Press, 1990.

[3] P. Agrawal and W. J. Dally, “A hardware logic simulation sys-
tem”, IEEE Trans. on CAD, Vol. 9, No. 1, Jan. 1990, pp. 19-29.

[4] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler,
“COSMOS: A Compiled Simulator for MOS Circuits”,Proc
24th ACM/IEEE Design Automation Conf., 1987, pp. 9-16.

[5] R. E. Bryant, “A Switch-Level Model and Simulator for MOS
Digital Systems”,IEEE Trans. on Comp., Feb 1984, Vol. C-33,
No. 2, pp. 160-177.

[6] P. Dahlgren, and P. Liden, “Efficient modeling of switch-level
networks containing undetermined node states”,Proc. ACM/
IEEE Int. Conference on CAD, 1993, (ICCAD-93), pp. 746-752.

[7] L. P. Huang and R. E. Bryant, “Intractability in linear switch-
level simulation”,IEEE Trans. on CAD, 1993, Vol. 12, No. 6,
pp. 829-836.

[8] J. Gecsei and E. Cerny, “Self-adjusting networks for VLSI sim-
ulation”, IEEE Trans. Comp., Sept. 1987, Vol. C-36, No. 9, pp.
1114-1120.

[9] F. Ferguson and J. Shen, “Extraction and simulation of realistic
CMOS faults using inductive fault analysis”, inProc. IEEE Int.
Test Conference, Sept. 1988, pp. 475-484.

[10] S. Xu and S. Y. H. Sy, “Detecting I/O and internal feedback
bridging faults”,IEEE Trans. Comp., June 1985, Vol. C-34, No.
6, pp. 553-557.

[11] P. C. Maxwell and R. C. Aitken, “Biased voting: A method for
simulating CMOS bridging faults in the presence of variable
gate logic thresholds”, inProc. IEEE Int. Test Conference, Oct.
1993, pp. 63-72.

[12] J. M Acken and S. D. Millman, “Accurate modeling and simu-
lation of bridging faults”, inProc. IEEE Custom integrated
Conf., 1991, pp. 17.4.1-17.4.4.

[13] T. M. Storey and W. Maly, “CMOS bridging fault detection”,
Proc. IEEE Int. Test Conference, 1991, pp. 1123-1131.

[14] J. Rearick and J. H. Patel, “Fast and accurate CMOS bridging
faults simulation”, inProc. IEEE Int. Test Conference, Oct.
1993, pp. 54-62.

[15] Y. K. Malai, A. P. Jayasumana and R. Rajsuman, “A detailed
examination of bridging faults”, inProc. IEEE International
Conference on Computer Design, 1986, pp. 78-81.

[16] G. W. Smith and R. B. Walford, “The identification of a minimal
feedback vertex set of a directed graph”,IEEE Trans. on Circuit
and Systems, Jan 1975, Vol. CAS-22, No. 1, pp. 9-15.

[17] P. Ashar and S. Malik, “Implicit computation of minimum-cost
feedback-vertex sets for partial scan and other applications”,
Proc. 31st ACM/IEEE Design Autom. Conf.,1994, pp. 77-80.

[18] S. Chakradhar, A. Balakrishnan and V. D. Agrawal, “An exact
algorithm for selecting partial scan flip-flops”,Proc. 31st ACM/
IEEE Design Automation Conference, June 1994, pp. 81-86.

[19] D. Nikolos, A. M. Paschalis and G. Philokyprou, “Efficient
design of totally self-checking checkers for all low-cost arith-
metic codes”,IEEE Trans. on Comp., Vol. 37, No. 7, July 1988,
pp. 807-814.

[20] M. A. d’Abreu, “Gate-level simulation”,IEEE Design and Test
of Computers, Dec. 1985, pp. 63-71.

[21] P. Dahlgren, “A multiple-dominance switch-level model for
simulation of short faults”,Proc. ICCAD-95, San Jose, CA,
1995, pp. 674-680.

[22] R. M. Karp, “Reducibility between combinatorial problems”, in
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds., New York: Plenum Press (1972), pp. 85-103.

Table 2. Simulation results for traditional models.

Network

No. of output vectors containing X values

COSMOS [4]
Basic algorithm in
Section II ([21])

res_gen8 291 266

res_gen16 686 615

Table 3. Simulation results for the proposed method.

Network

Oscillation detected Total no. of
calls to

simulatea

Overhead,
additional

no. of events
No. of input

vectors
Average no. of

FLs found

res_gen8 227 1.26 1,231 5%

res_gen16 545 1.93 1,639 11%

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

