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1 Introduction

Thecomplexity of electronic systemsisrapidly reaching apoint
where it will be impossible to verify correctness of the design
without introducing averification-aware disciplineinthe design
process.

Even though computers and design tools have made impor-
tant advances, the use of these toolsin the commonly practiced
design methodol ogy isnot enough to addressthe design correct-
nessproblem sinceverificationisa most alwaysan after-thought
in the mind of the designer. A design methodology should on
one hand put to good use all techniques and methods devel oped
thusfar for verification, from formal verification to simulation,
from visualization to timing analysis, but should a so have spe-
cific conceptual devicesfor dealing with correctnessin theface
of complexity such as:

o Formalization, which consists of capturing the design and
its specification in an unambiguous, forma "language”
with precise semantics.

o Abstraction, which eliminates details that are of no impor-
tance when checking whether adesign satisfiesa particular

property.

o Decomposition, which consists of breaking the design at
agiven level of the hierarchy into components that can be
designed and verified amost independently.

These mechanisms can be applied to different classes of
designs: from embedded controllersto computers, from micro-
processors to digital-to-analog converters. They are not only
useful in the veritication process but also in the design process
Eer se making verification itself unnecessary in some cases.

or example, formalization of the deﬂ%n specifications is re-
quired for formal verification but it also helpsin design transfer
between different organizations eliminating the risk of losing
knowledge about the design and its specifications, thus making
verification before and after thetransfer unnecessary. We argue
that almost all advances in verification stem from the applica:
tion of these three basic concepts. However, the application of
each of these principles has been performed at localized levels
of the design hierarchy leading to a plethora of models, where
each tool assumes a different model. Maintaining coordination
and consistency of these multiple models has rightly become a
deﬂ%ner’snlghtmare. ) ) i )

This paper is organized as follows: in Section 2 we will
review the available verification tools. In Section 3, formal-
izetion will be investigated in severa contexts. In Section 4,
abstraction will be presented with a set of examples. In Sec-
tion 5, decomposition will be introduced. Finaly in Section
6, a dgé;n methodology that includes al these aspects will be

propo

2 CAD Toolsfor Verification

Traditionally verification has been carried out by reproducing
the behavior of thedesign with an approximateimplementation,
a prototype, of the design, or with mathematical techniques
involving the construction of a model and running a computer
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simulation. Virtua or real measurements were taken to assess
the qudlity of the design. ) )

~ Simulationisapplied at al levels of adesign: anincomplete
list of smulators at various levels includes circuit simulation
(eg. Spice), switch and transistor level smulation (eg. Cos-
mos[Gé?, gatelevel simulation (eg{ Verilog-XL), register trans-
fer levél ssimulation (e.g. Verilog-XL) and behaviora or system
level smulation (eg. Ptolemy [7]).

~ In both simulation and emulation, the correctness of the de-
sign is asserted only with respect to the inputs provided by the
environment or by its model and with respect to the measure-
ments chosen by the designer.

In a more formal aPproach to design as we advocate in the
next section, the set of properties and performance indices are
explicitly expressed. Sometimes these properties may be veri-
fied by setting up a comprehensive set of experiments or sim-
ulation runs, other times it is impossible to have a reasonable
confidence that the experiments yield the appropriate answer.
Properties such as absence of deadlock and fair access to re-
sources to be verified for communicating processes, require a
formal approach to verification. Forma verification is an ap-
proach that has been explored for the past 20 years but the level
of attelntlon paid by the design community has been raised only
recently.

The categories of tools that provide forma proofs of cor-
rectness, and a counter-example in the case of an error are as
follows: Equivalence checking where a combinational logic
level design is compared against another desi er];n for functional
equivalence; Language containment and model checking where
the system isdescribed asacoll ection of FSMsand the proPerty
to be verified is specified as an automaton and temporal logic
formularespectively; and, Theorem proving where the verifica-
tion problem is stated as atheorem and a set of axioms (built-in
or user-specified) isused to construct a proof of the theorem by
proving a set of intermediate results.

3 Formalization

By aformal model of a design, we mean amodel with precise,
unambiguous semantics. Formaization is critical: without a
formal modd of a deﬂ%n, the very meaning of “verification”
becomes fuzzy and problematic.

Thereisabroad range of potential formalizationsof adesign,
but most tools and designers describe the behavior of a design
as arelation between a set of inputs and a set of outputs. This
relation may beinformal, even expressed in natural language. It
is easy to find examples where informal specifications resulted
in unnecessary redesigns! In our opinion, a formal model of a
design should consists of the following components:

o A set of explicit or implicit equations which involveinput,
output and possibly internal (state) variables.

e A set of properties that the design must satisfy given as
a set ;)f equations over design variables (inputs, outputs,
states).

e A set of performance indices which evaluate the quality
of the design in terms of cost, reliability, speed, size, etc.,
given as a set of equations involving design variables.

o A set of constraintson design variablesand on performance
indices specified as a set of inequalities.
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Notethat there are cases where one or more of the sets described
above may not be given or may be implicitly stated, although
we do not advocate this practice.

~ Suchformalismshave strong advantages. First and foremost,
virtually all come with an algebra, permitting to manipulatethe
design precisely. With aforma model, the effect of an opera-
tion or transformation on a design is alwayswell defined. The
transitionsal ong the design flow can be smooth and with few or
no specia conditionsthat are design-dependent. At every stage
of the design flow, one can also argue about the correctness of
the intermediate result or final implementation because of the
existence of this underlying formal model. Second, the divi-
sioninto equalitiesand inequalitiesnestly separates verification
and optimization problems. Finally, the notions of abstraction
and decomposition have precise, easy-to-understand definitions
over systems of equations.

However, formally describing a design is not enough to set
the stage for a correct verification process. Any design is part
of alarger system. Theinterface between thedesign and itsen-
vironment is through input and output signals. Hence, to verify
the behavior of the design amodel of the environment must be
given. The environment defines the input domain. Often, the
environment isnot known precisely. Thus, themodel may often
be given in terms of distributionsover intervalsor of stochastic
equations. Often, verificationfailsto givecorrect answerswhen
the model of the environment has not been precisely defined.

We can now summarize our discussion with the following
statement:
~ The formalization of a system composed of a design and
its environment consists of a closed system of equations and
inequalitiesover some algebra.

In the following subsections, we supply some examples of
formalisms. Our analysis will progress from more detailed
representations to more abstract ones.

3.1 Continuous waveforms and differential
equations

When the design is at the transistor level, often the properties
to be verified involve the precise knowledge of the current and
voltage waveforms. In this case, the appropriate representation
for the design variables is a continuous function over time.
The design equations are gﬂv_en as aset of ordinary differential
equationswhich combinetheinput-output rel ationshipsfor each
device with the interconnection equations. Note that the input-
output relationships in this case are defined implicitly by the
circuit equations.  The input-output behavior is obtained by
solving numerically the set of differential equations. (Thisis
what a circuit simulator such as Spice does). The properties
could be expressed as an inequality which snould be satisfied
over atime interval of interest. In this case the environment
is modeled by the input waveforms. Often the environment
interferes with the intended behavior of the system through
noise. Noiseisthen an input that may be described in terms of
stochastic differential equations.

3.2 Discrete waveformsand wave equations

The discrete waveform formalism is intended to retain the pre-
cision over the time domain of the continuousformalism while
relaxing the range to a discrete set. It arose in attempting to
formalize thed 31 models in hardware description languages,
and, simultaneously, in efforts to solve the so-called false path
problem in timing analysis. Until this formalism was devised
intheearly 1990's, avariety of crudeformalisms had been used
to capture the notion of time, and, in particular, the interac-
tion of timing and function for the purposes of timing anay-
sis. These were usually some combination of Boolean algebra
and graph-theoretic concegts, and were generdly fairly unsat-
isfactory. Both standard Boolean algebra and graph-theoretic
approaches to timing may be viewed as approximations to this
general theory.

~ Theprimitiveobjectsinthewaveform formalism arediscrete
signals, which are total functionsfrom continuous time onto a
finite lattice which obey a quasi-continuity property: a signal
cgln’t change values without first going through the “uncertain”
value.

~ The operators on the discrete waveform space are any func-
tionals which take in one or more discrete signals and produce
adiscrete signal. A simple gate in a technology library is an
example of such afunctional. The Boolean function of thegate,
together with its associated delay model, forms an evaluation
rule on wave space, or, put more simply, it tells how this gate
takes waveforms on itsinput pins and produces a waveform on
its output pin.

Since the waveforms are static (though infinite) objects, al-
gebraic operations over waveforms are well-defined; since the
gate del g?/ model plays therole in this agebra of an operator,
It is an algebra effectively parameterized by the delay model;
hence it can be used withavariety of delay models.

Though the wave agebra was only formalized quite
recently[15], it has been implicit in a number of toolsfor some
time, hough the semantics of most hardware description lan-
guages are difficult to capture in either an equational or deno-
tational sense, the “hardware subset” of most HDL's is pretty
much defined over a space of waveforms. Augustin[1] first de-
vised an approximation to general discrete waveform theory to
analyze the timing models of VAL and VHDL.

3.3 Binary and multi-valued logic variablesand
Boolean equations

When timeisneglected and switch-level logicisnot considered,
signal s can be represented with static variables that take values
on adiscrete set. In particular, two-valued variables have been
the cornerstone of digital design. On two-valued variables, the
input-output relationship of each gate can be represented as a
Boolean equation.

The Boolean equation formalization is critical because it is
the formalism with which we have the most experience. Thirty
years of intensive algorithm development have given us good
tools for logic synthesis (finding a smallest set of equations
equivalent to agiven set), equation sol ution (find an i nput vector
such that all the equationsare satisfied), and equation eval uation
(evaluate a given set of Boolean equations very quickly). For
this reason, Boolean equations are the very heart of modern
synthesis, verification, and simul ation technol ogies, and casting
a rl)r(_)ble_m as a system of Boolean equationsisamajor step in
solving it.

However, Boolean algebrais not restricted to operate on bi-
nary variables. For fifteen years multi-valued | ogic technology
hasbeen devel oped intoahigh art, and most of thefamiliar two-
valued logic technologies are easily extended to multi-valued
logic. Logic synthesis technology, binary decision diagrams,
and rapid tunction eval uation technol ogy are examples of those
technologieswhichtranslate easily fromthe binary to the multi-
valued domain. For this reason, two-valued logic signas are
now regarded as encoding multi-valued signals.

34 System Representations

Designs should be entered into a formal framework possibly
supported by tools as early as possible in the design process.
Formalization at the system level iscrucial for real advancesin
verification. The terminology “system” means different things
for different peopl e, herewe cons der thenotion of an electronic
system embedded in an environment to which the system has
to react with some constraints on the time of response. Em-
bedded real-time reactive systems are in this category. Such
electronic systems contain several components from sensors,
to data-processing subsystems, from anaog circuitry to actua
tors. Most of them are implemented using a set of existing pro-
%:_ammablec_omponmtss_uch_as DSPsand micro-controllers. In
this case an implementation is a combination of hardware and



software components, where the software components “cus-
tomize” the standard programmable parts for the application.
The richness of implementation choices makes the use of a
unified model for a®system” amost impossible today. Hence,
an unambiguous representation has to reflect the heterogeneity
of the components of the design as well as the fact that these
componentsinteract among themselves inmany different ways.
Hence, at the system level of abstraction a design and its envi-
ronment can be represented as a set of communicating entities
that may or may not be based on the same model of computa-
tion. A definition of this concept is given |n_[14]|. Each entity
is described by a set of algebraic equations involving discrete
variables and as such can be trested with Bool ean algebra tech-
niques. The communication mechanism can & so be described
by a set of agebraic equations. Time may or may not enter in
tRe description of the entities or of the communications among
them.

A process network is a structural model that consists of a set
of nodes representing processes and/or sub-networks, and a set
of edges representing communication links. Its semantics are
determined by: a node model and a communication model .
~ Communication among processes invol veswriting and read-
ing information among partners. We distinguish between two
basic mechanisms, dependi ngbon whether asingle piece of in-
formation (written once) can be read once or many times: De-
gtructlve read and Non-destructive read. Communication can

e

1. Synchronous if the write and read operations must occur
simultaneoudly, and

2. Asynchronous, otherwise. In this case there can be afinite
or an infinite number of buffer locations, where the infor-
mation is stored between the instant in which it iswritten
and the instant in which it isread.

Note that non-destructive read is ?enerally asynchronous, and
implies a buffer with a single cell (the shared variable). The
standard di sti nctionsbetween uni-directional and bi-directional
communication, as well as between point-to-point and broad-
cast, are also useful for classification purposes. The Ptolemy
environment was the first to allow the simulation of process
networkswith heterogeneous entities[7].

Two sets of node moddls are of particular interest in sys-
tem design: a control-dominated class based on Finite State
Machines (FSMs) and a data-oriented class based on data-flow
networks. FSMs in their classical form are not Turing equiv-
aent and hence questions about their behaviors are decidable.
However, data manipulations are not easily described. Data-
flow representations in their classical form are Turin e(wv-
dent, but there are useful restrictions of the model ?suc as

nchronous data-flow) which are not. They are most useful in

lescribing data manipul ations.

34.1 CommunicatingFSMs

An FSM is a process whose i nput/output function can be com-

Puted by a finite automaton. The edges of the automaton are

abeled with input/output data pairs. A network of FSMs uses

It%rsol\a/]lolcast synchronous non-bl ocking communi cation among the
S.

Synchronous languages such as Esterel [3] is a language
whose semantic is based on FSM and is of particular interest
since it is among the few system-level languages that have un-
ambiguoussemantics. Thesynchronous hypothesis, common to
all synchronouslanguages (Lustreand Si %nal alsobelongtothe
class of synchronous languages), states that time is a sequence
of instants, between which nothing interesting occurs. In each
instant, some events occur in the environment, and a reaction
is computed instantly by the modeled system. This means that
computation and internal communication take no time. This
hypothesisis very convenient, because it allows modeling the
complete system as a single FSM. This has the advantage that
the behavior istotally predictable, because thereis no problem
of synchronizing or interleaving concurrent processes.

Like al FSM based control-dominated models, data manip-
ulation cannot be done very naturaly. Also, having a syn-
chronous model makes it hard to specify components of a sys-
tem that operates at different rates. Hence Esterel by itself can
only be used for process level modeling while the system level
modeling of asynchronous communicating processes should be
done using another formalism. The perfect synchronK hypoth-
esis simplifies the design process, but aso forces the timing
congtraintsto be specified outside Esterdl.

3.4.2 Petri nets and data-flow networks

A Petri net is aflat hierarchy. Nodes (usualy called “transi-
tions") “fire" by reading from each input and writing to each
output. Communication is asynchronous, with infinite buffers
(us_uaIIP/ called “places’), with blocking read and non-blocking
write. [nthe purePetri net model novalueistransferred by com-
muni cations, the only significant information being the possible
transition firing sequences.

A data-flow network is similar to a Petri net, but each com-
munication can transfer a value (eP., integer or Boolean), and
buffers have FIFO semantics. Little or no restriction is posed
on thefunction computed by each leaf nodein responseto a set
of communicationsonitsinput edges, apart fromterminatingin
finitetime. Note that due to the blocking read communication,
anode cannot test an input buffer for emptiness. Nonetheless
nodes can decide from which input(s) and to which output(s)
communicationswill be performed. Themainresult concerning
data flow networks, which is directly connected with the bl ock-
ing read communication mechanism, istheir determinacy. This
means that the sequence of output values at each node does
not depend on the order in which nodes are selected to execute
computations and communications, as long as the order does
not cause deadlock (e.g., by scheduling a process when one of
the buffers it will read from is empty) or starvation (eg., by
never scheduling a process with non-empty input buffers).

4 Abstraction

Abstraction, amost powerful concept, isused intwobasic ways:
(i) when specifyi glg adesign at early stages of the design process
to give only therelevant information, (ii) to hidedetailsthat are
not necessary to assess a particular behavior of the design.
When specifying a design, an important aspect isto express
all that is required and known of the design at the moment.
Often, designers are forced to put more details than needed to
be able to run verification tools. This has the unwanted effect
of limiting the design space to be expl ored or to overcomplicate
design exploration. Orten, several choices are possible at the
early stage of adesign and we wish to have amode! that leaves
a place-holder for these options to be selected later. Nonde-
terminism is the mathematical abstraction that allows this to
happen. Nondeterminism in an FSM setting implies that more
than one transition may be taken under the same input. Remov-
ing nondeterminism means that the transition relation of the
FSM isrefined to eliminate the presence of multipletransitions
under the same input pattern. This refinement concept is the
cornerstone of adesign methodol ogy that proceedsfrom amore
abstract model of the design to amore detailed one until anim-
plementation is obtained [13]. Formal verification toolshandle
nondeterminism so that propertiesverified on the nondetermin-
istic model still hold after the nondeterminism is refined away
thus providing a powerful paradigm for design. Nondetermin-
ismisof great importance to model the environment where the
design lives. In this case, nondeterminism reflects the uncer-
tainty about the behavior of theenvironment. In any verification
proach, nondeterministic environment specification iskey to
obtain a correct answer about the behavior of thesystem. =~
When abstraction is used to simplify and speed the verifi-
cation process on agiven model, it is just a smpler model of
the design, usually specific to the property to be proved. Ab-
stractions are almost alwayslossy — thereislessinformationin
the abstraction than thereisin the origina mode of the design.



If we consider our picture of design as a set of equations and
inequalities, then an abstraction is viewed as a smpler set of
equations and inequalities, describing the same design.
Abstractionis critical — virtually every verification and syn-
thesistool relies upon some abstraction. However, abstractions
improperly done are a road to disaster. In particular, the ab-
straction must remain faithful to the property being proved —
the property must hold in the actual design if it is shown to
hold in the abstracted design. An abstraction that is property-
preserving isoften said to be conservative or homomor phicwith

respect to the property. _ _
ere, we give some examples of homomorphic abstractions
and their use.

41 The" Synchronous’ Abstraction

The wave model of Section 3 is extraordinarily detailed — the
behavior of every signal at every pointintimeiscaptured. This
is far too detailéd for most properties; we can not prove them
over such a detailed model, and amost all of the information
isirrelevant anyway. So we assume that thelogic will evaluate
fast enough that we can treet it as eval uating instantaneously, or
atomically (the synchronous hypothesisof Section 3.4.1). =

This is the central abstraction that underlies formal verifi-
cation of systems and the fast functional simulation methods
which are currently being introduced by the major CAD ven-
dors, and the emulation methods which have been used for
some time. Various vendors will impose further restrictions —
on clocking methods, for example — but thisis more an artifact
of the limitations of their tools than any real requirement of
the technologies. All that is required is that timing considera-
tions may be neglected. Timing isignored and the wave space
over which the systems are defined 1S reduced to the space of
finite-state machines. Mathematicaly, this is done by exam-
ini nﬁ_all the waveforms of the combinational logic a ¢ = co.
At this point, the waves are constant and Boolean, and may be
abstracted as scalars. ) )

Note that thisabstraction is only valid when it can be shown
that the logic in a design in fact evaluates fast enough; thus,
thisabstraction is conditionally homomorphic. A designer who
buysaformal verification system, a cycle simulator, or an emu-
lator, would be well advised to purchase a good timing verifier
in the bargain.

4.2 TheFunctional Abstraction

Hardware emulation systems, most Formal Verification proce-
dures, and new, highly-advanced prototype cycle smulators,
actually go further than the synchronous abstraction. These
toolsreally don't need to faithfully reproduce thelogic between
the latches; dll they must do is reproduce the logic function
of the logic between the latches. Throwing out the logic and
replacing it with a more tractable representation is one of the
most powerful techniques available to these advanced tools.

The most prominent replacement for the logic network in
these functional abstractionsis a data structure called the BDD,
first devised by S. Akers and brought to high art by R. E.
Bryant [5]. BDD’s have the property that (up to variable order)
they are a canonical form for logic functions — an important
consideration for formal verification stystems. Morerecently, it
has been demonstrated that BDD' s offer extremely fast evalua-
tion (I)f logic functions, making them an important tool for cycle
simulation.

4.3 The Graph Abstraction

In contrast to the synchronous abstraction, the functiona in-
formation of a network can be deleted; when thisis done, one
is left with a directed graph of nodes and edges, with weights

INote that it is not required that if the property holds in the design then
it must hold in the abstraction. While this is desirable, it is not essential —
the worst that will happen is that the property will be " proved” false, and the
designer will haveto investigatethis " false negative”.

on the edges — the weights represent the time required for a
value to travel down the wire represented by the edge. Thisis
the abstraction taken by first-generation timing analyzers (those
on the market today). This abstraction is homomorphic — the
outputs of acircuit will certainly stabilize by the time a graph-
based timing analyzer says they will — but has been criticized
as too conservative. The conServatism of this abstraction is
manifested in the so-called “false path problem”. Briefly, the
implicit assumption inthisabstraction isthat an event can travel
down any path inthecircuit; however, inconsi stent valuesonthe
inputsto the logic nodes on the path may make thisimpossible.

4.4 Quantification

An important abstraction in formal verification is projection,
or quantification. Briefly, given a system described as a set
of equations, and a property to be checked over that system,
information about some variables is |%nored_ and the property
in question is examined. Physically, the variables in question
are often simply deleted from the equations. It ispossibleto do
this so that the abstraction in question is homomorphic — that
is, that the property is preserved by the transformation.
~ An extreme exampl e of thisabstraction isthe Graph Abstra-
tion, given above, where thelogic value of every variableisfor-
%ottm. Similarly, the conservatism associated with the Graph
bstraction is simply the most visible example of the inherent
conservatism associated with the quantification abstraction.
Pioneering work on abstraction was done by Clarke and his
colleagues, and by otherg[12, 11, 10].

45 Granularity of Time

Though we often discuss time as a continuous variable, in fact
it isquantized — at least so far as our mathematics can describe
it. More precisely, given any extant model of timing behavior
of digital systems, one can demonstrate that time is quantized
and that the behavior of systems is constant except at integral
boundaries of the quantum.

Thisdoes permit usto demonstrateaconservative abstraction
of a SK_stem — we can increase the quantum of time. We ensure
that this abstraction is homomorphic by modeling any signa
that changes over a quantum as being an uncertain value over
the quantum. Thisis conservative, Since properties examined
in adigital system must rely monotonically on the stability of
signals. The synchronous abstraction, described above, may be
viewed as the logical extension of this abstraction — the time
guantum israised to thelevel of acycle.

4.6 ThePower Abstraction

One interesti nlgl;_ abstraction that has arisen of late is the power
abstraction, which ignores details of function of a system and
computes only itspower consumption.

Exact power consumptionisextraordinarily difficult to com-
pute, since it involves perfect knowledge of the state of every
signa in the system at every time. What is worse, average
power consumption over millions of cycles is desired, since
power suppliescycle in the millisecond range while computers
operate in the nanosecond range.

The abstraction used is due to Brodersen and Chan-
drakasand[g]. Ave_rge activity on thel/O pinsof ablock iscom-
puted and multiplied by the capacitance and clock frequency, to
obtain the power of a block.

4.7 Discussion

Abstraction isessential in atop-down des ?n methodol ogy that
rogressesthrough successiverefinement or aspecification[13].
n this process, refinement is the basic mechanism that maps

one level of abstraction into another that is consistent with the

previous one. Designers may apply refinement by “hand” and
in thiscase, there should be aset of toolsthat guaranteethat the

“hand” refinement isindeed arefinement so that the verification



work done at earlty stages of the design still holds and that the
various models of thedesign areconsistent.

In order for the abstraction mechanism in simplifying the
verification process to be valid, the abstractions must be ho-
momorphic In nature —that is, they must preserve the property
to be proved. Thus the nature of abstraction itself imposes
verification obligations on the designer and tool set.

Some abstractions must be done manually. For example, as
systems grow more complex, it will be infeasible to simulate
an entire chip at the gate level, even with highly advanced
cycle simulation capabilities. Designers will thus be forced to
create abstracted modelsof their part, similar to abus-functional
model for a microprocessor, such that the simulation of the
abstracted models together may be certified as a ssimulation of
the whole chip. Abstraction is thus necessarily tied tightly to
decomposition — the subject of the next section.

5 Decomposition

Decomposition is the process of breaking up a system desi %n
into components described at the samelevel of abstraction. The
main goal of decompositionisto allow the design and verifica:
tion of each component to be performed almost Independent of
each other. There are varying degrees of independence that can
be achieved between the components depending on the design
and verification ﬁroblem at hand. Some of these are described
bel ow to highlight the differences and similaritiesin decompo-
sitions across problem instances.

5.1 Timing Analysis

Consider a synchronous sequential logic circuit where each
memory element (or latch) is enabled by asingle clock. Given
a set of initial states on the latches and the maximum delay
of each gate, the timing analysis problem is to determine the
lowest clock period at which the circuit operates correctly. The
problem may be de(;omﬁose_d into two: (1) Determine the set
of reachable states in the circuit; (2) Find the latest time at
which all the outputs of the combinational logic have reached
their final stable value and at least one vector that causes this
condition. ) ) )

The first problem is solved using standard techniques for
reachability analysis in formal verification[16] and logic syn-
thesis [17]. Next, functiona timing analysis is invoked using
the complement of thereached set asdon’t cares[15]. Thus, the
timing analysis problem on a sequential circuit Is decomposed
into afunctional (timing independent) ana(ljyss of the %qfuen-
tial behavior followed by a timing dependent analysis of the
combinational behavior.

5.2 Combinational Equivalence Checking

The problem of equality checking of Boolean functions can be
solved by comparing the BDD’s for the functions built using
an initial multi-level description of the functions. An aternate
schemeisto useasatisfiability or test generation program (based
on classical branch and bound search techniques) to determine
if the functions are different. Both techniques have limited
applicability and therange of examples onwhich thetechniques
can be applied can be significantly increased by using adivide
and conquer approach.

Suppose that functions F'(a, b, ¢, X, Y) and G(a, b, ¢, P, Q)
are to be compared - «, b and ¢ are primary inputsand X, Y,
P and @ are functions over «, b, and ¢. The approach in [4]
attempts to replace the occurrence of the logic computing the
sub-function X by that for P. Thisreplacement iscorrect if no
difference between the functions X and P can be observed at
the output of F'. Thischeck is Ferformed by first introducin
an XOR gate between X and all its fanout - the other input o
the XOR gate is connected to P. If the stuck-0 fault on the
output on the XOR gate is untestable at output of F', P isasafe

replacement for X. Repeating this process from inputstowards
outputsleadsto F' having more and more of itscircuit replaced
by partsof G.

5.3 Finite State Machines

Most complex designs have compact representations when ex-
pressed as a set of intercommunicating processes. For example
communication protocols and embedded systems are often ex-
pressed as a set of communicating FSMs.  When properties
are formally checked against this description, both Imglé?\ﬂe
containment and model checking requireto compose the s
into a single one. Since the composition has number of states
bounded by the product of the number of states of the FSMsin
the lgllecomposed representation, we often have a state explosion
problem.

Maintaining the representation compact is key to make for-
mal verification applicable. An approach [10] is to automati-
cally extract from each component machine only the behavior
relevant to the verification of thegiven property through abstrac-
tion, and compose these extracted subcomponents to represent
only the part of the behavior of the entire system needed to
verify the property. This approach is powerful when the prop-
erties to be verified are local i.e., involve only variables that
areinasingle FSM. Decomposition then isaccomplished when
properties are either given in local form or they are decom-
posed into a set of local properties. In[2], an embedded control
application to automotive electronics (a shock absorber auto-
meatic setting system) isexpressed as a set of interacting FSMs
and the propertiesto be verified are successively reformulated
and decomposed until they arelocalized to allow verification in
reasonable time. In this approach, the decomposition and ab-
straction mechanisms mterpla?/ to solve the complexity issues
and are carried out manually. [t is conceivable that in anot too
distant future some of these actions could be carried out with
the help of tools.

54 Cycle Smulation using Decison Diagrams

A recent approach to cycle-based logic simulation employsthe
use of decision diagrams to achieve orders of magnitude speed-
up in simulation speed. The approach consists of buildin
the BDD’s for the output and latch functions of a circuit, an

erforming simulation via a sequence of lookups on a tabu-
ar representation of the BDD’s. One of the key optimization
criteria that determines the simulation speed is the number of
lookups needed to determine the output function

55 Discussion

The examples above illustrate that decompositions may be ob-
tained manually or automaticaly. For example, the timing
analysis problem is aone-time manual decomposition, whereas
the decomposition for cycle based simulation is wholly auto-
matic. In contrast, the automatic decomposition for combi-
nationa equivalence checking can be substantialy aided by
manual hints from the user I[4, 81). ) .

Depending on the problem being solved, decompositions
may be exact or conservative. In the former case, a property
holds on each component of the decomposition if and only if it
holds on the complete system. In the latter case, the property
is g#aranteed to hold on the complete system if it holds on on
each component of the decomposition, however, the converse
need not be true.

6 Conclusion

We summarize the conclusions that naturally follow from our
contention that the three concepts of formalization, abstraction
and decomposition as cornerstones for a design methodol ogy
that could alleviate the problems facing the design community



when the implementation technology alows, and new applica
tionsrequire, ever increasing complexity.

o From the specification, the design process has to progress
towards implementation by mapping the various levels of
the design hierarchy into other formal models. The design
process has to be characterized by the successive refine-
ment concept, so that anything that has been proven or
verified by any available tool is still true at al successive
stepsunlessamajor re-designisrequired in face of errors.
Toolsshould be devel oped to hel p the designer to maintain
consistency and to verify that refinement holds.

e The specification of a design must have clear semantics.
When the underlying modd is hardware, the HDL must
have hardware semantics. Both Verilog and VHDL violate
this with underlying event-queue semantics. It is imper-
ative that the formalization process be complete, which
impliesthat the specification should also explicitly include
all constraints and Prope_rtleﬁr uired for the design, thus
avoiding the lack of clarity and documentation that occurs
in their absence.

e Theremust besupport for abstraction in aspecification lan-
guage. Two critical abstractions that necessarily must be
supported are the separation of function and time, and non-
determinism. Abstraction should be supported by tool sthat
verify the consistency of the abstraction with respect to the
original formalization. An important side-effect of the use
of abstraction is the elimination of the over-specification
problem, i.e. to avoid giving implementation details that
may limit the quality of the design without reflecting ac-
curately theinitial goals and functionality requested of the
design. Little or no support is provided by both Verilog
and VHDL on thisfront.

e Theremust be support for decomposition beyond just what
is allowed by existing HDL's such as bresking code into
modules and support for ports lists. It is our contention
that in order to fulfill the promise of synthesis and veri-
fication technologies, HDL's must incorporate structured
forms of communication between modules that are easily
and efficiently implemented in hardware. OnIY this step
will lead to theability to decompose design problems. For-
mal descriptions of the design should be modular, i.e. the
behavior of each component of the design should not be af -
fected by the behavior of any other modul e except through
itsinterface.

If these paradigms(or otherssimilar in concept) arefollowed,
then al verification techniques can be used with maximum
efficiency. In fact, formal verification is unthinkable without
complete formalization and the use of abstraction to make it
feasible on large designs. In addition, the problem of having
multiplenot formal I_¥ correlated descriptionsof the same design
to be able to run ditferent verification tools severely hampers
the quadlity of verification. )

Itisclear that desi Pners are searching for some breakthrough
to copewiththeproblemsthey encounter: itisby no chance that
panelsand tutorialson formal verification are now common and
that major companies are setting up groups to investigate new
verification techniques. However, we strongly recommend not
to focus on techniques only but to focus instead on a rigorous
design process. ) - )
~ Thefutureis dense with opportunities and dangers. A veri-
fication aware design methodo og¥10an be thelight to avoid the
pitfallsand to choose the right path to take.
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