
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

A systematic technique for verifying critical path delays

in a 300MHz Alpha CPU design using circuit simulation

Madhav P. Desai

Y.T. Yen�

Digital Equipment Corp, Hudson MA

Abstract: A static timing veri�er is an important
tool in the design of a complex high performance
VLSI chip such as an Alpha CPU. A timing veri�er
uses a simple and pessimistic delay model to identify
critical failing paths in the design, which then need
to be �xed. However, the pessimistic delay model
results in a large number of correct paths being iden-
ti�ed as failing paths, possibly leading to wasted de-
sign resources. Therefore, each critical path iden-
ti�ed by the timing veri�er needs to be analyzed
using a circuit simulator such as SPICE in order to
con�rm that it is a real failure. Setting up such a
simulation is complex, especially when the critical
path consists of structures appearing in a datapath
of the CPU. In this paper, we present algorithms
for the construction of a model for simulating the
maximum delay through a critical path. This tech-
nique has been used to analyze several critical paths
during the design of a 300MHz Alpha CPU.

1 Introduction

A static timing veri�er was an important and extensively
used tool in . the design of the 300 MHz Alpha 21164
CPU[1]. This timing veri�er uses path tracing and simple
delay modeling techniques [4] to identify critical paths in the
design. These techniques inevitably introduce two types of
false path errors. The �rst type of error is due to a path
that cannot be logically activated (logical false path) in the
design, but is erroneously reported as a failing critical path
by the timing veri�er. Such paths are di�cult to detect au-
tomatically, especially when they cross latches (sequential
false paths)[5]. The designer is required to determine that
such a path cannot be logically activated, and the timing
veri�er is then asked to ignore this path.
The second type of error is due to the inaccuracy of the

simple delay model: the timing veri�er may erroneously pre-
dict that a path fails, (or more seriously, miss a real failing
path). A typical approach to avoid missing a real failing
path is to use a pessimistic delay model in the timing veri-
�er, and then �x all reported critical paths.
�Presently at TeraSystems Inc., 2105 S. Bascom Ave, Suite

158, Campbell CA 95008.

VSS

rises

m1

falls CLK

rises

falls

W
Y

A

B
X

E

C

H

G

D

I

J

Figure 1: Fragment of a critical path

This results in the designer being forced to �x a path even
when there is no need to. This waste of design resources
is unacceptable in the course of a high-speed CPU design
because the timing of most signal paths is extremely close
to the margin, and a pessimistic delay model reports an
astronomically large number of false critical paths. A better
approach is to re-verify each reported critical path using
a complete SPICE[2] model. This approach serves as an
e�ective �lter of false paths due to delay modeling errors,
provided it can be automated. In this paper, we will describe
a systematic technique to achieve this purpose.

2 Background

A simple delay model typically approximates the transistors
and non-linear capacitances by linear or piecewise linear cir-
cuit elements. In addition, an approximation such as the
Elmore delay model [10] is used to �nd the delay through
the resultant simpli�ed network. The combination of these
approximations often results in large errors in the predicted
delay, especially through complex circuit structures.
In order to verify the path timing using a circuit simula-

tor such as SPICE[2], a circuit designer has to extract the
devices needed to simulate the path correctly, and then se-
lect inputs to these devices so that a correct simulation of
the worst case delay can be carried out. To illustrate this
process, consider Figure 1, where we show a fragment of a
critical path identi�ed by a static timing veri�er. Suppose
the critical path was A "! B #! C " ! D #. In this case,
it is clear that every device shown in the �gure must be in-
cluded in the simulation. To simulate the path correctly,
the inputs must be chosen as follows: X must be set high
to enable A "! B #, and Y must be set low in order to ini-
tialize B correctly. The signal W must be set high to enable

B #! C ". To enable C "! D #, we must set E and CLK

high. There is some choice in determining G, H and I. For
the worst case delay simulation, we would need to pick G

high and set H and I low (for typically sized devices).
The example shown above illustrates the tasks involved in

simulating a critical path for maximum delay. These tasks
are:

1. The devices to be included in the simulation must be
identi�ed.

2. Inputs to these devices must be chosen so that the cor-
rect sequence of transitions (node switching) is acti-
vated, and the worst case delay is simulated (path sen-
sitization for maximum delay). The inputs to the path
must be chosen to support the correct initial conditions
on simulation nodes.

Consider task 2 above: This seems to be super�cially sim-
ilar to the problem of worst case delay estimation through
logic gates [6, 7]. In order to perform a correct simulation
however, we also need to consider correct initialization of
the circuit, and the e�ect of logical relationships between
circuit inputs. Such logical dependencies have a signi�cant
inuence on the worst case delay through the gate. In the
earlier example of Figure 1, if nodes G and E are known to
be complements, then the delay C "! D # would be smaller
because the capacitance at node I would not need to be
discharged. In more complex structures, ignoring logical de-
pendencies between inputs can at best lead to overestimates
of the delay, and at worst cause an incorrect simulation of
the structure.
In a high performance VLSI CPU design, critical paths

that span dozens of nodes need to be veri�ed using detailed
circuit simulations. Such paths often pass through complex
logic structures, and as is hinted at by the example above,
creating the simulation deck for a path is certainly a tedious,
time consuming, and non-trivial process. In this paper, our
primary goal is to present a set of techniques which when
used, can perform this task correctly and e�ciently. These
techniques form the basis of a successful tool which has been
used to verify the timing of thousands of paths during the
design of the Alpha 21164 [1], a full-custom 300MHz CMOS
microprocessor.

3 Preliminaries

In a CMOS digital circuit, a transistor m can be viewed
as a switch (whose state is determined by the gate termi-
nal g(m)) which controls the movement of charge between
the source terminal s(m) and drain terminal d(m). We will
assume that at the point of analysis, each transistor has a
speci�ed orientation, and may be viewed as a unidirectional
switch. There are several e�ective algorithmic and heuristic
techniques to determine such an orientation of the transis-
tors [3, 4] in CMOS circuits. The transistor may then be
considered as a labeled directed arc from its source to its
drain.
A node x is said to drive (resp. to be driven by) a device

m if there is a directed path from x to s(m) (resp. from
d(m) to x). Similarly, a node x drives a node y if there is
a directed path x to y. At the point of analysis, we will
assume that an orientation of the devices is chosen so that
there are no directed cycles. The circuit being simulated is
assumed to have a power supply node VDD, and a ground
node VSS . The power and ground nodes are the strongest

falls

rises

a0

m2

a2

falls

a1

m1
a3

m3

rises

a4

m4

falls

Figure 2: Critical Path

nodes in the circuit, that is, there is no node which drives
either of these nodes.

3.1 Devices needed for path simulation

The critical path to be veri�ed is assumed to be a sequence
of alternating nodes and devices, as illustrated in Figure 2.
The nodes a0; a1; : : : an are termed primary nodes, and the
devices m1;m2; : : :mn are termed primary devices. Each
primary node undergoes a transition, and the transition at
primary node aj+1 is propagated to it from primary node aj
through the primary device mj+1. We will assume that the
path does not contain a cycle, that is, ai 6= aj if i 6= j.
The �rst step is to identify the minimal set of devices

which must be included in the simulation model for the path.
We include the following sets of devices:

� All devices that can steer charge between the primary
nodes on the path and the power supply nodes: the
devices that drive the path are partitioned into n sets
S1; S2; : : : Sn, with Si containing all the devices that
drive primary node ai but do not drive any primary
node aj for j < i. The set Si will be termed as the
stage corresponding to primary node i.

� All devices that contribute to the channel loading of
the path: These devices are partitioned into n sets
T1; T2; : : : Tn. The set Ti contributes to the channel
loading of node ai in the path.

� All devices that are needed to model peripheral loading
on the path (for worst case delays): We will also include
devices which contribute to the gate loading of the path.

Two stages Si and Sj are said to be channel connected if
there is a node x 62 fVSS ; VDDg which is a channel terminal
of a device m1 2 Si and a device m2 2 Sj . Consider the
equivalence relation obtained by performing the transitive
closure of channel connection. Each equivalence class of this
closure relation is termed a maximal channel connected re-
gion (CCR). The path to be simulated can then be viewed
as a sequence of CCR's.

4 Feasible input assignments

We are required to select logical values for the secondary
inputs in the path, so that the worst case delay through
the path is correctly simulated. If the logical dependencies
between the secondary inputs to di�erent CCR's are taken
into account, then the problem as stated above is at least
as di�cult as the dynamic path sensitization problem, which
is NP-hard [5]. We make the simplifying assumption of ig-
noring dependencies between secondary inputs of distinct
CCR's. The price we pay for this simpli�cation is a pes-
simistic estimate of the worst case delay through the path.

input node

Transistor Network

inputs

secondary

output node

VSS

VDD

in
pu

ts

se
co

nd
ar

y

0

m

a
1

2
mm

1 k

a

k
a

Figure 3: A Generic CCR

We have observed that in practice, the overestimation of the
delay due to this decoupling is minor.
We will not ignore relationships between secondary inputs

to a single CCR, because its behavior can be very sensitive
to such logical dependencies. Some examples of CCR's with
such dependencies are multiplexors, where only one out of
a set of select lines can be asserted at any one time (exclu-
sivity), or certain XOR gates, which have complementary
inputs. The problem of sensitizing a single CCR in the pres-
ence of relationships between its inputs is also NP-hard, but
the size of a typical CCR is usually quite small, and e�cient
heuristic algorithms for larger CCR's will be presented later
in this section.

4.1 Sensitization conditions for a CCR

Consider the set of primary nodes and devices that fall in-
side a single CCR. The sense of the transition at each pri-
mary node in the interior of CCR is necessarily the same
(there can be no inversions between nodes which are channel-
connected). That is, each CCR may be further classi�ed as
either a falling CCR if all internal primary nodes undergo
a falling transition or a rising CCR if all internal primary
nodes undergo a rising transition. In the rest of this paper,
we will only consider falling CCR's (rising CCR's may be
handled in a similar fashion).
Such a falling CCR is shown in Figure 3. We will assume

that a0 switches from low to high at t = 0, causing a1 to
fall through device m1, a2 to fall through device m2, and
so on. In order to avoid complicating the discussion, we
will only describe the case where the input node a0 of the
CCR switches at t = 0, and assume that the secondary input
nodes are held to constant values throughout the simulation.
The ideas in this paper may be easily extended to the case
when multiple inputs to the CCR switch at t = 0.
A directed channel connected path is said to be an ON-

path at time t if every device on the path is ON at time
t. Otherwise, the path is an OFF-path. An ON-path con-
necting some node u to VSS (resp. VDD) is said to be a dis-
charging (resp. charging)ON-path for node u. The following
result characterizes the set of sensitizing input assignments
for a falling CCR.

Theorem 4.1 An assignment of logic values to the sec-
ondary inputs of a falling CCR will sensitize a correct sim-
ulation of the CCR if and only if the following restrictions
are met.

1. At t = 0�, there is no ON-path from any of
a1; a2; : : : ak to VSS . This condition will be termed the
initial condition restriction.

2. At t = 0+, every ON-path connecting ak to VSS must
contain all the devices m1;m2; : : :mk. This will be
termed the active path restriction.

3. At t = 0+, there is no ON-path connecting any of
a1; a2; : : : ak to VDD. This will be termed the passive
path restriction.

4.1.1 Encoding feasible assignments

We will generate a boolean expression which encodes the set
of allowable assignments for the inputs to the CCR. Repre-
sent the logical state of an input node u at time t by u(t).
Then, a0(0

�) = 0, and a0(0
+) = 1. An n-channel device

m is said to be ON (resp. OFF) at time t if g(m)(t) = 1
(resp. 0). A p-channel device m is OFF (resp. ON) at time
t if g(m)(t) = 1 (resp. 0). The set of inputs to the CCR is

X = (x0;x1; : : :xp)

Assume that x0 = a0, and xi = g(mi) for i = 1; 2; : : : k. All
boolean functions described in this section are assumed to
be functions of X, and this dependence will not always be
explicitly denoted.
Let m be a device in the CCR whose gate terminal is the

input node xj, where 0 � j � k. Then the ON-function
of m is de�ned to be 1 if and only if the device m is ON
for input assignment X, and is denoted by ONm(X). For
any node u in the CCR, the driven high function D1

u of u
is de�ned to be 1 if and only if u has a charging ON-path
for input assignment X, and is denoted by D1

u(X). The
driven low function of u is de�ned to be 1 if and only if u
has a discharging ON-path for input assignment X, and is
denoted by D0

u(X). For the power supply nodes, we de�ne
D0
VSS

= D1
VDD

= 1, and D1
VSS

= D0
VDD

= 0.
For every device m in the CCR, the device driven func-

tions G0
m and G1

m are de�ned as follows.

G
0
m = ONm ^D

0
s(m) (1)

G
1
m = ONm ^D

1
s(m) (2)

These functions encode the presence of charging and dis-
charging ON-paths through device m to d(m), the drain of
m.
The D and G functions are related. For j = 0; 1,

D
j

u =
_

m:w!u

G
j

m (3)

This relation, combined with (1) and (2) serves as the basis
of a simple recursive algorithm to compute Dj

u.
It may be easily checked that the following function en-

codes the initial condition restriction.

Initial(X) =
�
�D0
a1
(X) ^ �D0

a2
(X) : : : ^ �D0

ak
(X)
�
x0=0

(4)

Similarly, the active path restriction is encoded by the func-
tion

Active(X) =

k^
j=1

0
@G0

mj
^

0
@ ^

m:u!aj ;m6=mj

�G0
m

1
A
1
A (5)

Finally, the passive path restriction is encoded by the func-
tion

Passive =

k^
j=1

�D1
aj

(6)

rises F falls

A,Z are complements

falls

E

C

D

A

Z

m
1

B

Figure 4: Example to illustrate Constraint derivation

Summarizing the discussion of the last few paragraphs, we
obtain the following result.

Theorem 4.2 Let Constraint de�ne the function

Constraint = Active ^ Passive ^ Initial (7)

where Active is de�ned in (5), Passive is de�ned in (6), and
Initial is de�ned in (4). Then, an assignment of values to
the CCR inputs sensitizes a correct simulation of the CCR
if and only if Constraint is true.

Logical dependencies between the CCR inputs can be ac-
counted for as follows. Suppose that these logical dependen-
cies are captured by the condition Logical(X) = 1, where
Logical is a Boolean function. Then, we will modify the
constraint function as

Constraint Constraint ^ Logical (8)

For example, suppose inputs xi; xj are known to be comple-
ments of each other. Then we will have

Logical(X) = xi � xj

Any combinational relationship between the inputs may be
captured in this manner.
To illustrate the derivation of the Constraint function,

consider the CCR shown in Figure 4. The critical path is
from E " to F # to B #. In this case, Logical = A � Z,
Initial = D ^C ^Z, Active = A ^E, and

Passive = (A ^ �E) _ (Z ^C ^D)

Combining these equations using (7) and (8), we obtain
Constraint = A ^ �Z ^E. Thus, to obtain a correct sim-
ulation in this case, we need to set secondary input A = 1,
Z = 0. We have complete freedom in selecting inputs C;D.

Remark: The Constraint function is generated from the
D and G functions, which themselves are computed for each
node and device in the CCR by using a recursive algorithm
on the basis of Equations (3), (2) and (1). The manipulation
of boolean functions is performed using a BDD-package [9].

5 Input Selection for a worst

case delay simulation

We need to �nd a feasible input assignment which satis�es
the constraint equation (7), and in addition, causes the max-
imum delay in the CCR. For a CCR with a small number

of inputs, the following enumerative algorithm can be used:
For each feasible input assignment, simulate the CCR and
�nd the delay through it. Keep track of the input assign-
ment which caused the worst case delay, and use this in the
�nal simulation of the path. This naive algorithm will yield
the desired input assignment, but is practical only for a CCR
with a small number of inputs and a small number of devices.
A slightly more e�cient algorithm can be obtained by us-
ing a delay estimate [10] (instead of an actual simulation of
the CCR) to grade each candidate input assignment. An
input assignment chosen using such an exhaustive enumer-
ation algorithm has the advantage that the delay obtained
using this assignment will be close to the actual worst case
delay.
For a CCR with a large number of inputs, we will use the

following heuristic which is often used in worst case delay
estimation [8, 6]: To �nd the worst-case delay through a
gate, �nd the most resistive path which can discharge the
output node of the gate. Then maximize the loading on this
path. In our context, this heuristic can be modi�ed as:

1. For the output node of the CCR, �nd the most resis-
tive discharging path (MRDP) which can be turned ON
without violating Constraint (�nd a feasible MRDP).

2. Maximize the capacitive loading on the MRDP selected
in step (1) above.

The MRDP heuristic gives priority to �nding the most re-
sistive path for the discharge of the output node capacitor,
and is especially e�ective when the output node capacitance
dominates the internal node capacitances in the CCR.

5.1 An Algorithm to �nd a feasible

MRDP

Using Dijkstra's algorithm [11], we can compute an un-
constrained MRDP for any node u e�ciently (because the
CCR is acyclic). Denote the resistance of this MRDP by
Rmax(u). Suppose we want to �nd a constraint feasible
MRDP for node u. Let f denote the constraint function at
this point. We will try to enumerate all possible f -feasible
discharge paths for u, using Rmax values to bound this
search.
The enumeration of these paths proceeds as follows. We

try to extend discharge paths from u such that the constraint
function is not violated. Denote by Rbest the value of the
most resistive feasible discharge path found so far in the
algorithm. Initially, Rbest = 0. Suppose w is immediately
upstream of u (that is, there is a device m : w ! u in the
the CCR). Let x denote the gate of device m, and assume
without loss of generality that m is an n-channel device.
Suppose the resistance of device m is Rm.
Then,mmay be included in a constraint feasible discharge

path for u if and only if setting m ON does not violate the
constraint f . That is, if f jx=1 6= 0. Suppose this condition
is satis�ed. Then, it is logically possible to extend the path
from w. We use the bound to prune the search here. If

Rbest > Rm + Rmax(w)

then any extension from w will not be part of a feasible
MRDP, and there is no need to continue extending the path
beyond w.
In the algorithm, we carry this argument a step further.

Anytime we visit a node w, we carry the resistance of the
current path that is being extended. This parameter will be
termed Rsofar. In the paragraph above, Rsofar = Rm

complements

E,A

rises

fallsOUT

4

D

X

6
m

E
2

m

P

m
3

m

B

m
7

5
m

Cm
1

P

A

Figure 5: Example of MRDP calculation

when we visited w. We will try to extend the path from w
only if

Rbest < Rsofar + Rmax(w)

If the already computed unconstrained MRDP for w is fea-
sible, we report it as the best continuation from w. Oth-
erwise, the search is continued from w. Below, we present
the details of the algorithm. We assume that Rmax(u) has
already been computed for each node in the CCR. We will
also assume that for each node u, the unconstrained MRDP
is available to be checked by the algorithm.

Procedure FeasibleMRDP(u; f)
Rsofar 0:0
Rbest 0:0
LongPath(u; f ;Rsofar;Rbest;Rret)
return(Rret)

Procedure LongPath(u; f ;Rsofar;Rbest;Rret)
if (Rsofar +Rmax(u) < Rbest) return(FALSE)
Rret 0:0
if (unconstrained MRDP for u does not violate f)
Rret = Rmax(u);
Rbest =Max(Rbest;NextRsofar +NextRret)
return(TRUE);

foreach m : w! u

x g(m)
g = f jx=1 /* assume m is an n-device */
if (g 6= 0)
NextRsofar Rsofar +Rm
if (LongPath(w; g;NextRsofar ;Rbest;NextRret))
Rret =Max(Rret ;NextRret +Rm)

else return(FALSE)
Rbest =Max(Rbest;NextRsofar +NextRret)

return(TRUE)

An example will be helpful here. Consider the circuit
shown in Figure 5. The constraint function for the entire
CCR is

P ^A ^ �C ^ (B _ D ^E) ^ (A�E)

The feasible MRDP until the node X must include the pri-
mary device m1. The constraint function for continuing the
feasible path beyond X is obtained by making the substitu-
tion A = 1 in the equation above to yield the modi�ed
constraint equation

P ^B ^ �C ^ �E

The algorithm will be unable to extend the discharge path
through devices m3, m4 because the constraint above does

q+1

q+1

q+2q+1 q+k

ss q+k

q+k
R RRu

C V0
C

0
R

C

uu
0

Figure 6: RC approximation of CCR

not allow us to set E = 1. Thus it will �nd the feasible
MRDP to be m1 m2 m6, which corresponds to the input
selection A = 1; B = 1; P = 1. The residual constraint
function at this point is �C ^ �E. This implies that both C
and E must be set low. The input D is not determined at
this point, and should be selected to maximize the loading,
and hence the delay through the CCR.

5.2 Maximizing capacitive loading on

the MRDP

The inputs which are not set in the feasible MRDP must be
selected so that they maximize the loading on the MRDP.
More precisely, consider an RC approximation of the CCR,
with the feasible MRDP being modeled as in Figure 6. The
number Ci represents the total capacitance seen by node
ui. The node uq+i is the same as the primary node ai for
i = 1; 2; : : : k. The �rst order Elmore estimate [10] of the
delay to node uq+k in Figure 6 is given by

� =

q+kX
i=0

Ci

iX

j=0

Rj

!
(9)

In other words, we should select the remaining inputs (which
control the capacitances seen by the nodes ui) so that the
weighted sum in (9) is maximized. The constraint function
used to guide this selection is obtained from (7) by setting
the feasible MRDP devices ON.
We use a greedy heuristic algorithm which attempts to

maximize (9) by causing the charge from capacitances in
the CCR to be injected into the feasible MRDP as close to
the output node ak as possible. Starting at the output node
ak, we attempt to connect as much capacitance to node ak
as possible without violating the constraint equation. This
is achieved by successively removing maximum capacitance
paths from an acyclic directed graph. Then, we proceed to
node ak�1 and repeat this process, until all primary nodes
have been visited.
We describe the algorithm below. For a node u in the

CCR, we de�ne a residual networkNu = (Vu;Au) by includ-
ing in Vu every node which is in the CCR, but not connected
to the MRDP by an ON-path. The set Au will contain only
the undetermined devices (whose gate states have not been
determined) whose channel terminals are in Vu. A path
in Nu is f -feasible if setting the corresponding path in the
CCR ON does not violate the constraint f . The greedy al-
gorithm proceeds by stripping o� the maximum capacitance
f -feasible directed path with one end at u in the residual
network. The algorithm used to �nd such a path is a simple
modi�cation of the procedure LongPath described earlier.
After an f -feasible path has been stripped o�, we modify f
by setting the input variables labeling the arcs in the path,

Path length crude delay spice delay
eb1 17 3.12ns 1.85ns
eb2 14 2.65ns 1.34ns
ib1 14 2.70ns 1.74ns
ib2 23 3.66ns 2.21ns
ib3 11 2.56ns 2.02ns

Figure 7: Comparison of path delays

and we modify the residual network Nu by removing all the
determined arcs in it.

Procedure WorstCaseLoading(u; f)
Find residual network Nu = (Vu;Au) for u
while(undetermined arc incident on u exists)

Find max. cap. feasible path for u in Nu

Update f and Nu

foreach w! u

WorstCaseLoading(w,f)

If we refer to the example in Figure 5, we can verify that
the algorithm above chooses D = 1 to maximize the delay
through the CCR.
Before we conclude this section, we will briey touch upon

the setting of initial conditions in the CCR. For every node u
in the CCR, we check if there is some discharging ON-path
for u at time t = 0�. If not, the initial condition at this
node should be set to a high value. Otherwise, the initial
condition at u must be set to a low value. This will ensure
that the largest possible amount of charge is present in the
CCR at t = 0�. Note that the actual physical voltage to
which the initial condition at a node is set is either equal to,
or a threshold voltage drop o� a power supply level.

6 Results

All algorithms described in this paper have been imple-
mented in a CAD tool which works in conjunction with a
static timing veri�er. The tool has been successfully used
during the design of the Alpha 21164, which is a 300MHz
high performance microprocessor with nearly 10 million
devices[1]. As part of the design process, it was decided to
reverify each critical path in the design using this CAD tool,
and thousands of signal paths were successfully simulated.
In Figure 7, we present a comparison of path delays ob-

tained using a crude delay model and by circuit simulation.
The paths eb1, eb2 are critical in a 64bit adder, and ib1, ib2,
ib3 are critical paths in the instruction datapath. The re-
sults illustrate the need for path delay veri�cation by circuit
simulation. The crude delay model can be too pessimistic
when compared to the SPICE simulation, and often overes-
timates the path delays by more than 50%.
In all examples that we have encountered, the time needed

to create a path model was much smaller than the time
needed to run SPICE on the model. For example, in case
of the path eb1 in Figure 7, the (wall clock) time needed
to prepare a path model (by collecting devices, setting in-
puts and initial conditions) was less than 1 second, whereas
the time needed to run SPICE on the path model was 187
seconds (measured on a DEC 3000-700 workstation).

7 Conclusions

We have demonstrated a systematic technique for automatic
veri�cation of critical path delays using circuit simulation.
We have developed an e�cient mechanism for encoding the
feasible input assignments for simulating a CCR, and have
presented algorithms to select the feasible input assignment
for the worst case delays. A simple enumerative algorithm
will quickly �nd such an input assignment for a small CCR,
but an e�cient heuristic is needed in general. We have
demonstrated an e�cient implementation of such a heuristic,
namely the feasible most resistive discharge path (MRDP)
algorithm.

Acknowledgement: The authors would like to thank Bill
Grundmann, Bill Wheeler, Nick Rethman and Emily Shriver
for their helpful suggestions.

References

[1] J. Edmondson et. al., \Internal Organization of the
Alpha 21164, a 300-MHz, 64-bit, Quad-Issue, CMOS
RISC Microprocessor," Digital Technical Journal, vol.
7, no. 1, 1995.

[2] L.W. Nagel, \SPICE2: A Computer Program to Sim-
ulate Semiconductor Circuits," Electronics Research
Laboratory Rep. No. ERL-520, University of Califor-
nia, Berkeley, May 1975.

[3] J. Ousterhout, \A Switch-Level Timing Veri�er for Dig-
ital MOS VLSI," IEEE Transactions on Computer-
Aided Design, vol. CAD-4, no. 3, pp. 336-349, July
1985.

[4] J.J. Grodstein, J. Pan, W. Grundman, B. Gieseke, and
Y.T. Yen, \Constraint Identi�cation for Timing Ver-
i�cation," Proceedings of International Conference on
Computer-Aided Design, pp. 16-19, November 1990.

[5] P.C. McGeer and R.K. Brayton, Integrating Functional
and Temporal Domains in Logic Design: The False
Path Problem and its Implications, Boston, MA: Kluwer
Academic Publishers, 1991

[6] S. S. Sapatnekar and S. M. Kang, Design Automa-
tion for Timing-Driven Layout Synthesis, Boston, MA:
Kluwer Academic Publishers, 1993.

[7] M.R. Dagenais, S. Gaiotti and N. C. Rumin,
\Transistor-Level Estimation of Worst-Case Delays
in MOS VLSI Circuits," IEEE Transactions on
Computer-Aided Design, vol. 11, pp. 384-394, March
1992.

[8] L. A. Glasser and D.W. Dobberpuhl, The Design and
Analysis of VLSI Circuits, Reading, MA: Addison-
Wesley Publishing Company, 1985.

[9] K.S. Brace, R.L. Rudell, and R.E. Bryant, \E�cient
Implementation of a BDD Package," in Proceedings of
the 27th ACM/IEEE Design Automation Conference,
pp. 40-45, July 1990.

[10] T-M Lin and C.A. Mead, \Signal Delay in General RC
Networks," IEEE Transactions on Computer-Aided De-
sign, vol. CAD-3, pp 331-349, October 1984.

[11] S. Even, Graph Algorithms, Rockville, MD: Computer
Science Press, 1979.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

