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Abstract
This paper addresses the linear placement problem

by using a spectral approach. It has been demonstrated
that, by giving a more accurate representation of the lin-
ear placement problem, a linear objective function yields
better placement quality in terms of wire length than a
quadratic objective function as in the eigenvector ap-
proach [4][11][6]. On the other hand, the quadratic ob-
jective function has an advantage in that it tends to
place components more sparsely than the linear objec-
tive function, resulting in a continuous solution closer
to a physically feasible discrete solution. In this pa-
per, we propose an �-order objective function to capture
the strengths of both the linear and quadratic objective
functions. We demonstrate that our approach yields im-
proved spectral placements. We also present a bottom-up
clustering algorithm which iteratively collapses pairs of
nodes in a graph using local and global connectivity in-
formation, where the global connectivity information is
derived from the clustering property of the eigenvector
approach. The e�ect of our new spectral linear place-
ment and clustering approach is demonstrated on bench-
mark circuits from MCNC.

1 Introduction
The linear placement problem is a fundamental prob-

lem in the �eld of VLSI design. It can be applied to
the 2D placement problem, which is crucial for circuit
layout quality. Another important application of linear
placement is circuit partitioning.

As system complexity dramaticly increases, the
divide-and-conquer concept is usually applied in cir-
cuit design, resulting in circuit hierarchy and greater
demand for good partitioning methods. Recently, sev-
eral linear placement based approaches have used the
eigenvector method to yield very impressive partition-
ing quality[5][6][4]. These approaches all assume that
a better linear placement result in shorter wire length
and therefore reduce the probability for a net to be
cut[6][4][11]. This motivates us to further exploit the
eigenvector approach for better linear placement in
terms of wire length. Our approach introduces a new
spectral objective function, which is a tradeo� between
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linear and quadratic function, and exploits the cluster-
ing property of the eigenvector approach.

In [11][4], comparisons between linear and quadratic
objective functions were made. It was found that much
better placement quality, in terms of area or wire length,
is obtained by using a linear function. In [6][4], the use
of a linear function for placement also yielded great im-
provements in circuit partitioning in terms of cut ca-
pacity. However, the quadratic objective function ap-
pears to have merit in that it tends to result in fewer
very long nets than the linear objective function. In
other words, the standard deviation of the net lengths
is smaller for the quadratic function than for the linear
function[11]. This means that the quadratic function
tends to place components more sparsely, resulting in
fewer components overlapping each other. This advan-
tage must be balanced with that fact that the quadratic
function minimizes the squared wire length rather than
the linear wire length, and thus does not correspond di-
rectly to the goal of the linear placement. In this paper,
we present a new spectral objective function, which is a
compromise between the linear function and quadratic
function; therefore, our objective function can take ad-
vantages of both the more sparse placement provided by
the quadratic function and more accurate measurement
provided by the linear function.

A cluster is a group of \strongly connected" com-
ponents in a circuit. In placement and partitioning
problems, the components of a cluster should be placed
closely or in the same subcircuit; therefore, a good clus-
tering method not only can signi�cantly reduces the
problem size but also can improve the solution quality
of partitioning and placement heuristics [13][12], espe-
cially for huge circuits. Furthermore, a clustering ap-
proach also has an advantage in the multi-pin net mod-
eling. When a circuit has been clustered, the degree of
the hyperedges in the graph is reduced. As a result,
the graph models used to approximate the hypergraph
(e.g., the star or clique models) in the spectral method
become more accurate (and exact in the case where the
clustered circuit contains only 2-pin nets).

We observe that the well-known eigenvector approach
not only provides a heuristic solution to the linear place-
ment problem but also provides global connectivity in-
formation for clustering. For example, if there is a
circuit which consists of disconnected subcircuits, the
nodes of each subcircuits will merge into a single point in
the optimal eigenvector solution. In this extreme case,
we can derive the clustering information for each merged
set of nodes; but the linear ordering of each merged set
of nodes will be arbitrary and derive a suboptimal solu-
tion. In this paper, we exploit the clustering property
of the eigenvector approach, and use it as a heuristic



providing global connectivity information.
Our spectral linear placement and clustering ap-

proach can be described in three steps. First, compress
the circuit by using a bottom-up clustering approach;
second, linear placement is done on the clustered cir-
cuit by using spectral approach; third, we uncompress
these clusters and liner placement is done on the original
circuit. Such an approach has the following features:

� By using bottom-up clustering, the problem size
is reduced and the eigenvector approach is applied
to a much smaller circuit, resulting in less running
time.

� With the bottom-up approach, the clusters are it-
eratively merged, resulting in more accurate net
modeling because the net size is reduced during the
clustering process.

� By compressing the original circuit, we mainly fo-
cus on global linear placement; and by uncompress-
ing the clusters, we focus on local placement with
global placement unchanged. This is actually a hi-
erarchical approach, especially suitable for huge cir-
cuits.

Experiments on MCNC benchmarks show that our
new spectral linear placement and clustering approach
yields an improvement of up to 22.5% for linear place-
ment in terms of total wire length, compared to the
PANZA approach[4].

The rest of this paper is organized as follows. In the
next section, we briey review the eigenvector approach,
and propose our new spectral objective function. In sec-
tion 3, we exploit the clustering property of the eigen-
vector approach. Section 4 presents our spectral linear
placement and clustering approach. In section 5, we
provide the experimental results on the linear placement
with MCNC benchmarks. Finally we conclude this pa-
per in section 6.

2 Spectral Linear Placement
2.1 Preliminaries

A circuit is modeled by a hypergraph GH= (VH ,
EH ), where the vertex set VH represents the compo-
nents and the hyperedge set EH represents the nets con-
necting the components. The linear placement problem
of a circuit is then to put these components in equally
spaced slots(one component to one slot) such that the
total wire length over all nets is minimal. The wire
length of a net is de�ned by the span of its component
set. In general, this hypergraph is approximated by a
graph G = (V;E), where a hyperedge is represented by
a set of edges. In such an approximation, clique and
star are the two most common models used for VLSI
design problems.

Let n = jV j be the number of vertices and m = jEj
be the number of edges in G. Then, this graph G can be
described by a n� n adjacency matrix A = [aij], where
the matrix element aij is the weight of the connection
between vertex i and vertex j.

After transforming a hypergraph into a graph, we can
formulate the linear placement problem as below:

min
X
i>j

X
j

aijjdi � djj (1)

where di is the coordinate of the slot for vertex i in
the linear placement. The linear placement problem is

known to be NP-complete. With a spectral approach,
a continuous linear placement, where the restriction on
placing vertices at speci�c slots is released, is usually
used as the heuristic to solve the linear placement prob-
lem.

2.2 Eigenvector Approach to Linear Place-
ment

Given a weighted graph G = (V;E), represented by
the n� n adjacency matrix A = [aij], the Laplacian of
G is de�ned as the matrix B where

B =

� Pj=n
j=1 aij if i = j

�aij otherwise.
(2)

With the eigenvector approach, the continuous linear
placement problem is formulated as a quadratic pro-
gramming problem, as shown below:

min
X
i>j

X
j

aij(xi � xj)
2 = XTBX (3)

s.t. ITX = 0; XTX = 1
where xi is the coordinate of vertex i in the continuous
linear placement.

By computing the nonzero smallest eigenvalue and
its corresponding eigenvector X of the Laplacian B, we
obtain a non-trivial solution to above quadratic pro-
gramming problem, and the heuristic solution to the
linear placement problem is obtained by interpreting the
eigenvector as a linear ordering on the vertices V . With
such an approach, as we can see, the objective function
to be minimized is the squared wire length.

In [11][6][4], the linear objective function, formulated
as below:

min
X
i>j

X
j

aijjxi � xjj (4)

s.t.
X
i

xi = f

was used to solve the continuous linear placement. Very
impressive quality on placement and partitioning was
obtained. A better heuristic, the continuous linear
placement with the linear objective function, results in
the improvement of the quality of the linear placement.

Such a linear objective function can also be rewritten
as a quadratic function by modifying the aij with the
distance jxi � xjj [11][6][4]:

X
i>j

X
j

aij jxi � xj j =
X
i>j

X
j

a0ij(xi � xj)
2

where a0ij =
aij

jxi�xjj
. Therefore, through iterative

improvement approach, the quadratic programming
method can still be used to solve the continuous linear
placement with the linear objective function.

2.3 �-order Objective Function
On the linear placement problem, the linear objective

function receives much better quality than the quadratic
objective function; that is mainly because the linear
function is more accurate measurement for the linear
placement problem than the quadratic function. On
the other hand, the quadratic function still has its ad-
vantages over the linear function. The quadratic func-
tion tends to make very long nets shorter than the lin-
ear function does, or the standard deviation of the net
lengths is smaller for the quadratic function than for the



linear function[11]. This means the quadratic function
tends to place vertices more sparsely, resulting in less
vertices overlain each other.

Because the linear placement problem is heuristically
solved by interpreting the eigenvector as the ordering of
vertices, the more sparsely the vertices are placed, the
less numerical errors are introduced on the linear place-
ment; therefore, the continuous solution of the linear
placement should be sparse enough to be interpreted
while the objective function is as accurate as possible.

Based on these observations, we propose the �-order
objective function for the continuous linear placement
problem, as shown below:

min
X
i>j

X
j

aij jxi�xjj
� =

X
i>j

X
j

aij

jxi � xjj2��
(xi�xj)

2

(5)

s.t.
X
i

xi = f

where 1:0 � � � 2:0. When � = 1:0, the �-order
function becomes the linear function; and the �-order
function becomes the quadratic function when � = 2:0.
With the �-order objective function, we hope to in-
crease the sparsity of the solution to the continuous lin-
ear placement, while we still maintain accurate enough
measurement for the linear placement. Similar to the
linearized eigenvector approach in [4], this continuous
linear placement with the �-order objective function can
be solved iteratively; and the following theorem shows
that such an iterative approach is convergent.

Theorem 1 Using the iterative approach for linearized
eigenvector in [4], the wire length, as formulated in ( 5),
is monotonically decreasing.

Because it is very hard and seems to be impossible to
derive theoretical statements about the e�ects of vari-
ous � on the solution to the linear placement problem;
therefore, we here show the e�ects by experiments on
MCNC benchmarks. We did experiments on MCNC
benchmarks with � = 2:0(quadratic), � = 1:5, � = 1:2,
and � = 1:0(linear) in the �-order objective function.
The results are shown in Table 1; and Figure 1 shows
the histogram of the vertex distribution of the contin-
uous linear placement with various � in the objective
function for the benchmark S38417. In Figure 1, the
X axis represents the vertex coordinates of the continu-
ous linear placement; in order to easily draw these his-
tograms, we scale the vertex coordinates up by a factor
of 20. The vertical axis represents the percentage of ver-
tices. Note that the norm of these cases are the same.
However, we use the star model for net modeling, where
for each net we introduce a dummy node, and Figure 1
shows only the real nodes in the circuit. It is easy to
see that the nodes are placed more densely in the con-
tinuous linear placement when � decreases.

From the experimental results, it is easy to see that
�-order objective function with � = 1:2 has obtained
the best quality on the linear placement in terms of total
wire length among these four cases. That is because the
�-order(� = 1:2) objective function has higher sparsity
on the continuous linear placement than the linear func-
tion does, and it also has more accurate measurement on
the linear placement than the quadratic function does,
resulting in better performance.
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Figure 2: A Simple Example

3 Exploiting the Clustering Property
The solution to the continuous linear placement prob-

lem by using the eigenvector approach is not only a good
heuristic for the linear placement problem but also a
good heuristic for clustering problem, where the contin-
uous solution provides the global connectivity informa-
tion. In this section, we will demonstrate the clustering
property of the eigenvector approach.

Figure 2 shows a very simple graph and the continu-
ous linear placement of the eigenvector approach. This
simple example intuitively demonstrates the clustering
property of the eigenvector approach. In this example,
we have seven vertices V = fviji = 1; : : : ; 7g and 10 nets,
as shown in Figure 2. Then the eigenvector correspond-
ing to the nonzero smallest eigenvalue �1 = 0:398321 for
this example is X = fx1 = �0:21422; x2 = x3 = x4 =
�0:356037; x5 = 0:29656; x6 = x7 = 0:492886g.

From this continuous linear placement, we can
roughly divide the vertices V into two groups, one group
includes the vertices (viji = 1; : : : ; 4) and another group
includes the vertices (viji = 5; 6; 7); because the ver-
tices in each group are overlain each other or placed
very closely while the gap between these two groups is
quite large. This means that the intra-group connec-
tivity is much higher than the inter-group connectivity,
or the probability that some vertices in a group form a
cluster is much higher than the probability that some
vertices from di�erent groups form a cluster. Therefore,
it is quite natural to use the continuous linear placement
result as the global connectivity information in a clus-
tering process.

Theorem 2 Given the Laplacians B1 and B2 of the
graphs G1 and G2, let �1 = f0; �01; : : : ; �

0

k�1g be the

eigenvalues of B1 and �2 = f0; �001; : : : ; �
00

l�1g be the

eigenvalues of B2. Then the eigenvalues of B:

B =

�
B1 0
0 B2

�

are �1 [ �2 = f0; 0; �01; : : : ; �
0

k�1; �
00

1 ; : : : ; �
00

l�1g.

Theorem 3 Given two graphs G1 and G2, and their
Laplacians B1 and B2, then the Laplacian of the graph
G=G1 [ G2 has two eigenvectors with eigenvalue of 0.
One eigenvector is (1; 1; : : : ; 1), where all vertices of G1

and G2 are placed at the same location; and the other
eigenvector is (a; : : : ; a; b; : : : ; b), where all vertices of
G1 are placed at x=a and all vertices of G2 are placed
at x=b.



CIRCUITS Quad � = 1:5 � = 1:2 Linear
s1423 12,416 10,257 9,823 9,924
s15850 1,377,295 783,285 733,646 1,072,068
s35932 2,052,699 1,847,369 1,609,146 1,693,484
s38417 3,115,066 1,948,577 1,682,214 2,386,239
s38584 3,915,095 2,721,014 2,655,224 3,480,634

Table 1: Comparison of Di�erent Objective Function.
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Figure 1: The Continuous Linear Placement

Theorem 4 Given two graphs G1 and G2, and their
Laplacians B1 and B2. Let V

0

i be the eigenvector corre-

sponding to the eigenvalue �0i of B1, and let V 00

i be the

eigenvector corresponding to the eigenvalue �00i of B2.

Then the eigenvector corresponding to the eigenvalue �0i

of B =

�
B1 0
0 B2

�
is

�
V 0

i
0

�
, where all nodes of G2

are placed at x=0; and the eigenvector corresponding to

the eigenvalue �00i of B is

�
0
V 00

i

�
, where all nodes of

G1 are placed at x=0.

The above theorems deal with the Laplacian of a sep-
arated graph; however, these theorems also show the
clustering property of the eigenvector approach. In-
tuitively, if the vertices in subgraph Giji = 1; 2 are
\strongly" connected while the connection between G1

and G2 is comparatively loose, then continuous linear
placement from the eigenvector approach will place the
vertices of Gi around one location very closely, form-
ing a natural cluster; and the linear placement based on
this derived eigenvector solution will be quite arbitrary
because some nodes are overlain each other.

Based on these observation, we use the continuous
linear placement as the heuristic for the global connec-
tivity information, while the local connectivity informa-
tion is derived directly from the netlist. Our clustering
algorithm is a bottom-up approach. First, we initialize
each cluster which includes only one node of the original
circuit. With bottom-up approach, we iteratively merge

pairs of clusters which are strongly connected until we
reduce the size of the clustered circuit to a prede�ned
threshold Tk.

Algorithm 1 Bottom-Up Clustering:
1. Initialize each cluster with only one node;
2. Do f Build new clustered circuit;

Calculate connectivity for pairs of clusters;
Merge pairs of clusters with high connectity;

g Repeat until sizeof(circuit)� Tk

We use the following metric to measure the connec-
tivity for a pair of clusters i and j.

C =

P
k c

k
ij

Wi �Wj

� g(i; j)

where ckij denotes the connective contribution from the

kth net. If the kth net connects clusters i and j, ckij =
1

size(netk)�1
; otherwise, ckij = 0. Wi denotes the size of

the cluster i, this term can be viewed as the inertia of
the cluster i; a cluster with large size is discouraged from
participaring in additional merging operations in the
clustering process. Finally, the g(i,j) is the weight from
the continuous linear placement with the eigenvector
approach, acting as the global connectivity information.

Although the eigenvector solution provides heuristic
for the global connectivity information, it is quite costly
to solve the continuous linear placement for a large cir-
cuit. Furthermore, it is very likely to introduce more



errors in the numerical computation for a large circuit.
Due to these reasons, in our clustering implementation,
when a circuit is very large, we only use local connectiv-
ity information in the clustering process; after the size of
the clustered circuit becomes moderate, the global con-
nectivity information from the continuous linear place-
ment is used.

4 New Spectral Linear Placement
It is well known that clustering approach not only

can signi�cantly reduce the size of circuits but also can
improve the performance of partitioning and placement.
In this section, we combine the bottom-up clustering ap-
proach with our new spectral approach with �-order ob-
jective function for the linear placement problem. The
new spectral linear placement algorithm, as shown be-
low, can be viewed as consisting of three phases: 1) by
using bottom-up clustering approach, groups of nodes
with high connectivity are formed into clusters; 2) lin-
ear placement is done on this clustered circuit; 3) linear
placement is done on the original circuit. In the last
phrase, we �rst uncompress the clusters and locally do
the linear placement for the nodes of each cluster; then
we further improve the quality of the linear placement
by using the decomposition algorithm[4], which use the
recursive max-ow min-cut approach.

Algorithm 2 New Spectral Linear Placement:
1. Call Alg. 1 to merge clusters;

Let � = fCiji = 1; : : : ;Kg be cluster set;
2. Build new clustered circuit for �;

Solve placement with �-order function;
3. Let O = (C1; : : : ; CK) be the cluster ordering;

i=2;

Do f Build a shrunken resistive network

(s; vj1; : : : ; vjl; t) for Ci,

where vji(i = 1 : : : l) is component of Ci;
Solve this shrunken resistive network;

Replace Ci with ordering (vi1; : : : ; vil) in O;
i=i+1;

g while (i � K � 1).

The bottom-up clustering approach has been dis-
cussed in the last section, where we exploit the cluster-
ing property of the eigenvector approach as the global
connectivity information. The main objective of the
clustering is to reduce the circuit size without sacri�c-
ing the quality of partitioning and placement. The �rst
phrase produces the clustered circuit. The spectral ap-
proach with �-order objective function, which has also
been discussed in the second section, can be applied for
either clustered circuit or original circuit on the linear
placement. In this section, we mainly focus on the dis-
cussion of the third phrase of our new spectral linear
placement algorithm.

In [3][17], the resistive network concept was intro-
duced to solve the placement problem. By analogiz-
ing an electric network, where the conductance between
node i and node j is equal to �bij of the Laplacian B de-
�ned by Equation 2, it has been demonstrated that the
placement problem is equivalent to that of choosing the
node voltages of the electric network for which the power
dissipation is a minimum. The node voltages of the elec-
tric network are analogy to the node coordinates of the
placement problem[3][17]. However, di�erent from the

eigenvector approach, the resistive network can include
the I/O pad speci�cations. Therefore, by modeling the
I/O pads as �xed voltage sources applied to the electric
network, we can �x some nodes at speci�c coordinates
and the coordinates of the rest nodes are then the node
voltages to be determined.

Therefore, the resistive network approach can be used
to determine the coordinates of the nodes in a cluster,
resulting in uncompressing the clustered circuit. Given
the cluster ordering O = (C1; C2; : : : ; CK), when we try
uncompressing the cluster Ci, we hope to determine the
coordinates of the nodes in Ci while the ordering of
clusters is not changed. With the resistive network ap-
proach, we shrink all the clusters to the left of Ci in O
into a I/O pad s with 0 voltage, replace the cluster Ci

with its components, and shrink all the clusters to the
right of Ci in O into a I/O pad t with 1 voltage. Then
the coordinates of the nodes in Ci are determined by
the voltages of this shrunken resistive network.

Theorem 5 In the above shrunken resistive network,
the voltage of a movable node is between 0 and 1.

Based on the above theorem, the nodes in Ci will be
placed between two shrunken nodes s and t. Therefore,
the uncompressing process doesn't break the cluster or-
dering de�ned by O.

After uncompressing the cluster Ciji = 2; : : : ;K � 1
in the ordering O, we obtain a solution to the linear
placement problem for the original circuit. As shown in
the experimental results of next section, such cluster-
ing and uncompressing approach obtains much better
placement quality in terms of total wire length than the
linearized eigenvector approach on original circuits. Us-
ing this better linear placement solution as the heuristic
for the seed selection in the decomposition algorithm[4],
the quality of the linear placement can be further im-
proved.

5 Experiments
We implemented our new spectral linear placement

and clustering algorithm(SLPC) for the linear place-
ment problem, and tested it with a set of large bench-
marks from MCNC. These benchmarks were also used
in PANZA in [4].

We compare our SLPC to the lineared eigenvector
approach(EIG2) and PANZA[4] in terms of total wire
length. In comparison to EIG2, in order to be fair com-
parison, the recursive max-ow min-cut method is not
applied in our SPLC method, we denote this version of
SPLC as SPLC1. In comparison to PANZA, the recur-
sive max-ow min-cut method is applied after SLPC1,
and we denote this version of SPLC as SPLC2. For all
these approaches, we use the star model for netlist mod-
eling, and the net length is measured by the span of its
node set.

In our SPLC approach, we set the prede�ned thresh-
old for controlling the size of clustered circuits as Tk =
100 in Alg. 1, and we use � = 1:2 in the �-order
objective function.

The experimental results are summerized in Table
2. The results of SLPC are superior to the EIG2
and PANZA in terms of the total wire length. On
the average, SLPC1 yields improvements of 18.5% over
EIG2[4] and SLPC2 yields improvements of 8.8% over
PANZA[4]. It is also important to note that SLPC ap-
proach yields much higher improvements for large cir-
cuits than for small circuits.



CIRCUITS WIRE LENGTH %improv over
EIG2 SLPC1 PANZA SLPC2 EIG2 PANZA

s1423 9,924 9,508 9,060 9,254 4.2 -2.1
s9234 290,472 289,031 266,617 248,999 0.5 6.6
s13207 608,820 604,538 451,210 465,214 0.7 -3.1
s15850 1,072,068 725,042 728,103 591,372 32.4 18.8
s35932 1,693,484 1,265,986 920,607 871,937 25.3 5.3
s38417 2,386,239 1,799,575 1,711,139 1,325,547 24.6 22.5
s38584 3,480,634 2,015,480 1,728,237 1,487,277 42.1 13.9
Average 18.5 8.8

Table 2: Linear Placement Results.

6 Conclusion

In this paper, We develop a new spectral linear place-
ment and clustering algorithm(SLPC). First we com-
pare the spectral approach with various objective func-
tions with experiments on MCNC benchmarks. We ob-
serve that the solution to the linear placement problem
depends on both the sparsity of the continuous linear
placement and the accurate measurement of the lin-
ear placement goal. The �-order objective function,
which takes the sparsity and accurate measurement of
the continuous linear placement into consideration at
same time, has better performance on the linear place-
ment than both the linear and quadratic objective func-
tions. We also exploit the natural clustering property
of the eigenvector approach, which we use as the global
connectivity information in the bottom-up clustering
process. This simple but e�cient bottom-up cluster-
ing method not only signi�cantly reduce the problem
size but also improves the performance of the linear
placement. The e�cient resistive network approach is
applied to uncompress clustered circuits. Therefore,
our approach for the linear placement problem is �rst
bottom-up approach to clustered circuits then top-down
approach back to original circuits. Finally the decompo-
sition algorithm is applied to further improve the qual-
ity of the linear placement. Our experiments on MCNC
benchmarks demonstrate that our spectral linear place-
ment and clustering approach receives much better per-
formance than the previous ones.
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