
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Characterization and Parameterized Random Generation of Digital Circuits

Michael Huttony, J.P. Grossmanz, Jonathan Rose yy, and Derek Corneily
Departments of Computer Sciencey, Mathematicsz and Electrical and Computer Engineeringyy

University of Toronto, Ontario M5S 1A4
fmdhutton@cs, jp@eecg, jayar@eecg, dgc@csg.toronto.edu

Abstract

The development of new Field-Programmed, Mask-

Programmed and Laser-Programmed Gate Array architectures

is hampered by the lack of realistic test circuits that exercise

both the architectures and their automatic placement and rout-

ing algorithms. In this paper, we present a method and a tool

for generating parameterized and realistic random circuits. To

obtain the realism, we propose a set of graph-theoretic char-

acteristics that describe a physical netlist, and have built a

tool that can measure these characteristics on existing circuits.

The generation tool uses the characteristics as constraints in

the random circuit generation. To validate the quality of the

generated netlists, parameters that are not speci�ed in the gen-

eration are compared with those of real circuits, and with those

of \random" graphs.

1 Introduction

There is a need for benchmark netlists in order to compare and
test the quality of new ASIC architectures and physical de-
sign algorithms. However, useful benchmarks are rare|they
are usually too small to e�ectively test large future-generation
products, and those large enough are often proprietary.

Some attempts to alleviate this problem have been the
MCNC benchmarks [10], the PREP benchmarks [8], and the
use of random graphs. The use of random graphs is appeal-
ing because the supply is in�nite, and the circuit size can be
speci�ed. However, only a small subset of random graphs
can be considered reasonable with respect to electrical con-
straints (such as gate fanin or fanout), topological properties
(such as maximum delay) and packaging constraints such as
the number of pins. Compared to random graphs, circuits
are inherently tame for implementation in gate arrays, and
exhibit hierarchical structure which leads to empirical obser-
vations such as Rent's Rule1 [7].

In independent work, Darnauer and Dai [3] have proposed
a method of generating random undirected graphs to meet a
given I/O ratio and Rent parameter [3]. Their work reports
results only for small circuits (from 77 to 128 lookup-tables)
so it is di�cult to evaluate the method's success at achieving
the target parameterization because few partition points are
available to determine the Rent parameter, r.

1Rent's Rule: For a \reasonable" partition of a circuit into at least
5 modules, the relationship between the average number P of termi-
nals/pins on a module, and the average size B of a module follows the
relationship P = k � Br , where k is a constant and r is the Rent pa-

rameter which is a characteristic of the circuit in question.

Circuit
Characterization

Circuit
Generation

Validation

Characteristics and
Measured Parameters

(n, nPI, nPO, delay, shape,
 edge−length, fanout dist’n)

Parameterized,
Random Circuits

 Parameters not
used in Generation

(reconvergence,
 routed wirelength,
 track−count)

Generation
Quality
Measures

Figure 1: Approach to Circuit Generation

In this paper we propose a method to generate benchmark
circuits, illustrated in Figure 1, which combines the advan-
tages of random graph generation and the realism obtained by
using actual circuits. We have de�ned a set of graph-theoretic
characteristics and parameters of circuits and measured these
on real circuits up to 4500 LUTs to form a pro�le of realistic
circuits. This measurement is done with a new software tool
called circ. The pro�le is used by a second tool, gen, to gen-
erate a random circuit with the speci�ed parameters. In this
way we produce netlists with the characteristics of realistic
circuits, but also have the freedom to vary crucial parameters,
including the size of the generated circuit. The interaction
between the analysis and generation tools is of fundamental
importance: circ can be used to analyze any private collec-
tion of circuits and determine alternative pro�les for input to
gen. In this paper we will validate the quality of the gener-
ated circuits by measuring circuit characteristics that are not
speci�ed in the generation, as illustrated in Figure 1.

This system allows for features not possible with standard
benchmark sets. For example, one parameter can vary while
others are �xed or scaled appropriately, to generate a \family"
of circuits.

In this paper we de�ne the new algorithmic problem of
random circuit generation with constraints. The circuit gen-
eration problem is very di�cult and we present a heuristic
algorithm to solve it inexactly, in a program called gen.

The paper is organized as follows: Section 2 outlines the
characterizations of circuits used for generation and validation
of the random circuits and Section 3 describes the generation
algorithm. We measure and discuss the quality of the gener-
ated circuits in Section 4 and then conclude.

2 Circuit Characterization

This section describes some of the statistical and structural
characteristics of circuits which we have identi�ed. For the
purposes of this paper we focus on combinational circuits only,
and have used the MCNC benchmark circuits to form the

|
8

|
16

|
32

|
64

|
128

|
256

|
512

|
1024

|
2048

|
4096

|
8192

|
16384

|0

|60

|120

|180

|240

|300

|360

|420

|480

 size

 n
IO

All circuits:
log(nIO) = 0.46156 + 0.524 log(size)
RSQ = .4605

� �� ���
� ��� �

�
���
��
���
� �

�
�
�

�
�

�

�

�
��
�

�
�
�
�

�

�

�
��
��

�

�

��

��
�

�

�

�
�

��

�

��

�

�

�

�

����
�
�

�

����
�
�

�

�
�

�

�

�

��

�

�

��

��

��
�

�

��

�

�

�

�

�

�

��

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

��

�

�

�

�
����

�

�

�

�

�

�

�
���

��

�
�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

Figure 2: Size (2-LUTs) vs. I/O for MCNC circuits.

basis for characterization and parameterization. Note that
the users of our system could pro�le their own circuits with
circ and specify the results as parameters to gen (or modify
the program default �le) to customize the types of circuits
generated.

2.1 Pre-processing of Analyzed Circuits.
The MCNC benchmark circuits were converted from EDIF

to BLIF, optimized with sis [9] (keeping the better result of
script.rugged and script.algebraic) then technology mapped
using flowmap [2] into k-input lookup tables. Speci�cally,
each circuit was mapped 7 times, into 2-input LUTs, 3-input
LUTs up to 8-input LUTs. We chose to use lookup-tables
because of their simplicity, functional completeness and the
ease of changing to di�erent LUT-sizes. We believe that the
structural di�erences of circuits are su�ciently captured by
the use of LUTs to determine valid characterizations.

2.2 Characteristics and Parameters.
There are two di�erent types of characterizations: those

needed to determine reasonable defaults for generation param-
eters which the user does not specify and those which charac-
terize the fundamental structure of a circuit. In the remainder
of this section we propose a set of characteristics.

1. Circuit Size and Number of I/Os. The most basic char-
acteristic of a circuit is the relationship between the size of the
circuit (number of LUTs, n) and the number of primary in-
puts (nPI) and outputs (nPO). (De�ne nIO := nPI+nPO.)
Using linear regression and experimentation, we have deter-
mined that a Rent-like functional relationship, log(nIO) =
a+ b � log(n) best captures the relationship between IOs and
circuit size2. A simple linear relationship best describes the di-
vision of I/Os between inputs and outputs: nPI = c+d�nPO.
Figure 2 shows a plot of log(n) vs. log(nIO), and a least-
squares regression line for the Rent-like relationship. We note
that simply determining values for the coe�cients a; b; c; and
d does not capture the increase in variance with n so we model
these coe�cients as Gaussian distributions around the best-�t
line. The actual equations are shown in Figure 10.

2. Combinational Delay. De�ne d(x), the delay of node
x, as the maximum length over all directed paths beginning
at a PI and terminating at x, corresponding to the unit delay
model. The delay, d(C) (or just d), of a circuit is the maximum
delay over all nodes in C. Using a similar empirical analysis to
the above, we have determined the relationship between delay
and circuit size (n).

2Note that Rent's Rule explicitly does not apply uniformly for the
circuit as a whole (i.e. to predict I/O given n), so we use di�erent
functional forms for ranges of n, determined empirically. The actual
relationship is a piecewise combination. See Figure 10.

|
0

|
1

|
2

|
3

|0

|4

|8

|12

 Delay Level

 n
um

 n
od

es

�

�

� �

1

19 21

2

18 11

3

7

45

17 14 10

6 8 912131516

20 22

Figure 3: Shape function.

�

�

� �

�

example2
(36)

�

�

�

� � � �

� � �
�

alu2
(53)

�

�

�

�

�

�

�
� � �

cordic
(12)

�

�

� �

�

�

�

�

� �

�

C1908
(8)

Figure 4: Di�erent shape functions.

3. Circuit Shape. Combinational delay is very important
in the characterization of circuits, precisely because it is so
important in the design and synthesis process. De�ne the
shape function, shape(C), of a circuit as the vector of the
number of nodes at each combinational delay level. Figure 3
shows a small example circuit (cm151a), and its shape function
(12, 4, 2, 2) displayed as a histogram. Note that we do not
count primary outputs in the shape function. While these
examples are mapped to 4-LUTs, the form of the function
changes only slightly with the LUT-size.

The interesting thing about shape is that most circuits
tend to have similar shapes. Figure 4 shows four shape
functions. Of the 109 combinational multilevel circuits in
the MCNC set, 36 have a shape which is strictly decreasing
from the primary inputs (as \example2"), 53 have a \conical"
shape, fanning out from the inputs to an extreme point, then
strictly decreasing (as \alu2"), 12 have the conical shape with
a \bump" and only 8 did not �t into these categories. Impor-
tantly, this is fundamentally di�erent from degree-constrained
graphs we generated randomly, which had much \atter"
shapes.

4. Edge Length Distribution. Since nodes have a well-
de�ned delay, we can de�ne the length of a directed edge by
length(x; y) = d(y)� d(x). Clearly, the edge length is always
between 1 and delay(C), and the edge length distribution is
well de�ned. In the example of Figure 3 there are 24 edges
of length 1, and 2 each of length 2 and 3, so the edge length
distribution is (24, 2, 2, 0). We �nd that almost all circuits
have an edge-length distribution with a similar shape: a large
number of edges of length 1, and a quickly falling distribution
over the combinational delay of the circuit.

5. Fanout Distribution. De�ne fanout(x) as the num-
ber of edges leaving a node x. A circuit's fanout distribution
(the number of nodes with fanout 0, 1, 2, etc.) is an impor-
tant structural parameter. Note that fanin is less interesting
for technology-mapped circuits because they have an a priori

constraint on fanin. We have determined the fanout distribu-
tions of the MCNC circuits, and have developed an algorithm
[5] which generates reasonable fanout distributions given the
above size and shape parameters.

6. Reconvergence. Reconvergence occurs when multiple
fanouts from a single node x in the circuit branch back to-

a

bc

d

e

f

g

h
i

j

k

m

Figure 5: Reconvergence in combinational circuits.

gether at a later point y - we say the circuit is reconvergent at
y. Many circuits exhibit reconvergent fanout, but in widely
varied amounts, and so an appropriate characterization is to
quantify this amount.

De�ne the out-cone of a node x (in a circuit with no di-
rected cycles) to be the recursive fanout of x: all nodes reach-
able by a directed path from x. Figure 5 shows out-cone(a).

De�ne the reconvergence number of node x, R(x), as the
ratio of the number of fanin-2 (i.e. \reconvergent") nodes in
out-cone(x) to the size of out-cone(x). (Note: for simplic-
ity here we de�ne reconvergence for 2-LUT mapped circuits
only3 .) In the example, R(a) = 3/12 or 0.25. In most sequen-
tial circuits, the existence of ip-ops4 could result in back

edges and directed cycles, and R(a) would no longer be well-
de�ned both because the de�nition of out-cone is insu�cient
and because the natural extension of counting reconvergent
nodes results in overcounting. A more generalized de�nition
of reconvergence, based on spanning out-trees rather than a
simple ratio, takes this into account [5] but it is beyond the
scope of this paper. The reconvergence number of an entire
circuit is the weighted average (by cone size) of the reconver-
gence number of the circuit's primary inputs.

The reconvergence numbers of the MCNC circuits vary
between 0.0 and 0.92 (the theoretical maximum for 2-LUT
mapped circuits is 1.0), with a relatively even distribution
of circuits through the range 0.0 to 0.85. R is somewhat a
measure of complexity of the logic|we �nd intuitively sim-
ple logical functions have low R, and more complex functions
have higher R. Combinational and sequential arithmetic cir-
cuits fall mostly in the range 0.0 to 0.5, whereas �nite state
machines are mostly in the range 0.6 to 0.85.

In a physical sense, there is some correlation between R

and the shape of a circuit. Using the examples of Figure 4,
circuits which have an exaggerated conical shape, such as alu2
(R = :53) and cordic (R = 0:45) tend to have higher recon-
vergence values, whereas circuits like example2 (R = 0:17) are
lower. This also tends to explain the di�erence between com-
binational and sequential circuits because the �rst \sequential
level" of most �nite state machines tends to be very conical,
due to a low I/O to logic ratio.

3 Circuit Generation

Figure 6 shows an example output from gen for the param-
eterization: n=23, k=2, nPI=7, nPO=2, d=5, shape=(.38,
.31, .19, .12), fanouts=(.09, .65, .13, .04, .09), edges=(.75,

3R for circuits mapped to 4-LUTs is calculated by R(x) =P
v2out-cone(x)

log2fanin(v)

jout-cone(x)j
rather than the simple ratio. Thus 0�R�

log2(k). A still more complicated de�nition is required for sequential
circuits|see [5].

4Nodes g and j are ip-ops, but they do not have edges which form
a directed cycle.

1

3 717

4

2

11

5

8

6

16

9

22

12 20

10

18

21

15 25

19 23

14

13

24

Figure 6: Example of a completely parameterized circuit.

.25).
The gen program consists of two functional stages. The

�rst is to determine a complete parameterization of the circuit
to be generated, using partially-speci�ed user parameters and
default distributions. The second stage is to output a random
circuit with that parameterization, which we deal with �rst.

3.1 The Generation Algorithm.
The inputs to gen are n, nPI, nPO, (or nIO), d (depth),

k (LUT-size), the shape function, and the edge length and
fanout distributions. The output is a netlist of k-input lookup-
tables. Reconvergence is not a generation parameter but we
use the reconvergence number of generated circuits in the val-
idation process of Section 4.

The input shape function is scaled5 to determine the set
N (jN j = n) of all nodes, partitioned into sets Ni (i = 0::d)
of nodes at each combinational delay level. The fanout distri-
bution is scaled with n to become the set D of available out-
degrees, where dj (j = 1::n) represents the eventual fanout of
one node j. This also determines the number of edges m in the
circuit. Finally, the edge length distribution is scaled to create
the set E of available edges, where length(eh) (h = 1::m) rep-
resents the length of edge h. This gives rise to the following
combinatorial assignment problem, illustrated in Figure 7.

Circuit Generation Problem

Given: D, Ni, E.

Find: assignments of nodes in N to each dj 2 D,
and pairs of nodes for each eh 2 E such that:

I The number of edges leaving any x 2 N is
exactly its corresponding fanout dx.

II All x 2 Ni have at least one fanin from Ni�1

(i>0). (i.e. d(x) equals its assignment.)

III Fanin(x) � k for all x 2 N .

IV Fanins of x 2 N are distinct (i.e. no two
fanouts of gate y are both inputs to x.)

4

3

N

2

1

0

N

N

N

N

node setsedge setout-degree set

ED

4 4

1

0

32
2 2

1
1

1
1

1
1

1

11
1

01

1
1 1

Figure 7: The generation/construction problem.

This assignment problem appears to be computationally

5First it is scaled to length d by linear interpolation, then adjusted to
ensure there are su�cient nodes or POs to absorb the minimum fanout
of each level.

di�cult and we speculate it is NP-hard. It is important, more-
over, to have a nearly linear time algorithm in order to gener-
ate large circuits. Therefore we solve the problem heuristically.

Our approach is to �rst determine, in steps 1 and 2, an
assignment of edges and out-degrees to delay levels and then,
in step 3, to divide the levels into individual nodes. We begin
by collapsing the nodes at each delay level into a single \level-
node," ni, labeled with si = jNij, the number of nodes it
represents. This produces a modi�ed problem: Assign level-
nodes for each dj and pairs of level-nodes for each eh such that:
(I 0) the number of edges leaving any ni is the sum of the si
fanouts dj assigned to it. (II 0) There are at least si fanins to
ni from ni�1 (i > 0). (III 0) Fanin(ni) � k � si. (Note: there
is no IV 0.)

Step 1: Edge Assignment To Levels. To assign edges
to level-nodes, we �rst meet constraint II 0, by assigning si
unit edges (length one) between ni and ni+1 (i = 0::d � 1).
We then iteratively assign non-unit edges to meet constraints
on minimum fanout and fanin of each ni. This is based on
the interaction between shape and the supply of edges of each
length, which restrict where edges of certain lengths will need
to go in order to �nd a feasible solution6 . Once as many
edges as possible have been assigned in this way, we assign
the remaining non-unit edges probabilistically: we calculate a
distribution representing the ability of pairs of level-nodes to
support edges of each length (based on their available fanin|
constraint III 0|and fanout), and assign the edges randomly
by sampling this distribution. Note that the remaining unit
edges are not assigned until after the next step.

Step 2: Fanout Assignment: The construction to
this point is illustrated in the left side of Figure 8 (although
the remaining unit edges are already shown). The fanout of
each ni, (fanout(ni)) can be approximated from the already
assigned edges. We now assign the elements ofD to levels so as
to satisfy the number of edges emanating from each level, and
use the remaining unassigned unit edges to ensure a solution
which exactly assigns all of the dj 2 D and meets I 0 without
violating III 0.

De�ne Gi = fgijg to be the (initially empty) set of as-
signed fanouts (from D) for level i, and the unsatis�ed fanout
of level i, ui = fanout(ni)�

P
j
gij. De�ne the mean unsatis-

�ed fanout of level i, �ui = ui=(si � jGij).
The partition of out-degrees is done in a greedy manner7 .

At each stage we assign the largest element of D to the ni
with the largest mean unsatis�ed fanout �ui, then update Gi,
ui and �ui. Unit edges are assigned when ui falls below the
number of remaining nodes (si � jGij). The process repeats
until all dj have been assigned (meeting I 0), completing the
situation illustrated in Figure 8.

Step 3: Final Edge Assignment. We now return
to the original problem speci�cation. It remains to assign the
edges and fanouts currently associated with ni to individual
nodes of Ni. We proceed from the top down. At each level,
we assign a fanout value gij to each one of the si nodes of Ni

and randomly connect gij edges from the fanout list of ni to

6This is one of the more involved steps in the algorithm, and it is
not possible to describe all the details here. More detail will appear in
a Tech. Report, and the code is is publically available from the authors.

7We have we have omitted some details in the algorithm wich are
necessary to ensure that a reasonable solution can be found without
backtracking.

4

3

2

1

0n

n

n

n

n

7

6

5

2

3

7

5

3

0

17 = 4 + 4 + 3 + 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1

Figure 8: The generation algorithm

it. The connection of fanin nodes is more di�cult, because we
have to complete the assignment without violating constraints
II; III or IV . First we satisfy II by connecting one unit edge
to each x 2 Ni. Then we build a list of edges from previous
levels which have to be connected, and a list of (already de-
�ned) heads of these edges. Proceeding iteratively with the
list of head-nodes, sorted by the fanout to ni of that node, we
assign the remaining edges. The assignment is random, but
biased to enforce a certain amount of \locality" (closeness) in
the result. Speci�cally, when choosing the sets of fanout nodes
for each node at a level, we sample l times (empirically l = 6)
to minimize a distance metric between node labels in the fanin
and fanout sets. Although we have not yet succeeded in pro-
ducing a better characterization of locality, it is a fundamental
feature of circuits, and so it is important to introduce a degree
of locality in the generation process.

The �nal result of the generation algorithm on the struc-
ture of Figure 8 is the original example of Figure 6.

3.2 Closeness of Fit.
Steps 1 and 2 are not guaranteed to �nd a valid solution;

when necessary, gen will modify D or create extra nodes to
allow successful completion. With extensive experimentation,
we have determined �ve versions of Step 1 which together deal
with the characteristics of di�erent input sets, and we take the
best result of each with Step 2 as input to Step 3. To evaluate
the success of the heuristics, we compared the MCNC circuits
to circuits generated with their exact pro�les|gen typically
made only minor changes to D or created few extra nodes, and
these only on relatively few circuits8 . The degree of modi�ca-
tion is larger when gen uses the entire default set|yet 85% of
generated circuits are reasonable immediately, meaning they
have a feasible number of I/Os.

3.3 Examples.
Figure 9(c) shows four di�erent circuits produced by gen

using the default parameter distributions. We note that these
circuits appear to be \normal" circuits, and include many fea-
tures such as areas of high-fanout. The visual \quality" of the
circuits is most striking when one observes the similarity to
MCNC circuits (Figure 9(a)) and the contrast between MCNC
circuits and random graphs (Figure 9(b)).

3.4 Parameterization.
gen is augmented with a sophisticated C-like language,

symple, for parameter generation. The default distributions
are written in this language, and the user can specify modi�-

8We �nd d and nPI correspond exactly always, nPO exactly on
about 75% of circuits, and on most others of by a reasonable amount.
Shape, edge-length and out-degree distributions were modi�ed less than
25% of the time, and usually by a minor amount.

1

173514

28

11 29344 38 40

2

23

22 161512 25

3

27

132030

5

9

6

21

36

7 8

26

10

31

33 37 39 41

18

32

24 19

1

615918 30 67

72

27 46 2126153 38

2

71

4

88 84221270

62

35

3231

40

13

5

19

55

81

11

73

50 49

4854 63

7896 3692 983 57

6

79 56

7

29

74 68

9323 80 9516 8699

28

20 5853

45

8

33

47

9034

10

41

52

14

37 89

17

39

82

44 6677 104

60

76

98

24

101

85

7525

102

100 87 51

42

43

6469

65

97 94

91

103

(a) MCNC circuits sqrt8 and sao2

1

5

60 126

2

119 123

3

434 101

7

836 41

9

115

10

93

11

12 57

102

13

1471 91

15

81

16

121

19

20

21

22

46

23

24 84

112

26

27 114

85

30

32104

120

31

53

35

107

37

38

43

44 75

88

48

49 64

50

51

106

55

83

58

56

6796

62

105

66

63

89

69

70

116 124

98

109

99

6 1829 3340 47 545961 6568748082 86 9094 97100 103 108110 113 118122 125127

45 92 52

17

72

28

77 9539 42

73

8776

117

111

25

79

78

1

2

170

154

4

639 227

5

129140

8

9 255

167

10

11 222

225

15

212

20

16

18

173

17

251

69

19

108 220

22

23152 210

24

216

28

50

25

27

192

123

26

194

206

29

31 160245

30

190

121

34

37

57114

35

145 239

36

234

104

40

122 157

41

43

119

44

45 89253

46

48

47

202

52

186

58

53

54

68 217

55

56

132

60

198

63 164

61

62 228 238

65 66

67118

229

71

72

73

74

236

76

77

78

79176

83

84 166

85

199

91

116

86

87 211

88

182 224

93

94 243

98

203

105

99

171233

100

103

207

101

102

209

107

137

110

127

111

183

115

112

113242

196

125

126

133

180

136

134

135153

139

169

142

144

231

146

148

150

149

188

156

247

159162

163

177

175

249

179185

14 21 333842 51 5964 7082 9297 106 109117120124 128130 138143147 151 155158 161165168 174178 181184 187 189191193 197201 205208 215 219 221223226230 232 235237 241244 246250 252254 256

37 12

32

49 131

81

75

218

80 90 141 195200

172

240

204 214

213248

13 95

96

(b) Random 4-regular digraphs

1

35 202754 88

91

2

2930 6266 102

4

174080

7

3739

13 34

8

1011 19 36 7275

9

16

79

15

2641 53

25

48 52

33

47

60 86

61

84

64

97 99 101 104

612 55 59

77

18 21 858749

22

28 63100317638

43

42 6773 98 103

50

51 57

5681 89

14

68

23

32

9244 69

74

35 657882 90

24 45 587083 93

46 7194

96

95

1

3

2

31

4

5

6

10

7

9

8 12

14

1315

17

1622

24

2325

26

27

29

2830 48

50

4951

52

47 5760 62

18

19

32

5311 33

21

2034

39 35 5436 58 61

4042

38

37 5559

43 41 56

45

44

46

1

5

2

4

3

8 1113 18263640 4549 5162 6469 82 8590 100104 115 123127135144147 151156166168 171 191 196 200

46 176 192

6

9

7 12 16

19

1721

24

22

23

2534

37

3538

41

39 4447

50

4857

60

58

59

61

63

67

70

68 71

74

72

73

80

83

8184

86

88

91

89 98

101

99102

105

103106

109

107

108

111

112

114 121

124

122 125

128

126 133

136

134 137

140

138

139

142

145

143 146

148

149

152

150 154

157

155165 169

172

170 174

175

189

193

190 195 198

201

199

188 194 203

15

14 2752 65 113116167

173

197

10

20

29

28

43

42

55

53

78

66

76

75

87

92 120

110

118

117

129 141

160

153

158

179

177

202

79

3394 180

32

5477

93

119 130

161

15917830

131

56

132

31

162

183

164184

163181

96

95

182

97 185

186

187

1

349 69

2

53 142159

4

6 125

106

5

8

139 183

7

12115 185

11

88104

13

15 68

127

14

108

17

19 155182

18

112 153

20

2243 8284

21

96

200

23

25

37 154

24

138

26

141184

27 89

32

3379

34

36 126

110

35

105128

201

39

41

113

40

151

42

55109

44

46

48 95

47

150

80

50

52

87

51

140

54

137

70

64

66199

152

65

83

143

67 75

77

76

114

78 124

186

123 167 174180 194 198207

10

9 16

29

2838 45

91

60

58

57

56

72 188

7181 86

85

90

98

97107 111

117

116

131

129

147

145

144

156160

187

30 59 16192118 130 146157 189

31

62

6194

93

120

119 190158

202

7399

162

63

132 148 163

191

178

100

205121

203 74102 135

195

101 133

177103

136 176 192

168

197

204 149 181134 164 169171 175

122

165 196172

206

170

193166 173179

(c) Varied circuits produced by gen.

Figure 9: MCNC circuits vs. random graphs vs. gen.�

�

�

�

smallIO = gauss(0.431*size2 + 1.448, 1.562;
medIO = gauss(0.225*size2 + 8.026, 8.006);

largeIO = size2*gauss(-0.054*log(size2)+0.54,0.148);
defaultIO = rand(20, 500);

nIOfl = size2<30 ? smallIO : size2<100 ? medIO :
size2<1000 ? largeIO : defaultIO;

nIO = min(n-depth+2, nint(nIOfl));

Figure 10: The symple language: nIO speci�ed by a Gaussian
distribution around a Rent-like relationship (gen default).

cations on the command line, or in a script. symple provides
a great deal of control over parameters. For example, nIO is
currently de�ned as per Figure 10 in the default script.

symple allows parameters to be speci�ed as constants,
drawn from statistical distributions, chosen as functions of
other parameters, or as a range of parameters (in which case
multiple circuits are output). The latter case is illustrated in
Figure 11, where the circuit size varies from 60 to 100 by 20:
symple scales related parameters (e.g. depth and shape) yet
retains the similarity of other properties9 . This ability to scale
circuits while retaining fundamental similarities introduces an
entirely new paradigm for evaluating the scalability of archi-
tectures and algorithms.

9This is because the coe�cients of unspeci�ed relationships between
parameters are drawn �rst, then scaled to the di�erent circuits, rather
than chosen independently.

1

7

2

6

3

5

35

4 9

12

10

11

16

19

17

18

22

23

30

31

33

34

42

44

46

51

47

48

49

50

64

65

2941 45 5255 57 6063 6769 71

21 70815 58 68

13 662437 54 59

3661 53

43 56

1425

2032 62

2639

38

2740

28

n = 60

1

7

2

6

3

5

48

9

12

13

20

23

24

28

25

26

31

35

32

34

43

44

46

47

57

58

69

70

72

73

84

85

89

90

1930 36374267 758082 8688 91

10

1115 50215159 68 83

16

14 3345

3822 76

39

18

17

40

4179

87

62

7848

81

53

52

61

60 7177

27

29 74

49

54

5563

5664

65

66

n = 80

1

9

2

8

3

7

4

6

5 10

12

20

64 103

24

34

22

23

40

44

41

43

46

48

49

52

54

55

86

73

77

75

76

81

82

95

98

102

105

1819 3637 72 8092 101 106108 110112

111314

5684 85 96 2629 38 74107 109

3950

17

21252728

4793

15111

16

519483

33

32

97

3158

30

66

89

57

104

42 78

67

65

5988 99

90

87

45 35

53

91

100

60 79

6168

6370

6269

71

n = 100

Figure 11: A gen circuit family (fk=2; n=60..100#20g).

4 Validation

In this section we judge the quality of the generated circuits
with respect to parameters not speci�ed in generation: re-
convergence, and post-placement and routing wirelength and
track count. Since one of the primary applications of the cir-
cuits produced by gen is to test and evaluate physical design
algorithms, the point of this exercise is to determine how rea-
sonable the output is for this process.

We constructed the exact pro�le of the MCNC circuits
(i.e. n, nPI, nPO, d, shape, fanout and edge length distri-
butions), and generated corresponding circuits meeting those
pro�les with gen. Our method of validation is to compare the
unspeci�ed parameters of the MCNC circuits against those
of the corresponding generated circuits and against \random
graphs" of the same size.

Because the exact de�nition of a random graph varies,
we now have to be precise: the most common usage of the
term refers to a graph G(n; p) on n vertices with each possi-
ble edge existing with equal probability p. However, this is so
drastically unlike a real circuit (G(n; p) would be hopeless to
route for even small p) that we have found it a more reason-
able comparison to use a random k-regular graph|a random
graph such that each node x has fanin(x)+fanout(x)=k|as
these graphs are more realistic in an electrical sense and are
relatively easy to generate. We will compare against circuits
mapped to 4-LUTs, and so we will use, for each circuit, the ap-
propriate k 2 f4; 5; 6; 7g to generate approximately the same
number of edges. Two drawbacks of this method are that
random k-regular graphs have an inordinate number of I/Os
(approximately 20% of nodes) and no high fanout nodes, but
they provide a convenient comparison to non-parameterized
random generation.

4.1 Reconvergence.
Reconvergence, R, is not a parameter to gen. Recon-

vergence captures numerous properties of a circuit, including
high fanout, and the interaction between shape, edge length
and fanout distribution, all of which a�ect the ability to place
and route the circuit. We calculated R for the generated cir-
cuits and compared them to those of the original circuits from
which the generation pro�les were extracted and to those of
random graphs of the same size. The results for the largest 12
MCNC circuits, and means for these 12 and all circuits, are
shown in Table 1. Note that 0 � R � 2 for 4-LUT mapped
circuits. (See the footnote on page 3.)

We found that, for 70% of generated circuits, R was within
0.1 of the value for the corresponding MCNC circuit. This
indicates that the correlation for a crucial parameter R did
carry through the generation process. The mean for each class
is shown in the table.

In contrast, the reconvergence numbers of the random
graphs did not match the MCNC circuits at all. We observe

that random graphs exhibit diminishing R as n increases. This
is due to the two factors mentioned earlier: the absence of
high-fanout nodes and the large number of I/Os.

4.2 Routability.
To test the \routability" of our output circuits, we used

a locally available tool to place and global route the sets of
MCNC circuits, generated circuits, and random graphs de-
scribed above. The circuits are compared on two di�erent
metrics: the number of tracks per channel required to suc-
cessfully route, and the total wirelength of the global routing.

The software which we used [1] chooses a minimal square
grid to support the size of the circuit, and minimizes both
maximum track-count per channel and total wirelength.

Table 2 shows the statistics for the largest 12 MCNC cir-
cuits and the summary statistics (di�erences) for these and
all 114 combinational circuits. We see that the track count
for the generated circuits di�ered by 11%, on average, from
the corresponding MCNC circuit, whereas the random graphs
di�ered by 63%. Wirelength di�ered by 11% for the gener-
ated circuits and 78% for random graphs. For the largest 12
circuits, the generated circuits used slightly more wirelength
and tracks than the MCNC circuits, but the random graphs
used much more. These results clearly show the circuits pro-
duced by gen are very similar to the MCNC originals and
signi�cantly more realistic than random graphs as benchmark
circuits.

R
size mcnc gen rand

C7552 945 0.49 0.45 0.05
ex5p 1072 1.12 1.22 0.27
i10 1252 0.72 0.48 0.09

apex4 1270 0.90 1.17 0.23
misex3 1411 0.55 0.72 0.24

alu4 1536 0.50 0.62 0.22
seq 1791 0.48 0.48 0.21
des 1847 0.50 0.30 0.07

apex2 1916 0.47 0.59 0.20
spla 3706 0.97 1.08 0.13
pdc 4591 1.01 1.13 0.10

ex1010 4608 1.08 1.09 0.10
(12) 0.73 0.79 0.17
(114) 0.39 0.43 0.29

Table 1: Reconvergence: MCNC vs. gen vs. random.

Tracks Wirelength
size mcnc gen rand mcnc gen rand

C7552 945 5 8 13 5705 8320 15918
ex5p 1072 10 10 21 14748 13309 27904
i10 1252 7 9 19 10427 13155 28738

apex4 1270 9 9 23 16653 14567 34423
misex3 1411 8 10 24 16780 16912 40152

alu4 1536 8 7 26 16434 15556 45177
seq 1791 9 9 27 22111 21590 57040
des 1847 7 9 23 16229 24116 50294

apex2 1916 9 10 29 23556 25072 63418
spla 3706 10 13 19 49676 62043 167832
pdc 4591 13 14 19 73875 81982 225679

ex1010 4608 8 19 28 55002 92530 231655

(12) (diff) 28% 218% (diff) 22% 181%
(114) (diff) 11% 63% (diff) 11% 78%

Table 2: Routability: MCNC vs. gen vs. random.

5 Concluding Remarks

In this paper we have introduced a new method for gener-
ating realistic parameterized benchmark circuits. The circuit
generation is derived from the measurement of several new
graph-theoretic properties which we propose in this paper.
As a result the circuits are much more realistic than random
graphs. It has been shown that the quality of the circuits (as
measured by reconvergence and routability) is comparable to
an existing benchmark set and much better than that of ran-
dom graphs that don't use these properties. Because of the
close tie between characterization and generation, users are
able to characterize their own circuits using circ and create
defaults which more closely meet their own needs (rather than
the MCNC defaults).

Using this method, we can generate a large set of circuits
with the properties of the largest MCNC benchmark circuits.
It remains to be seen if even larger circuits (which could easily
be generated) have realistic circuit behaviour.

The gen algorithm is fast, requiring less than 1 minute
of SUN Sparc4 time to produce a circuit with 30000 4-LUT
nodes. The code is publically available from the authors.

In the future we will expand the gen system to generate
sequential circuits (with ip-ops, back-edges and cycles) and
to join sub-circuits together hierarchically. We are currently
working on the ability to generate regular (datapath) struc-
tures and also adding LUT functionality so that we can apply
our circuits to logic synthesis as well as physical-design prob-
lems. Another important aspect to future work is to better
capture the concept of locality in large circuits and to gen-
erate system-level circuits from combinational and sequential
components.

Acknowledgements. Thanks to Stephen North and
AT&T Bell Labs for academic license to use dot[4] and
Vaughn Betz for the use of his place-and-route software [1].

References
[1] V. Betz, On biased and non-uniform global routing architectures

and CAD tools for FPGAs. Tech. Report in preparation. Univer-
sity of Toronto, 1996.

[2] J. Cong and Y. Ding, FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs, IEEE Trans. CAD, 13 (June, 1994), pp. 1{12.

[3] J. Darnauer and W. Dai, A Method for Generating Random Cir-
cuits and Its Application to Routability Measurement, in 4th
ACM/SIGDA Int'l Symp. on FPGAs, FPGA96, Feb., 1996, pp. 66{
72.

[4] E. R. Gasner, E. Koutso�os, S. C. North, and K.-P. Vo, A Tech-
nique for Drawing Directed Graphs, IEEE. Trans. Soft. Eng., 19
(1993), pp. 214{230.

[5] M. D. Hutton, Characterization and Automatic Generation of
Digital Circuits and Systems. Ph.D. Thesis in preparation, Uni-
versity of Toronto, 1996.

[6] M. D. Hutton and J. S. Rose, Automatic Generation of Hier-
archical Digital Circuit Systems. Tech. Report in preparation.
University of Toronto, 1996.

[7] B. S. Landman and R. L. Russo, On a Pin Versus Block Re-
lationship for Partitions of Logic Graphs, IEEE Trans. Comp.,
C-20 (1971), pp. 1469{1479.

[8] Programmable Electronics Performance Corporation, PREP PLD
Benchmark Suite#1, V1.2. 504 Nino Ave. Los Gatos, CA 95032,
1993.

[9] E. M. Sentovich et.al, SIS: A System for Sequential Circuit Anal-

ysis. Tech. Report No. UCB/ERL M92/41. University of Califor-
nia, Berkeley, 1992.

[10] S. Yang, Logic Synthesis and Optimization Benchmarks, Version
3.0. Tech. Report. Microelectronics Centre of North Carolina. P.O.
Box 12889, Research Triangle Park, NC 27709 USA, 1991.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

