
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Lower Bounds on Test Resources for Scheduled Data Flow Graphs�

Ishwar Parulkar, Sandeep K. Gupta and Melvin A. Breuer

Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, CA 90089-2562.

Abstract|Lower bound estimations of resources at
various stages of high-level synthesis are essential to
guide synthesis algorithms towards optimal solutions.
In this paper we present lower bounds on the num-
ber of test resources (i.e. test pattern generators, sig-
nature analyzers and CBILBO registers) required to
test a synthesized data path using built-in self-test
(BIST). The estimations are performed on scheduled
data
ow graphs and provide a practical way of select-
ing or modifying module assignments and schedules
such that the resulting synthesized data path requires
a small number of test resources to test itself.

I. Introduction

Estimation of data path resources during high-level synthe-
sis enables a designer to evaluate certain aspects of a design by
comparing the estimates with speci�ed constraints. By provid-
ing quick feedback for any design decision, estimates aid the
designer in exploring a number of design alternatives instead
of synthesizing a complete implementation and then measur-
ing the quality of each design. Lower bounds on resources not
only greatly reduce the size of the solution space but also pro-
vide a means to measure the proximity of the �nal solution to
the optimal one.
There is some recent work for estimating lower bounds

on functional resources such as adders, multipliers and reg-
isters [1],[2],[3],[4]. For making a synthesized design testable
using a built-in self-test (BIST) strategy, some of the registers
in the design have to be modi�ed to operate as test pattern
generators (TPGs), signature analyzers (SAs), built-in logic
block observers (BILBOs) or concurrent BILBOs (CBILBOs)
during the test mode. One consideration in selecting a BIST
strategy is the extra area needed for these test resources. A
number of high- level synthesis approaches that incorporate
BIST have been investigated in the recent past [5],[6],[7],[8].
In these approaches, cost functions and heuristics are used to
guide allocation algorithms toward low BIST area overhead
designs. None of these approaches can estimate the e�ect of a
decision on the �nal number of test resources required.
In this paper we derive lower bounds on test resources for

BIST. We believe this is the �rst work on estimating lower

�This work was supported by the Advanced Research Projects

Agency and monitored by the Department of the Army, Ft.Huachuca,

under Contract No. DABT63-95-C-0042. The information reported here

does not necessarily re
ect the position or the policy of the Government

and no o�cial endorsement should be inferred.

FUNCTIONAL UNITS

(ADDERs, ALUs,
MULTIPLIERs, etc.)

STEERING
LOGIC

R
E
G
I
S
T
E
R
S

CONTROL
UNIT

Part of data path tested Test resources for BIST

DATA PATH

Fig. 1. Test methodology

bounds on test resources for self-testable data paths in high-
level synthesis. The lower bounds are tight in the sense that
they can be achieved if there are no functional resource con-
straints. The bounds can be used as an estimate to deter-
mine the quality of a schedule and module assignment in terms
of BIST area overhead of the synthesized design. The lower
bound estimation technique can be used on partial sched-
ules and module assignments to guide them towards optimal
testable solutions. The bounds also serve as an independent
measure for comparing the quality of di�erent high-level syn-
thesis systems and algorithms that perform testability opti-
mization.
The remainder of the paper is organized as follows. In Sec-

tion II we present the testability model and some basic de�-
nitions. Section III deals with the derivation of lower bounds,
their computational complexity and their use in high-level syn-
thesis. Section IV describes data relating to lower bounds on
the test resources of some high-level synthesis benchmark cir-
cuits.

II. Preliminaries

A. Test methodology

The high-level synthesis process assumed in this work is di-
rected towards synthesizing data paths that are to be tested
using a partial intrusion pseudo-random BIST methodology. A
structural model of register-transfer level (RTL) designs syn-
thesized by high-level synthesis systems is shown in Fig. 1. In
partial intrusion BIST, a subset of registers are used in the
test mode to test all the functional modules in the data path
as depicted in Fig. 1. In the test mode, some of the registers in
the data path are recon�gured to support test pattern genera-
tion (TPG), and some to support signature analysis (SA). By
appropriate selection of test resources (TPGs and SAs) all the
functional modules in the design are tested and in the process,
some of the interconnections (multiplexer paths and wires) are
also tested. The rest of the circuitry is assumed to be tested us-
ing functional tests. Note that in this partial-intrusion BIST
methodology the test resources and paths used to generate,
transport and collect test data are a subset of the functional
data path. No additional data path components such as reg-

isters, multiplexers or interconnect are added for the purpose
of testing.
For testing all the functional modules in the design using a

small number of test resources, di�erent mappings of registers
to TPGs and SAs need to be considered. With respect to a
module, a mapping of registers to TPGs and SAs that can be
used to test the module is called a BIST embedding for that
module. Embeddings for modules could be chosen such that
a register that is a TPG for a module is an SA for a di�erent
module. In this case the register acts as a TPG and SA at dif-
ferent times and has to be modi�ed to a BILBO register. The
BILBO register has a higher overhead than a TPG or a SA. If
the embedding chosen is such that a register is a TPG and an
SA for the samemodule then that register has to act as a TPG
and SA at the same time. To ensure high fault-coverage a con-
current built-in logic block observation (CBILBO) register is
required [9].
Choosing embeddings that maximize the usage of registers

as test resources between modules and minimize CBILBO sce-
narios results in a low BIST area overhead [8]. Functional
constraints determine the sharing of modules (portion of data
path to tested) by operations and the sharing of registers (data
path components to be used as test resources) by variables.
The functional constraints thus impose lower bounds on the
number of test resources required to test all the modules. If
additional registers and/or interconnections (not used in the
functional mode) were to be used to test a circuit, only two
TPGs and one SA would be required, assuming binary oper-
ations. But since test resources are selected from the set of
functional registers this is not the case. Another point to note
is that the objective of our testability optimization is BIST
area overhead. Hence test concurrency (number of modules
that can be tested simultaneously) does not depend on func-
tional concurrency but rather on the sharing of test resources
between modules.

B. Notation and de�nitions

The behavioral description is assumed to be given in the form
of (1) a data
ow graph (DFG) G = (V;E), where V is the
set of operations and E is the set of variables (operands and
results of the operations), and (2) a schedule S : V ! f1, 2,
3, ...g, where S(v) corresponds to the control step in which
operation v is scheduled. Single operation per clock cycle is
assumed and the synthesized data path is non-pipelined. All
operators are assumed to be binary and commutative. Non-
commutative operators can be handled by adding additional
constraints. Unary operators can be treated as a special case
of binary operators. The module assignment is de�ned as �M :
V !M , where M is the set of available modules. The subset
of V mapped onto module Mi will be referred to as Vi. Each
operation v 2 Vi will be referred to as an instance ofMi. �M
can be viewed as a partition fM1;M2; :::;Mmg of the set of
operations V into m modules.

De�nition 1: The temporal multiplicity of module Mi,
TM(Mi) is the number of operations from V mapped onto
Mi, i.e. TM(Mi) =j Vi j.

Consider the scheduled DFG shown in Fig. 2 and the follow-
ing module assignment. Operations +1 and +2 are assigned
to M1 and operations �1 and �2 are assigned to M2. Thus
V1 =f+1;+2g where each element is an instance of M1 and
TM(M1) = 2.

De�nition 2: The input variable set of module Mi, de-
noted by IMi

, is the set of all the operand variables associated

+1

+2 *1

*2

c

d e

f g

h

a b

1

2

3

4

0

Fig. 2. A scheduled DFG

with each instance j of Mi. The output variable set of
module Mi, namely OMi

, is the set of all the output variables
associated with each instance j of Mi.

For the scheduled DFG of Fig. 2 and the above mentioned
module assignment IM1

= fa; b; c; dg and OM1
= fd; fg.

For a module, any register to which an input variable is as-
signed can be used as a TPG and any register to which an
output variable is assigned can be used as an SA. The distri-
bution of the elements of the input variable sets and output
variable sets of modules determines the possible candidates for
TPGs and SAs for those modules. In determining a minimal
area BIST solution for a design, di�erent BIST embeddings
for a module are explored. Embeddings that share test re-
sources between modules are desired since they reduce the to-
tal number of test resources required to test the data path.
Thus for maximizing the sharing of TPGs between modules,
it is desirable to assign registers such that each register has
variables in common with as many input variable sets as pos-
sible. Similarly the number of output variable sets with which
each register has at least one common variable should be max-
imized. Also, a CBILBO register is expensive since its area
is approximately twice that of a normal register. In a glob-
ally minimal BIST area overhead solution, a register could be
modi�ed into a CBILBO register even though it is not neces-
sary to do so. However a situation where modifying a register
to a CBILBO is absolutely necessary for good fault coverage is
the one which results in high BIST area overhead. A detailed
description of the conditions for maximizing sharing of test
resources and minimizing essential CBILBOs during register
and interconnect assignment and the associated algorithms is
given in [8].

III. Lower bounds on test resources

A necessary condition for a module assignment to produce
a valid circuit implementation is that the operations corre-
sponding to a shared resource (i.e. all v 2Mi) do not execute
concurrently. A schedule determines the module assignment
solution space. Module assignment in turn determines the in-
put and output variable sets of modules. The variables in
these sets can be distributed across registers to ensure max-
imum sharing of registers as test resources between modules
resulting in low BIST area overhead. A schedule also deter-
mines the lifetimes of variables and a�ects their compatibil-
ity when being assigned to registers. Thus a schedule and a
module assignment together a�ect what can be achieved by
register and interconnect assignment in terms of the poten-
tial of sharing registers as test resources and avoiding essen-
tial CBILBOs. There is a great deal of
exibility in register
and interconnect assignment in terms of optimizing for BIST

area overhead. However, the optimum that can be achieved is
bounded by the schedule and module assignment. Typically,
several schedules and module assignments that have a desir-
able latency and functional area can di�er signi�cantly in their
test resource requirements. For a given schedule and module
assignment, establishing what can be achieved in terms of reg-
ister and interconnect assignment to minimize test resources is
a key question in incorporating testability overhead optimiza-
tion techniques in the scheduling phase of high-level synthesis.

A. Lower bounds on the number of TPGs and SAs

We address the following two questions. Given a scheduled
DFG and a module assignment �M , among all register and
interconnect assignments that can be associated with the given
schedule and module assignment 1) what is the lower bound on
the number of TPGs required to generate patterns to test all
the modules, and 2)what is the lower bound on the number of
SAs required to compress test responses for all the modules?
Note that we are interested in �nding the lower bounds on

the BIST area while relaxing the functional area constraints.
The total number of registers or amount of interconnect re-
quired to achieve this bound is not being considered. A data
path that achieves these bounds could have a higher functional
area than another data path that might not meet the bounds
on the number of TPGs or SAs.
Consider the following example of a scheduled DFG shown

in Fig. 3(a) and the following two module assignments.
Assignment I:(Fig. 3(b)) Operations `+1' and `+3' are as-

signed to one module and operation `+2' is assigned to a sec-
ond module. M1 = f+1, +3g and M2 = f+2g.
Assignment II:(Fig. 3(c)) Operations `+1' and `+2' are as-

signed to one module and operation `+3' is assigned to a second
module. M1 = f+1, +2g and M2 = f+3g.
Consider all possible register and interconnect assignments

for the above two module assignments. Any register which is
assigned at least one variable from the output variable set of
a module can be used as a SA for that module.
For Assignment II, variables a and c can be assigned to

the same register since their lifetimes do not overlap and this
register can be used as a SA to test both M1 and M2 since
a 2 OM1

and c 2 OM2
. Hence the lower bound on the number

of SAs in this case is LB#SAs = 1.
For Assignment I it is not possible to �nd such a register

assignment. In this case OM1
= fa; cg and OM2

= fbg. Since
the lifetime of b overlaps with the lifetimes of both a and c it
cannot be assigned to a register to which a or c is assigned.
Hence for any register assignment the minimum number of SAs
required to test M1 and M2 is LB#SAs = 2.
An analogous situation occurs in the case of the input vari-

ables of operations corresponding to the lower bound on the
number of TPGs. The concepts of output storage concurrency,
inputs storage concurrency and maximal concurrent operation

set de�ned below help model the dependence of BIST area on
schedules and module assignments.

De�nition 3: a) The output variable of an operation v 2 V

is the variable corresponding the outgoing edge of v in G. For
a scheduled DFG, G = (V;E) the output storage concur-
rency of a subset of operations Q � V , denoted by COS(Q),
is the maximum number of output variables of operations in
Q alive at the same time.
b) An input variable of an operation v 2 V is a variable

corresponding to an incoming edge of v in G. For a scheduled
DFG, G = (V; E) the inputs storage concurrency of a sub-
set of operations Q � V , denoted by CIS(Q), is the maximum

1

2

3

a

b

c

(a)

a

b

c

a

b

c
(b) (c)

M1

M2

M2

M1

ASSIGNMENT I ASSIGNMENT II

+1

+3

+2

+1

+3

+2

+1

+3

+2

SCHEDULED DFG

Fig. 3. E�ect of module assignment on LB#SAs

number of input variables of operations in Q alive at the same
time.

The output storage concurrency is a measure of the mini-
mum number of storage locations that would be required to
store the outputs of the operations in Q. For the scheduled
DFG in Fig. 3, for the subset of operations Q1 = f+1,+2g,
the output storage concurrency COS(Q1) = 2 since both the
output variables a and b are alive at the same time. Similarly
for Q2 =f+1,+3g, COS(Q2) = 1 and for Q3 =f+1,+3,+2g,
COS(Q3) = 2.

De�nition 4: Given a scheduled DFG, G = (V;E) and a
module assignment �M = fM1,M2,...,Mmg a maximal con-
current operation set VCmax is a set of m operations, each
of which is assigned to a di�erent module.

A maximal concurrent operation set refers to the maximal set
of operations that can be executed simultaneously in real time
because each of them have a dedicated hardware resource to
which they are mapped by the module assignment. Note that
in the actual behavior (scheduled DFG) these operations may
not be required to execute concurrently. However the module
assignment has assigned resources such that they can execute
concurrently. For Assignment II discussed previously there are
two maximal concurrent operation sets V 1

Cmax
= f+1,+3g and

V 2
Cmax

= f+2,+3g.
Using the concepts ofmaximal concurrent operation set, out-

put storage concurrency and inputs storage concurrencywe can
compute the lower bound on the number of SAs and TPGs re-
quired for any data path synthesized from a particular schedule
and module assignment. The proofs of Theorem 1 and of the
lemmas and theorems to follow are presented in [10].

Theorem 1: For a given scheduled DFG G = (V;E) and
module assignment �M , the lower bound on the number of
SAs required to test all the modules in the data path is

LB#SAs = min
8 VCmax

COS(VCmax);

where the minimum is over all maximal concurrent operation
sets of �M .

For Assignment I in the previous example, the maximal con-
current operation sets are V 1

Cmax
= f+1,+2g and V 2

Cmax
=

f+3,+2g. Hence the lower bound on the number of SAs is
LB#SAs = min f COS(V

1
Cmax

); COS(V
2
Cmax

) g = min f2, 2g =
2. For Assignment II, the maximal concurrent operation sets
are V 1

Cmax
= f+1,+3g and V

2
Cmax

= f+2,+3g. Hence LB#SAs

= min f COS(V
1
Cmax

); COS(V
2
Cmax

) g = min f2, 1g = 1.
Similarly, the lower bound on the number of TPGs can be

computed using the input storage concurrency of the maximal
concurrent operation sets.

Theorem 2: For a given scheduled DFG G = (V;E) and a
module assignment �M , the lower bound on the number of
TPGs required to test all the modules in the data path is

LB#TPGs = min
8 VCmax

CIS(VCmax);

where the minimum is over all maximal concurrent operation
sets of �M .
The lower bounds derived above are tight. Given complete

exibility in assigning registers and interconnect without any
area constraint, these bounds can be achieved. Theorems 1
and 2 indicate that to lower the BIST area overhead of the
synthesized data path a module assignment that has a maximal
concurrent operation set with low output (and inputs) storage
concurrency is preferable.

B. Lower bounds on CBILBOs

Any self-adjacent register may be modi�ed into a CBILBO for
the test mode. However, a CBILBO is absolutely required to
test a module (or is essential) only if all possible BIST embed-
dings of the module use the same register as a TPG and SA.
Thus, self-adjacency is only a necessary condition for a regis-
ter to be an essential CBILBO. To determine the lower bound
on the number of CBILBOs we �rst need to know the mod-
ule assignment condition that, when followed by any possible
register and interconnect assignment, results in a self-adjacent
register.

Lemma 1: Given a scheduled DFG G = (V;E) and module
assignment �M = fM1;M2; :::;Mmg a self-adjacent register
is created in the data path irrespective of the register and
interconnect assignments if and only if there exists a module
Mi such that IMi

\ OMi
6= �. The registers to which any

element(s) of IMi
\OMi

is assigned are self-adjacent registers.

Lemma 1 states that variables that are members of the input
variable set as well as the output variable set of a module form
a self-adjacent register. So any register to which these variables
are assigned will form a self-adjacent register. However, the
temporal multiplicity of a module determines whether the self-
adjacent register has to be an essential CBILBO [8]. We have
de�ned the concept of an essential concurrent operation and
storage concurrency to �nd lower bounds on the number of
CBILBOs.

De�nition 5: An operation is an essential concurrent op-
eration if it is an element of allmaximal concurrent operation
sets of a module assignment.

From the de�nition of a maximal concurrent set, the module
to which an essential concurrent operation is assigned has only
one operation assigned to it, i.e., the temporal multiplicity of
the module is 1. The module assignment condition for an
essential CBILBO is stated next as Theorem 3.

Theorem 3: Given a schedule and a module assignment �M ,
a CBILBO is essential to test module Mi for all register and
interconnect assignments if TM(Mi) = 1 (i.e. only one opera-
tion is assigned to Mi) and IMi

\OMi
6= �.

If a module assignment has the property stated in Theorem
3, the register assignment and interconnect assignment cannot
avoid a CBILBO. If the register and interconnect assignment is
performed without regard for functional area but with the sole
objective of minimizing CBILBOs, the number of CBILBOs
would depend on the number of essential concurrent operations
with overlapping input and output variable sets.

+1

1

2

3

a b c

(a)

(c) (d)ASSIGNMENT II ASSIGNMENT III

d e

f

a d

1

2

3

a b c d e

f

a d

1

2

3

a b c d e

f

a d

M1

M2
M1

M2
+2

1

2

3

a b c d e

f

a d

M1

M2

M3

ASSIGNMENT I(b)SCHEDULED DFG

+1

+3

+2

+1

+3

+2

+1

+3

+2

+1

+3

Fig. 4. Module assignments and LB#CBILBOs

De�nition 6: The essential concurrent operation set
Vess of a module assignment is a maximal set of operations
that exist in all the maximal concurrent operation sets of the
module assignment. The set of modules corresponding to the
operations in Vess shall be denoted by Mess.

The essential concurrent operation set associated with a
module assignment is thus the set of all essential concurrent
operations of that module assignment.

De�nition 7: The storage concurrency of a set of vari-
ables Q, denoted as CS(Q), is the maximum number of vari-
ables in Q that are alive at the same time.

Theorem 4: Given a scheduled DFG G = (V;E) and module
assignment �M = fM1;M2; :::;Mmg, the lower bound on the
number of CBILBOs required to test all the modules is

LB#CBILBOs = CS(
[

8Mi2Mess

(IMi
\OMi

))

Consider the scheduled DFG shown in Fig. 4(a). Note that
the output and one input variable of operations `+3' and `+2'
is the same, namely, a and d. This occurs in the case of iter-
ative computations. For scheduling purposes the loop is bro-
ken. Consider the following three module assignments for the
scheduled DFG.
Assignment I: (Fig. 4(b)) Operations `+1', `+2' and `+3'

are all assigned to di�erent modules, i.e. M1 = f+1g, M2 =
f+2g and M3 = f+3g. Since IM2

\ OM2
= fdg 6= � and

IM3
\ OM3

= fag 6= �, according to Lemma 1 registers to
which variables a and d will be assigned will be self-adjacent
registers. There is only one maximal concurrent operation set
VCmax = f+1,+2,+3g and each of the operation is an essen-
tial concurrent operation. The intersection of the input and
output variable sets is non-empty only for two of the three
modules to which these essential concurrent operations are as-
signed, namely M2 and M3. The lower bound on the number
of CBILBOs according to Theorem 4 is CS(fa; dg) = 2 since
both variables are alive at the same time.
Assignment II: (Fig. 4(c)) In this assignment the essential

concurrent operation `+3' in Assignment I is assigned to the
same module as operation `+1'. Now we have M1 = f+1,+3g

and M2 = f+2g. This module assignment has only one es-
sential concurrent operation, namely operation `+3'. Since for
module M2 to which this essential concurrent operation is as-
signed, IM2

\ OM2
= fdg 6= �, according to Theorem 4 the

lower bound on the number of CBILBOs is CS(fdg) = 1.
Note that IM1

\OM1
= fa; fg 6= �. So registers to which vari-

ables a and f will be assigned will be self-adjacent registers.
Note that assignment of variable f results in a self-adjacent
register only because `+1' and `+3' are assigned to the same
module. Also even though M1 has self-adjacent registers it
does not require a CBILBO as TM(M1) = 2.
Assignment III: (Fig. 4(d)) In this assignment we haveM1 =

f+1g and M2 = f+2,+3g. This module assignment also has
only one essential concurrent operation as in Assignment II,
namely operation `+1'. However for the module M1 to which
this essential concurrent operation is assigned , IM1

\OM1
= �.

Hence the lower bound on the number of CBILBOs is 0. Note
that IM2

\OM2
= fa; dg so registers to which a and d are as-

signed will be self-adjacent registers but a register assignment
can be found such that M2 does not require a CBILBO.
Thus, to lower the number of CBILBOs in the data path

the number of essential concurrent operations that have in-
tersecting input and output variable sets should be reduced.
The lower bound can be achieved by relaxing the functional
area constraint. A register assignment that achieves this lower
bound could have more than the minimum number of func-
tional registers required.

C. Use of lower bound estimation in synthesis algo-
rithms

The ability to predict area-performance characteristics of de-
signs without actually synthesizing them is vital to produce
quality designs in a reasonable time. Computation of lower
bounds on test resources provides a synthesis system with a
quick way of evaluating the testability overhead of the design.
More speci�cally, the proposed lower bounds can be used for
the following.
1. To select schedules from a set of schedules with the same

latency and resource requirement. For a given behavior,
di�erent schedules are possible such that they have the
same latency and satisfy the same module constraints but
have di�erent lower bounds for test resources.

2. Given a schedule, to �nd a module assignment that re-
quires few test resources. For a given schedule, di�erent
module assignments have di�erent lower bounds on test
resources. The lower bound estimation technique can be
used to compare di�erent module assignments or to incre-
mentally perform module assignment for a solution with
a low test resource requirement.

3. To trade-o� latency for area. Generally, latency is traded-
o� for a reduction in the number of modules. Often,
increasing latency by a few clock steps does not reduce the
module requirement. However, it could a�ect the lower
bounds on test resources and thus BIST area.

4. To prune the search space and direct the search during
register and interconnect assignment towards low testa-
bility overhead designs.

5. To provide a common base for evaluating the quality of
di�erent high-level synthesis systems and algorithms that
have testability overhead as an optimization objective.

We have developed e�cient algorithms for quick computa-
tion of the lower bounds. The algorithm for computing lower
bounds on the number of TPGs and SAs has worst case com-
plexity O(L �m �(n

m
)m), where L is the latency of the schedule,

n is the number of operations (nodes in the DFG) and m is the
number of modules assigned. The algorithm is e�cient in spite

TABLE I Lower bounds for minimum latency schedules of di�eqn

Sched. Type of Lat. # mod. Lower bounds
sched. (L) (m) SA TPG CBILBO

S1 ALAP 4 5 3 5 1
S2 ASAP 4 5 2 4 0
S3 Inter. 4 5 3 4 0

TABLE II Lower bounds for di�eqn

Sched. Lat. # mod. Lower bounds
(L) (m) SA TPG CBILBO

S1 6 4 2 4 1
S2 6 4 2 4 0
S3 6 4 1 4 0

of the exponential complexity because the number of modules
m is usually small. Furthermore, properties of module assign-
ments and maximal concurrent operation sets can be used to
reduce the size of the exponential space. The lower bound
on CBILBOs can be computed in O(L �m) time. A detailed
description of the theory and algorithms can be found in [10].

IV. Experimental results

To demonstrate the use of the proposed lower bound compu-
tation in evaluating the testability qualities of schedules and
module assignments, we applied it to some well-known high
level synthesis benchmarks: 1) the 2nd order di�erential equa-
tion - di�eqn, 2) the Tseng data
ow graph - Tseng, 3) the
auto regression �lter element - AR Filter, and 4) the 5th order
elliptic wave �lter - ewf [11].
Table I depicts bounds for three di�erent schedules of dif-

feqn. The minimum latency for this benchmark is 4. As-
late-as-possible (ALAP) scheduling and as-soon-as-possible
(ASAP) scheduling are two popular scheduling techniques for
achieving minimum latency schedules. Both ASAP and ALAP
schedules of the di�eqn require 5 modules. It can be seen
that the lower bound on SAs, TPGs and CBILBOs required
if schedule S2 is used is lower than the lower bounds of sched-
ule S1. The bounds for an intermediate schedule, S3, with
the same latency are also shown. Three more schedules each
with a latency of 6 and using 4 modules are shown in Table
II. These results demonstrate that schedules that are equally
attractive from a functional resource and latency point of view
can di�er greatly in the minimum test resource requirement.
The Tseng benchmark does not have any variable that is

an input as well as an output variable of the same operation.
Hence according to Theorem 3, the lower bound on CBILBOs
is zero. We investigated the lower bounds on SAs and TPGs
for all possible schedules and all possible module assignments
associated with each schedule for this benchmark. Table III
shows the lower bounds on SAs and Table IV shows the lower
bounds on TPGs. Each entry in the tables corresponds to
the minimum lower bound among all possible schedules and
module assignments for that particular latency and number of
modules. For example, among all module assignments using
6 modules that were possible for di�erent schedules of latency
5, the minimum lower bound on the number of SAs was 3. A
`�' entry indicates that no schedule and module assignment

TABLE III Variation in SA lower bounds for Tseng

Number of modules (m)
Latency (L) 1 2 3 4 5 6 7 8

4 � � 1 2 2 3 3 4
5 � 1 1 1 2 3 3 4
6 � 1 1 1 2 2 2 4
7 � 1 1 1 2 2 2 4
8 1 1 1 1 2 2 2 4

TABLE IV Variation in TPG lower bounds for Tseng

Number of modules (m)
Latency (L) 1 2 3 4 5 6 7 8

4 � � 2 3 3 4 5 5
5 � 2 2 3 3 4 5 5
6 � 2 2 3 3 4 4 5
7 � 2 2 3 3 4 4 5
8 2 2 2 3 3 4 4 5

TABLE V Lower bounds for AR Filter

Sched. Lat. Module # mod. Lower bounds
(L) assign. (m) SA TPG CBILBO

S1 M1 12 5 16 0
ALAP 8 M4 12 4 12 0

M3 12 2 8 0
S2 M1 12 5 12 0

ASAP 8 M2 12 3 8 0
M3 12 2 8 0

solution is possible for that (L;m) value of the DFG. It can be
observed that the bounds increase as the number of modules
increases. Note that the actual functional area correspond-
ing to the modules is not being considered here. The actual
functional area depends on the particular module assignment
and a higher number of modules does not necessarily imply
a larger functional area [12]. Tables III and IV indicate that
the lower bounds have a strong correlation to the number of
modules. They also demonstrate that among two module as-
signments �1

M and �2
M such that j �2

M j< j �1
M j, assignment

�2
M might be desirable from the test resources point of view

even if Area(�2
M) > Area(�1

M).
Table V shows the bounds for di�erent module assignments

of the ASAP and ALAP schedules for the AR Filter bench-
mark. The latency of both schedules is 8 and the minimum
number of modules for this latency is 12. All module as-
signments in Table V use 12 modules. Table VI shows the
bounds for di�erent module assignments for a schedule of the
ewf benchmark. The latency of the schedule used is 19. These
results show that a signi�cant variation in test resources exist
for di�erent module assignments of the same schedule as well
as di�erent schedules of the same latency.
The lower bound estimates can be used to compare the

quality of the synthesized designs in terms of BIST resources.
The closer the number of BIST resources are to the lower
bounds, the better the quality of the synthesis algorithms in
synthesizing low BIST overhead designs. In Table VII, the
BIST resources required for design synthesized by the ap-
proach in [8] are compared to the lower bounds. ex2 is a DFG
taken from [13]. Tseng1 and Tseng2 are di�erent module as-
signments of the Tseng benchmark. The lower bound on test
resources was achieved in most of the cases which indicates
that the synthesis algorithm performed well in optimizing test
resources and that the proposed bounds are achievable even

when functional area constraints are imposed.

V. Conclusions

In this paper we have derived tight lower bounds on test

resources that would be required to test the synthesized data
path using partial intrusion BIST. The lower bound estimation
is performed on scheduled data
ow graphs, and given com-
plete
exibility in the assignment of registers and interconnect,
the bounds can be achieved. The bounds give a mechanism for
comparing the quality of area-performance competitive sched-
ules and module assignments with respect to test resource re-
quirement. The bounds along with a library of test register
modules can give an estimate of the actual test area overhead.

TABLE VI Lower bounds for ewf (L = 19)

Module # mod. Lower bounds
assign. (m) SA TPG CBILBO

M1 8 3 6 2
M2 8 2 4 1
M3 8 1 3 0

TABLE VII Actual test resources v/s lower bounds

TPGs # SAs # CBILBOs
DFG Act. LB Act. LB Act. LB

ex2 4 4� 3 3� 1 0
Tseng1 5 5� 4 3 1 0
Tseng2 3 3� 2 2� 0 0�

di�eqn 3 3� 2 2� 1 1�

� Lower bound achieved

The theory on test resource bounds can be used in conjunction
with that for estimating functional resources so that the total
area of the synthesized design can be accurately estimated.

References

[1] Y. Hu, A. Ghouse, and B.S. Carlson. Lower Bounds on
the Iteration Time and the Number of Resources for Func-
tional Pipelined Data Flow Graphs. In Proc. Intn'l Conf.
Comp. Design, pages 21{24, October 1993.

[2] A. Sharma and R. Jain. Estimating Architectural Re-
sources and Performance for High-Level Synthesis Appli-
cations. IEEE Trans. on VLSI Systems, 1(2):175{190,
June 1993.

[3] S. Chaudhari and R.A.Walker. Computing Lower Bounds
on Functional Units before Scheduling. In Proc. 7th Intn'l
Symp. on High-level Synthesis, pages 36{41, May 1994.

[4] S.Y. Ohm, F.J. Kurdahi, and N. Dutt. Comprehensive
Lower Bound Estimation from Behavioral Descriptions.
In Proc. Intn'l Conf. Computer-Aided Design, pages 182{
187, October 1994.

[5] L. Avra. Allocation and Assignment in High-level Syn-
thesis for Self-testable Data Paths. In Intn'l. Symp. on
Circuits and Systems, pages 463{472, Aug. 1991.

[6] H. Harmanani and C. Papachristou. An Improved
Method for RTL Synthesis with Testability Tradeo�s. In
Proc. Intn'l Conf. on Computer-Aided Design, pages 30{
35, November 1993.

[7] I.G. Harris and A. Orailoglu. SYNCBIST:SYNthesis for
Concurrent Built-In Self-Testability. In Proc. Intn'l Conf.
Comp. Design, pages 101{104, October 1994.

[8] I. Parulkar, S.K. Gupta, and M.A. Breuer. Data Path
Allocation for Synthesizing RTL Designs with Low BIST
Area Overhead. In Proc. 32nd Design Automation Conf.,
pages 395{401, June 1995.

[9] L.T. Wang and E.J. McCluskey. Concurrent Built-In
Logic Block Observer (CBILBO). In Intn'l. Symp. on
Circuits and Systems, pages 1054{1057, 1986.

[10] I. Parulkar, S.K. Gupta, and M.A. Breuer. Estimating
BIST Resources in High-level Synthesis. CEng Tech. Re-
port 96-06, Univ. of Southern California, Dept. of Elect.
Engineering - Systems, March 1996.

[11] N. Dutt and C. Ramachandran. Benchmarks for the
1992 High-level Synthesis Workshop. Tech. Report 92-
107, Univ. of California, Irvine, 1992.

[12] K. Kucukcakar and A. Parker. Data Path Trade-o�s using
MABAL. In Proc. 27th Design Automation Conf., pages
511{516, June 1990.

[13] C. Papachristou, S. Chiu, and H. Harmanani. A Data
Path Synthesis Method for Self-Testable Designs. In Proc.
28th Design AutomationConf., pages 378{384, June 1991.

	CD-ROM Home PAge
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

