
Verification of Electronic Systems

Alberto L. Sangiovanni-Vincentelli� Patrick C. McGeery Alexander Saldanhaz

1 Introduction
The complexity of electronic systems is rapidly reaching a point
where it will be impossible to verify correctness of the design
without introducinga verification-aware discipline in the design
process.

Even though computers and design tools have made impor-
tant advances, the use of these tools in the commonly practiced
design methodology is not enough to address the design correct-
ness problem since verification is almost always an after-thought
in the mind of the designer. A design methodology should on
one hand put to good use all techniques and methods developed
thus far for verification, from formal verification to simulation,
from visualization to timing analysis, but should also have spe-
cific conceptual devices for dealing with correctness in the face
of complexity such as:

� Formalization, which consists of capturing the design and
its specification in an unambiguous, formal "language”
with precise semantics.

� Abstraction, which eliminates details that are of no impor-
tance when checking whether a design satisfies a particular
property.

� Decomposition, which consists of breaking the design at
a given level of the hierarchy into components that can be
designed and verified almost independently.

These mechanisms can be applied to different classes of
designs: from embedded controllers to computers, from micro-
processors to digital-to-analog converters. They are not only
useful in the verification process but also in the design process
per se making verification itself unnecessary in some cases.
For example, formalization of the design specifications is re-
quired for formal verification but it also helps in design transfer
between different organizations eliminating the risk of losing
knowledge about the design and its specifications, thus making
verification before and after the transfer unnecessary. We argue
that almost all advances in verification stem from the applica-
tion of these three basic concepts. However, the application of
each of these principles has been performed at localized levels
of the design hierarchy leading to a plethora of models, where
each tool assumes a different model. Maintaining coordination
and consistency of these multiple models has rightly become a
designer’s nightmare.

This paper is organized as follows: in Section 2 we will
review the available verification tools. In Section 3, formal-
ization will be investigated in several contexts. In Section 4,
abstraction will be presented with a set of examples. In Sec-
tion 5, decomposition will be introduced. Finally in Section
6, a design methodology that includes all these aspects will be
proposed.

2 CAD Tools for Verification
Traditionally verification has been carried out by reproducing
the behavior of the design with an approximate implementation,
a prototype, of the design, or with mathematical techniques
involving the construction of a model and running a computer

�University of California - Berkeley CA
yCadence Berkeley Laboratories - Berkeley CA
zCadence Berkeley Laboratories - Berkeley CA

simulation. Virtual or real measurements were taken to assess
the quality of the design.

Simulation is applied at all levels of a design: an incomplete
list of simulators at various levels includes circuit simulation
(e.g. Spice), switch and transistor level simulation (e.g. Cos-
mos [6]), gate level simulation (e.g. Verilog-XL), register trans-
fer level simulation (e.g. Verilog-XL) and behavioral or system
level simulation (e.g. Ptolemy [7]).

In both simulation and emulation, the correctness of the de-
sign is asserted only with respect to the inputs provided by the
environment or by its model and with respect to the measure-
ments chosen by the designer.

In a more formal approach to design as we advocate in the
next section, the set of properties and performance indices are
explicitly expressed. Sometimes these properties may be veri-
fied by setting up a comprehensive set of experiments or sim-
ulation runs, other times it is impossible to have a reasonable
confidence that the experiments yield the appropriate answer.
Properties such as absence of deadlock and fair access to re-
sources to be verified for communicating processes, require a
formal approach to verification. Formal verification is an ap-
proach that has been explored for the past 20 years but the level
of attention paid by the design community has been raised only
recently.

The categories of tools that provide formal proofs of cor-
rectness, and a counter-example in the case of an error are as
follows: Equivalence checking where a combinational logic
level design is compared against another design for functional
equivalence; Language containment and model checking where
the system is described as a collection of FSMs and the property
to be verified is specified as an automaton and temporal logic
formula respectively; and, Theorem proving where the verifica-
tion problem is stated as a theorem and a set of axioms (built-in
or user-specified) is used to construct a proof of the theorem by
proving a set of intermediate results.

3 Formalization
By a formal model of a design, we mean a model with precise,
unambiguous semantics. Formalization is critical: without a
formal model of a design, the very meaning of “verification”
becomes fuzzy and problematic.

There is a broad range of potential formalizations of a design,
but most tools and designers describe the behavior of a design
as a relation between a set of inputs and a set of outputs. This
relation may be informal, even expressed in natural language. It
is easy to find examples where informal specifications resulted
in unnecessary redesigns! In our opinion, a formal model of a
design should consists of the following components:

� A set of explicit or implicit equations which involve input,
output and possibly internal (state) variables.

� A set of properties that the design must satisfy given as
a set of equations over design variables (inputs, outputs,
states).

� A set of performance indices which evaluate the quality
of the design in terms of cost, reliability, speed, size, etc.,
given as a set of equations involving design variables.

� A set of constraints on design variables and on performance
indices specified as a set of inequalities.

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

Note that there are cases where one or more of the sets described
above may not be given or may be implicitly stated, although
we do not advocate this practice.

Such formalisms have strong advantages. First and foremost,
virtually all come with an algebra, permitting to manipulate the
design precisely. With a formal model, the effect of an opera-
tion or transformation on a design is always well defined. The
transitions along the design flow can be smooth and with few or
no special conditions that are design-dependent. At every stage
of the design flow, one can also argue about the correctness of
the intermediate result or final implementation because of the
existence of this underlying formal model. Second, the divi-
sion into equalities and inequalities neatly separates verification
and optimization problems. Finally, the notions of abstraction
and decomposition have precise, easy-to-understand definitions
over systems of equations.

However, formally describing a design is not enough to set
the stage for a correct verification process. Any design is part
of a larger system. The interface between the design and its en-
vironment is through input and output signals. Hence, to verify
the behavior of the design a model of the environment must be
given. The environment defines the input domain. Often, the
environment is not known precisely. Thus, the model may often
be given in terms of distributions over intervals or of stochastic
equations. Often, verification fails to give correct answers when
the model of the environment has not been precisely defined.

We can now summarize our discussion with the following
statement:

The formalization of a system composed of a design and
its environment consists of a closed system of equations and
inequalities over some algebra.

In the following subsections, we supply some examples of
formalisms. Our analysis will progress from more detailed
representations to more abstract ones.

3.1 Continuous waveforms and differential
equations

When the design is at the transistor level, often the properties
to be verified involve the precise knowledge of the current and
voltage waveforms. In this case, the appropriate representation
for the design variables is a continuous function over time.
The design equations are given as a set of ordinary differential
equations which combine the input-output relationships for each
device with the interconnection equations. Note that the input-
output relationships in this case are defined implicitly by the
circuit equations. The input-output behavior is obtained by
solving numerically the set of differential equations. (This is
what a circuit simulator such as Spice does). The properties
could be expressed as an inequality which should be satisfied
over a time interval of interest. In this case the environment
is modeled by the input waveforms. Often the environment
interferes with the intended behavior of the system through
noise. Noise is then an input that may be described in terms of
stochastic differential equations.

3.2 Discrete waveforms and wave equations

The discrete waveform formalism is intended to retain the pre-
cision over the time domain of the continuous formalism while
relaxing the range to a discrete set. It arose in attempting to
formalize the delay models in hardware description languages,
and, simultaneously, in efforts to solve the so-called false path
problem in timing analysis. Until this formalism was devised
in the early 1990’s, a variety of crude formalisms had been used
to capture the notion of time, and, in particular, the interac-
tion of timing and function for the purposes of timing analy-
sis. These were usually some combination of Boolean algebra
and graph-theoretic concepts, and were generally fairly unsat-
isfactory. Both standard Boolean algebra and graph-theoretic
approaches to timing may be viewed as approximations to this
general theory.

The primitive objects in the waveform formalism are discrete
signals, which are total functions from continuous time onto a
finite lattice which obey a quasi-continuity property: a signal
can’t change values without first going through the “uncertain”
value.

The operators on the discrete waveform space are any func-
tionals which take in one or more discrete signals and produce
a discrete signal. A simple gate in a technology library is an
example of such a functional. The Boolean function of the gate,
together with its associated delay model, forms an evaluation
rule on wave space, or, put more simply, it tells how this gate
takes waveforms on its input pins and produces a waveform on
its output pin.

Since the waveforms are static (though infinite) objects, al-
gebraic operations over waveforms are well-defined; since the
gate delay model plays the role in this algebra of an operator,
it is an algebra effectively parameterized by the delay model;
hence it can be used with a variety of delay models.

Though the wave algebra was only formalized quite
recently[15], it has been implicit in a number of tools for some
time. Though the semantics of most hardware description lan-
guages are difficult to capture in either an equational or deno-
tational sense, the “hardware subset” of most HDL’s is pretty
much defined over a space of waveforms. Augustin[1] first de-
vised an approximation to general discrete waveform theory to
analyze the timing models of VAL and VHDL.

3.3 Binary and multi-valued logic variables and
Boolean equations

When time is neglected and switch-level logic is not considered,
signals can be represented with static variables that take values
on a discrete set. In particular, two-valued variables have been
the cornerstone of digital design. On two-valued variables, the
input-output relationship of each gate can be represented as a
Boolean equation.

The Boolean equation formalization is critical because it is
the formalism with which we have the most experience. Thirty
years of intensive algorithm development have given us good
tools for logic synthesis (finding a smallest set of equations
equivalent to a given set), equation solution (find an input vector
such that all the equations are satisfied), and equation evaluation
(evaluate a given set of Boolean equations very quickly). For
this reason, Boolean equations are the very heart of modern
synthesis, verification, and simulation technologies, and casting
a problem as a system of Boolean equations is a major step in
solving it.

However, Boolean algebra is not restricted to operate on bi-
nary variables. For fifteen years multi-valued logic technology
has been developed into a high art, and most of the familiar two-
valued logic technologies are easily extended to multi-valued
logic. Logic synthesis technology, binary decision diagrams,
and rapid function evaluation technology are examples of those
technologies which translate easily from the binary to the multi-
valued domain. For this reason, two-valued logic signals are
now regarded as encoding multi-valued signals.

3.4 System Representations

Designs should be entered into a formal framework possibly
supported by tools as early as possible in the design process.
Formalization at the system level is crucial for real advances in
verification. The terminology “system” means different things
for different people, here we consider the notion of an electronic
system embedded in an environment to which the system has
to react with some constraints on the time of response. Em-
bedded real-time reactive systems are in this category. Such
electronic systems contain several components from sensors,
to data-processing subsystems, from analog circuitry to actua-
tors. Most of them are implemented using a set of existing pro-
grammable components such as DSPs and micro-controllers. In
this case an implementation is a combination of hardware and

software components, where the software components “cus-
tomize” the standard programmable parts for the application.
The richness of implementation choices makes the use of a
unified model for a “system” almost impossible today. Hence,
an unambiguous representation has to reflect the heterogeneity
of the components of the design as well as the fact that these
components interact among themselves in many different ways.
Hence, at the system level of abstraction a design and its envi-
ronment can be represented as a set of communicating entities
that may or may not be based on the same model of computa-
tion. A definition of this concept is given in [14]. Each entity
is described by a set of algebraic equations involving discrete
variables and as such can be treated with Boolean algebra tech-
niques. The communication mechanism can also be described
by a set of algebraic equations. Time may or may not enter in
the description of the entities or of the communications among
them.

A process network is a structural model that consists of a set
of nodes representing processes and/or sub-networks, and a set
of edges representing communication links. Its semantics are
determined by: a node model and a communication model.

Communication among processes involves writing and read-
ing information among partners. We distinguish between two
basic mechanisms, depending on whether a single piece of in-
formation (written once) can be read once or many times: De-
structive read and Non-destructive read. Communication can
be:

1. Synchronous if the write and read operations must occur
simultaneously, and

2. Asynchronous, otherwise. In this case there can be a finite
or an infinite number of buffer locations, where the infor-
mation is stored between the instant in which it is written
and the instant in which it is read.

Note that non-destructive read is generally asynchronous, and
implies a buffer with a single cell (the shared variable). The
standard distinctionsbetween uni-directional and bi-directional
communication, as well as between point-to-point and broad-
cast, are also useful for classification purposes. The Ptolemy
environment was the first to allow the simulation of process
networks with heterogeneous entities [7].

Two sets of node models are of particular interest in sys-
tem design: a control-dominated class based on Finite State
Machines (FSMs) and a data-oriented class based on data-flow
networks. FSMs in their classical form are not Turing equiv-
alent and hence questions about their behaviors are decidable.
However, data manipulations are not easily described. Data-
flow representations in their classical form are Turing equiv-
alent, but there are useful restrictions of the model (such as
synchronous data-flow) which are not. They are most useful in
describing data manipulations.

3.4.1 Communicating FSMs

An FSM is a process whose input/output function can be com-
puted by a finite automaton. The edges of the automaton are
labeled with input/output data pairs. A network of FSMs uses
broadcast synchronous non-blockingcommunication among the
FSMs.

Synchronous languages such as Esterel [3] is a language
whose semantic is based on FSM and is of particular interest
since it is among the few system-level languages that have un-
ambiguous semantics. The synchronous hypothesis, common to
all synchronous languages (Lustre and Signal also belong to the
class of synchronous languages), states that time is a sequence
of instants, between which nothing interesting occurs. In each
instant, some events occur in the environment, and a reaction
is computed instantly by the modeled system. This means that
computation and internal communication take no time. This
hypothesis is very convenient, because it allows modeling the
complete system as a single FSM. This has the advantage that
the behavior is totally predictable, because there is no problem
of synchronizing or interleaving concurrent processes.

Like all FSM based control-dominated models, data manip-
ulation cannot be done very naturally. Also, having a syn-
chronous model makes it hard to specify components of a sys-
tem that operates at different rates. Hence Esterel by itself can
only be used for process level modeling while the system level
modeling of asynchronous communicating processes should be
done using another formalism. The perfect synchrony hypoth-
esis simplifies the design process, but also forces the timing
constraints to be specified outside Esterel.

3.4.2 Petri nets and data-flow networks

A Petri net is a flat hierarchy. Nodes (usually called “transi-
tions”) “fire” by reading from each input and writing to each
output. Communication is asynchronous, with infinite buffers
(usually called “places”), with blocking read and non-blocking
write. In the pure Petri net model no value is transferred by com-
munications, the only significant information being the possible
transition firing sequences.

A data-flow network is similar to a Petri net, but each com-
munication can transfer a value (e.g., integer or Boolean), and
buffers have FIFO semantics. Little or no restriction is posed
on the function computed by each leaf node in response to a set
of communications on its input edges, apart from terminating in
finite time. Note that due to the blocking read communication,
a node cannot test an input buffer for emptiness. Nonetheless
nodes can decide from which input(s) and to which output(s)
communications will be performed. The main result concerning
data flow networks, which is directly connected with the block-
ing read communication mechanism, is their determinacy. This
means that the sequence of output values at each node does
not depend on the order in which nodes are selected to execute
computations and communications, as long as the order does
not cause deadlock (e.g., by scheduling a process when one of
the buffers it will read from is empty) or starvation (e.g., by
never scheduling a process with non-empty input buffers).

4 Abstraction
Abstraction, a most powerful concept, is used in twobasic ways:
(i) when specifying a design at early stages of the design process
to give only the relevant information, (ii) to hide details that are
not necessary to assess a particular behavior of the design.

When specifying a design, an important aspect is to express
all that is required and known of the design at the moment.
Often, designers are forced to put more details than needed to
be able to run verification tools. This has the unwanted effect
of limiting the design space to be explored or to overcomplicate
design exploration. Often, several choices are possible at the
early stage of a design and we wish to have a model that leaves
a place-holder for these options to be selected later. Nonde-
terminism is the mathematical abstraction that allows this to
happen. Nondeterminism in an FSM setting implies that more
than one transition may be taken under the same input. Remov-
ing nondeterminism means that the transition relation of the
FSM is refined to eliminate the presence of multiple transitions
under the same input pattern. This refinement concept is the
cornerstone of a design methodology that proceeds from a more
abstract model of the design to a more detailed one until an im-
plementation is obtained [13]. Formal verification tools handle
nondeterminism so that properties verified on the nondetermin-
istic model still hold after the nondeterminism is refined away
thus providing a powerful paradigm for design. Nondetermin-
ism is of great importance to model the environment where the
design lives. In this case, nondeterminism reflects the uncer-
tainty about the behavior of the environment. In any verification
approach, nondeterministic environment specification is key to
obtain a correct answer about the behavior of the system.

When abstraction is used to simplify and speed the verifi-
cation process on agiven model, it is just a simpler model of
the design, usually specific to the property to be proved. Ab-
stractions are almost always lossy – there is less information in
the abstraction than there is in the original model of the design.

If we consider our picture of design as a set of equations and
inequalities, then an abstraction is viewed as a simpler set of
equations and inequalities, describing the same design.

Abstraction is critical – virtually every verification and syn-
thesis tool relies upon some abstraction. However, abstractions
improperly done are a road to disaster. In particular, the ab-
straction must remain faithful to the property being proved –
the property must hold in the actual design if it is shown to
hold in the abstracted design. An abstraction that is property-
preserving is often said to be conservative or homomorphic with
respect to the property.1

Here, we give some examples of homomorphic abstractions
and their use.

4.1 The “Synchronous” Abstraction
The wave model of Section 3 is extraordinarily detailed – the
behavior of every signal at every point in time is captured. This
is far too detailed for most properties; we can not prove them
over such a detailed model, and almost all of the information
is irrelevant anyway. So we assume that the logic will evaluate
fast enough that we can treat it as evaluating instantaneously, or
atomically (the synchronous hypothesis of Section 3.4.1).

This is the central abstraction that underlies formal verifi-
cation of systems and the fast functional simulation methods
which are currently being introduced by the major CAD ven-
dors, and the emulation methods which have been used for
some time. Various vendors will impose further restrictions –
on clocking methods, for example – but this is more an artifact
of the limitations of their tools than any real requirement of
the technologies. All that is required is that timing considera-
tions may be neglected. Timing is ignored and the wave space
over which the systems are defined is reduced to the space of
finite-state machines. Mathematically, this is done by exam-
ining all the waveforms of the combinational logic at t = 1.
At this point, the waves are constant and Boolean, and may be
abstracted as scalars.

Note that this abstraction is only valid when it can be shown
that the logic in a design in fact evaluates fast enough; thus,
this abstraction is conditionally homomorphic. A designer who
buys a formal verification system, a cycle simulator, or an emu-
lator, would be well advised to purchase a good timing verifier
in the bargain.

4.2 The Functional Abstraction
Hardware emulation systems, most Formal Verification proce-
dures, and new, highly-advanced prototype cycle simulators,
actually go further than the synchronous abstraction. These
tools really don’t need to faithfully reproduce the logic between
the latches; all they must do is reproduce the logic function
of the logic between the latches. Throwing out the logic and
replacing it with a more tractable representation is one of the
most powerful techniques available to these advanced tools.

The most prominent replacement for the logic network in
these functional abstractions is a data structure called the BDD,
first devised by S. Akers and brought to high art by R. E.
Bryant [5]. BDD’s have the property that (up to variable order)
they are a canonical form for logic functions – an important
consideration for formal verification systems. More recently, it
has been demonstrated that BDD’s offer extremely fast evalua-
tion of logic functions, making them an important tool for cycle
simulation.

4.3 The Graph Abstraction
In contrast to the synchronous abstraction, the functional in-
formation of a network can be deleted; when this is done, one
is left with a directed graph of nodes and edges, with weights

1Note that it is not required that if the property holds in the design then
it must hold in the abstraction. While this is desirable, it is not essential –
the worst that will happen is that the property will be ”proved” false, and the
designer will have to investigate this ”false negative”.

on the edges – the weights represent the time required for a
value to travel down the wire represented by the edge. This is
the abstraction taken by first-generation timing analyzers (those
on the market today). This abstraction is homomorphic – the
outputs of a circuit will certainly stabilize by the time a graph-
based timing analyzer says they will – but has been criticized
as too conservative. The conservatism of this abstraction is
manifested in the so-called “false path problem”. Briefly, the
implicit assumption in this abstraction is that an event can travel
down any path in the circuit; however, inconsistent values on the
inputs to the logic nodes on the path may make this impossible.

4.4 Quantification
An important abstraction in formal verification is projection,
or quantification. Briefly, given a system described as a set
of equations, and a property to be checked over that system,
information about some variables is ignored and the property
in question is examined. Physically, the variables in question
are often simply deleted from the equations. It is possible to do
this so that the abstraction in question is homomorphic – that
is, that the property is preserved by the transformation.

An extreme example of this abstraction is the Graph Abstra-
tion, given above, where the logic value of every variable is for-
gotten. Similarly, the conservatism associated with the Graph
Abstraction is simply the most visible example of the inherent
conservatism associated with the quantification abstraction.

Pioneering work on abstraction was done by Clarke and his
colleagues, and by others[12, 11, 10].

4.5 Granularity of Time
Though we often discuss time as a continuous variable, in fact
it is quantized – at least so far as our mathematics can describe
it. More precisely, given any extant model of timing behavior
of digital systems, one can demonstrate that time is quantized
and that the behavior of systems is constant except at integral
boundaries of the quantum.

This does permit us to demonstrate a conservative abstraction
of a system – we can increase the quantum of time. We ensure
that this abstraction is homomorphic by modeling any signal
that changes over a quantum as being an uncertain value over
the quantum. This is conservative, since properties examined
in a digital system must rely monotonically on the stability of
signals. The synchronous abstraction, described above, may be
viewed as the logical extension of this abstraction – the time
quantum is raised to the level of a cycle.

4.6 The Power Abstraction
One interesting abstraction that has arisen of late is the power
abstraction, which ignores details of function of a system and
computes only its power consumption.

Exact power consumption is extraordinarily difficult to com-
pute, since it involves perfect knowledge of the state of every
signal in the system at every time. What is worse, average
power consumption over millions of cycles is desired, since
power supplies cycle in the millisecond range while computers
operate in the nanosecond range.

The abstraction used is due to Brodersen and Chan-
drakasan [9]. Average activity on the I/O pins of a block is com-
puted and multiplied by the capacitance and clock frequency, to
obtain the power of a block.

4.7 Discussion
Abstraction is essential in a top-down design methodology that
progresses through successive refinement of a specification [13].
In this process, refinement is the basic mechanism that maps
one level of abstraction into another that is consistent with the
previous one. Designers may apply refinement by “hand” and
in this case, there should be a set of tools that guarantee that the
“hand” refinement is indeed a refinement so that the verification

work done at early stages of the design still holds and that the
various models of the design are consistent.

In order for the abstraction mechanism in simplifying the
verification process to be valid, the abstractions must be ho-
momorphic in nature – that is, they must preserve the property
to be proved. Thus the nature of abstraction itself imposes
verification obligations on the designer and toolset.

Some abstractions must be done manually. For example, as
systems grow more complex, it will be infeasible to simulate
an entire chip at the gate level, even with highly advanced
cycle simulation capabilities. Designers will thus be forced to
create abstracted models of their part, similar to a bus-functional
model for a microprocessor, such that the simulation of the
abstracted models together may be certified as a simulation of
the whole chip. Abstraction is thus necessarily tied tightly to
decomposition – the subject of the next section.

5 Decomposition

Decomposition is the process of breaking up a system design
into components described at the same level of abstraction. The
main goal of decomposition is to allow the design and verifica-
tion of each component to be performed almost independent of
each other. There are varying degrees of independence that can
be achieved between the components depending on the design
and verification problem at hand. Some of these are described
below to highlight the differences and similarities in decompo-
sitions across problem instances.

5.1 Timing Analysis
Consider a synchronous sequential logic circuit where each
memory element (or latch) is enabled by a single clock. Given
a set of initial states on the latches and the maximum delay
of each gate, the timing analysis problem is to determine the
lowest clock period at which the circuit operates correctly. The
problem may be decomposed into two: (1) Determine the set
of reachable states in the circuit; (2) Find the latest time at
which all the outputs of the combinational logic have reached
their final stable value and at least one vector that causes this
condition.

The first problem is solved using standard techniques for
reachability analysis in formal verification[16] and logic syn-
thesis [17]. Next, functional timing analysis is invoked using
the complement of the reached set as don’t cares [15]. Thus, the
timing analysis problem on a sequential circuit is decomposed
into a functional (timing independent) analysis of the sequen-
tial behavior followed by a timing dependent analysis of the
combinational behavior.

5.2 Combinational Equivalence Checking
The problem of equality checking of Boolean functions can be
solved by comparing the BDD’s for the functions built using
an initial multi-level description of the functions. An alternate
scheme is to use a satisfiability or test generation program (based
on classical branch and bound search techniques) to determine
if the functions are different. Both techniques have limited
applicabilityand the range of examples on which the techniques
can be applied can be significantly increased by using a divide
and conquer approach.

Suppose that functions F (a; b; c;X; Y) and G(a; b; c; P;Q)

are to be compared - a, b and c are primary inputs and X, Y ,
P and Q are functions over a, b, and c. The approach in [4]
attempts to replace the occurrence of the logic computing the
sub-functionX by that for P . This replacement is correct if no
difference between the functions X and P can be observed at
the output of F . This check is performed by first introducing
an XOR gate between X and all its fanout - the other input of
the XOR gate is connected to P . If the stuck-0 fault on the
output on the XOR gate is untestable at output of F , P is a safe

replacement forX. Repeating this process from inputs towards
outputs leads to F having more and more of its circuit replaced
by parts of G.

5.3 Finite State Machines
Most complex designs have compact representations when ex-
pressed as a set of intercommunicating processes. For example
communication protocols and embedded systems are often ex-
pressed as a set of communicating FSMs. When properties
are formally checked against this description, both language
containment and model checking require to compose the FSMs
into a single one. Since the composition has number of states
bounded by the product of the number of states of the FSMs in
the decomposed representation, we often have a state explosion
problem.

Maintaining the representation compact is key to make for-
mal verification applicable. An approach [10] is to automati-
cally extract from each component machine only the behavior
relevant to the verification of the given property through abstrac-
tion, and compose these extracted subcomponents to represent
only the part of the behavior of the entire system needed to
verify the property. This approach is powerful when the prop-
erties to be verified are local i.e., involve only variables that
are in a single FSM. Decomposition then is accomplished when
properties are either given in local form or they are decom-
posed into a set of local properties. In [2], an embedded control
application to automotive electronics (a shock absorber auto-
matic setting system) is expressed as a set of interacting FSMs
and the properties to be verified are successively reformulated
and decomposed until they are localized to allow verification in
reasonable time. In this approach, the decomposition and ab-
straction mechanisms interplay to solve the complexity issues
and are carried out manually. It is conceivable that in a not too
distant future some of these actions could be carried out with
the help of tools.

5.4 Cycle Simulation using Decision Diagrams
A recent approach to cycle-based logic simulation employs the
use of decision diagrams to achieve orders of magnitude speed-
up in simulation speed. The approach consists of building
the BDD’s for the output and latch functions of a circuit, and
performing simulation via a sequence of lookups on a tabu-
lar representation of the BDD’s. One of the key optimization
criteria that determines the simulation speed is the number of
lookups needed to determine the output function

5.5 Discussion
The examples above illustrate that decompositions may be ob-
tained manually or automatically. For example, the timing
analysis problem is a one-time manual decomposition, whereas
the decomposition for cycle based simulation is wholly auto-
matic. In contrast, the automatic decomposition for combi-
national equivalence checking can be substantially aided by
manual hints from the user [4, 8].

Depending on the problem being solved, decompositions
may be exact or conservative. In the former case, a property
holds on each component of the decomposition if and only if it
holds on the complete system. In the latter case, the property
is guaranteed to hold on the complete system if it holds on on
each component of the decomposition, however, the converse
need not be true.

6 Conclusion
We summarize the conclusions that naturally follow from our
contention that the three concepts of formalization, abstraction
and decomposition as cornerstones for a design methodology
that could alleviate the problems facing the design community

when the implementation technology allows, and new applica-
tions require, ever increasing complexity.

� From the specification, the design process has to progress
towards implementation by mapping the various levels of
the design hierarchy into other formal models. The design
process has to be characterized by the successive refine-
ment concept, so that anything that has been proven or
verified by any available tool is still true at all successive
steps unless a major re-design is required in face of errors.
Tools should be developed to help the designer to maintain
consistency and to verify that refinement holds.

� The specification of a design must have clear semantics.
When the underlying model is hardware, the HDL must
have hardware semantics. Both Verilog and VHDL violate
this with underlying event-queue semantics. It is imper-
ative that the formalization process be complete, which
implies that the specification should also explicitly include
all constraints and properties required for the design, thus
avoiding the lack of clarity and documentation that occurs
in their absence.

� There must be support for abstraction in a specification lan-
guage. Two critical abstractions that necessarily must be
supported are the separation of function and time, and non-
determinism. Abstractionshould be supported by tools that
verify the consistency of the abstraction with respect to the
original formalization. An important side-effect of the use
of abstraction is the elimination of the over-specification
problem, i.e. to avoid giving implementation details that
may limit the quality of the design without reflecting ac-
curately the initial goals and functionality requested of the
design. Little or no support is provided by both Verilog
and VHDL on this front.

� There must be support for decomposition beyond just what
is allowed by existing HDL’s such as breaking code into
modules and support for ports lists. It is our contention
that in order to fulfill the promise of synthesis and veri-
fication technologies, HDL’s must incorporate structured
forms of communication between modules that are easily
and efficiently implemented in hardware. Only this step
will lead to the ability to decompose design problems. For-
mal descriptions of the design should be modular, i.e. the
behavior of each component of the design should not be af-
fected by the behavior of any other module except through
its interface.

If these paradigms (or others similar in concept) are followed,
then all verification techniques can be used with maximum
efficiency. In fact, formal verification is unthinkable without
complete formalization and the use of abstraction to make it
feasible on large designs. In addition, the problem of having
multiple not formally correlated descriptions of the same design
to be able to run different verification tools severely hampers
the quality of verification.

It is clear that designers are searching for some breakthrough
to cope with the problems they encounter: it is by no chance that
panels and tutorials on formal verification are now common and
that major companies are setting up groups to investigate new
verification techniques. However, we strongly recommend not
to focus on techniques only but to focus instead on a rigorous
design process.

The future is dense with opportunities and dangers. A veri-
fication aware design methodology can be the light to avoid the
pitfalls and to choose the right path to take.

References
[1] L. Augustin. An algebra of waveforms. Technical Report,

Computer Systems Laboratory, Stanford Unive rsity, 1989.

[2] F. Balarin, L. Lavagno, H. Hsieh, A. Sangiovanni-
Vincentelli, and A. Jurecska. Formal verification of em-

bedded systems based on cfsm networks. In Proceedings
of the Design Automation Conference, 1996.

[3] G. Berry, P. Couronné, and G. Gonthier. The synchronous
approach to reactive and real-time systems. IEEE Pro-
ceedings, 79, September 1991.

[4] D. Brand. Verification of large synthesized designs. In
Proceedings of the International Conference on Computer-
Aided Design, pages 534–537, 1993.

[5] R. Bryant. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[6] R. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler.
COSMOS: A compiled simulator for MOS circuits. In
Proceedings of the Design Automation Conference, 1987.

[7] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: a
framework for simulating and prototyping heterogen eous
systems. Interntional Journal of Computer Simulation,
special issue on Simulation Software Development, Jan-
uary 1990.

[8] J. Burch. Techniques for verifying superscalar micropro-
cessors. In Proceedings of the Design Automation Confer-
ence, 1996.

[9] A. Chandrakasan and R. Brodersen. Low power digital
cmos design. Kluwer Academic Publishers, 1995.

[10] M. Chiodo, T. Shiple, A. Sangiovanni-Vincentelli, and
R. Brayton. Automatic compositional minimization in
ctl model checking. In Proceedings of the International
Conference on Computer-Aided Design, 1992.

[11] E. Clarke, O. Grumberg, and D. Long. Model checking
and abstraction. In Proc. of Principles of Programming
Languages, 1992.

[12] E. M. Clarke, D. E. Long, and K. L. McMillan. Composi-
tional model checking. In Proceedings of the International
Symposium on Logic in Computer Science, 1989.

[13] R. P. Kurshan. Automata-Theoretic Verification of Coor-
dinating Processes. Princeton University Press, 1994.

[14] L. Lavagno, A. Sangiovanni-Vincentelli, and H. Hsieh.
Models and algorithms for embedded system synthesis
and validation. In G. De Micheli, editor, Nato Advanced
Study Institute. Kluwer Academic Publisher, 1996.

[15] P. McGeer, A. Saldanha, R. Brayton, and A. Sangiovanni-
Vincentelli. Delay models and exact timing analysis. In
T. Sasao, editor, Logic synthesis and optimization. Kluwer
Academic Publishers, 1993.

[16] K. McMillan. Symbolic model checking. Kluwer Aca-
demic Publishers, 1993.

[17] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using bdd’s. In Proceedings of
the International Conference on Computer-Aided Design,
1990.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

