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Abstract| This paper describes a novel approach to

timing analysis and veri�cation of asynchronous circuits

with bounded delays. The method is based on the time-

driven unfolding of a time Petri net model of a circuit. Each

reachable state, together with its timing constraints is rep-

resented implicitly. Our method is used to verify free-

dom from hazards in asynchronous circuits consisting of

micropipeline components and logic gates.

I. Introduction

Veri�cation of functional correctness is widely accepted
today as an important step of the asynchronous circuit
design process. Circuits are often designed in an ad hoc
manner, It is impossible to guarantee correct operation of
a circuit under all possible conditions. Most of the current
research in asynchronous circuit veri�cation is aimed at
the design and veri�cation of speed-independent (SI) or
(quasi) delay insensitive ((Q)DI) circuits.
Additional circuitry for pure SI or (Q)DI design often

discourages the designers from using self-timed models.
Instead, designers often choose some short-cuts, imple-
ment circuits so that the delays in gate switching prevent
the circuit from malfunctioning. As a result, bounded de-
lay circuits need to be veri�ed by means of e�cient timing
analysis.
Several methods for analysis of timed models of asyn-

chronous circuits are known to date, e.g. Alur and Dill [2],
Rokicki [8], Hulgaard et al [5], Yoneda et al [12] and oth-
ers. The timed automaton model [2], due to its generality,
can provide a very �ne detail description of its behaviour
but for obvious reasons of complexity it may be imprac-
tical. The approach in [12] builds a Time State Graph
(TSG) of an asynchronous circuit from its Time PN de-
scription and attempts to use a partial order technique.
An approach used in [8] is based on constructing a TSG
from a special class of Timed PNs, orbital nets, using a
partial order approach to calculate the states reachable by
�ring of the transitions in non-con
icting run of underly-
ing PN. Timing analysis introduced by [5] is based on an
untimed unfolding of underlying PN and uses an iterative
algorithm to determine separation times between events.
We propose an algorithm for e�cient implicit \con-

struction" of the TSG for a Time PN. The latter is rep-
resented in the form of the Time PN unfolding segment.
Our algorithm unfolds a Time PN creating only those
transitions that are really instantiated within given tim-
ing bounds. An active role in this construction is played
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by timing constraints re-calculated dynamically for the
transition instances in the unfolding. That latter feature
di�erentiates our approach from [5], where the net unfold-
ing is built separately from its timing analysis.
We consider Time PNs with time independent choice

and apply our method to the veri�cation of asynchronous
control circuits built in two di�erent design styles: mi-
cropipeline components and logic gates.

II. Basic definitions

Time Petri Nets | A marked Petri Net (PN)1 is a
tuple N = hP; T; F;m0i where P and T are non-empty
�nite sets of places and transitions respectively, F is a

ow relation and m0 is the initial marking. A Labelled
PN is a tuple Nl = hN;A;Li where N is a marked PN, A
is a set of actions and L : T ! A is a labelling function. If
jT j > jAj then some transitions of LPN are labelled with
the same action a. A special case of LPN, used for low
level descriptions of asynchronous circuits, is called Signal
(Transition) Graph (STG) [9]. In STG, the set of actions
represents changes of the signals. Two signals are said to
be persistent at some marking if transition of one signal
does not disable transition of another. A PN is said to be
safe if at any reachable marking the number of tokens in
any place is not greater than 1. Further in this paper we
will consider only safe PNs.
A time Petri Net (TPN) (introduced in [7]) is a tuple

N = hN; E ;Li, where N is a marked PN, E ; L : T ! Q+

are functions assigning each transition with earliest and
latest �ring times. For each transition t 2 T E(t) � L(t)
is satis�ed. A state of TPN is a pair (m; clm). Function
clm : T ! Q+ associates a rational number with each
transition representing the time elapsed from the moment
when this transition became enabled. A transition t of
a TPN is said to be time-enabled at some state s i� it
has all its input places (�t) marked (untimed enabled) at
markingm and E(t) � clm(t) � L(t). The state of a TPN
can change due to two reasons:
� A transition �res, which takes no time but changes

the marking (removing tokens from �t and adding to t�)
and updates the cl function excluding disabled transitions
and adding newly enabled ones, or
� Some time (bounded by the latest �ring times of en-

abled transitions) passes which does not change the mark-
ing but updates the clock values for all transitions.
In order to be able to have a �nite representation of

its time state space the notion of classes is introduced. A
class is a tuple s = (m; I), where m is some marking of

1We assume that the reader is familiar with the basics of PN theory.
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Fig. 1. An example of a Time Petri Net and its unfolding.

the underlying PN and I is a set of inequalities relating
�ring times of enabled transitions. Abusing the notation
we will call classes of time states simply time states (TS).
An algorithm for generating a Time State Graph (TSG)

[3] has been adapted for analysis of asynchronous circuits
in [12]. The algorithm constructs TSG iteratively by ap-
plying Floyd's algorithm to the system of inequalities rep-
resented in the form of a matrix.
Analysis of the TSG hits the problem of state explo-

sion. An attractive method of battling this problem was
suggested in [6] which we extend to analysis of TPNs.Here
we only brie
y introduce the unfolding; with some useful
notions and notation associated with it.
Unfoldings | Formally, an unfolding obtained from

a PN, N , is an occurrence net N 0 = hP 0; T 0; F 0; L0i where
P 0; T 0 and F 0 are its sets of places, transitions and 
ow
relation respectively, and L0 : (P 0 [ T 0) ! (P [ T ) is the
labelling function which labels every unfolding element as
an occurrence of the corresponding element of the original
PN.
Using structural properties of the unfolding we can de-

termine relations between instances and de�ne the notions
of (local) con�guration and its �nal state2.
For any reachable marking m of the original PN there

exists a con�guration in the unfolding such that its �nal
state is equal to m and vice versa [6].
An algorithm constructing a truncated unfolding rep-

resenting all reachable states has been suggested in [6].
The possible redundancy of the truncated unfolding has
been discussed and solved in [10] and [4]. However, in this
work, we are not concerned with the cuto� condition itself
and will assume that the right cuto� condition is used for
our examples.
Choice in TPNs | There are two paradigms of

choice interpretation in TPN. The �rst assumes that, for
any two enabled transitions that are in structural con
ict
choice is resolved instantly and then the winner's �ring is
delayed, i.e. the choice is resolved independently of time.

2See [6] for full de�nitions and explanations.

In the second, the clock of each transition is started when
it is PN (untimed) enabled and transitions compete for
the token(s) in the con
ict place(s) resolving the con
ict
in time. Thus the allowed �ring times of a particular
transition may be di�erent from the assigned ones.
From a behavioural point of view, there are three ba-

sic types of choice in PNs:(Extended) Free Choice3 (FC),
Unique Choice (UC) and Arbitration choice (AC). In FC
PNs, the choice between two transitions is always non-
deterministic but fair to all transitions. In UC PNs, the
choice is controllable; there is only one of structurally
con
icting transitions enabled at a time. In AC PN, the
choice is uncontrollable; transitions may be in structural
choice, but at di�erent markings may be in con
ict with
di�erent transitions. This is the most di�cult type of
choice for analysis.
A time independent choice (TIC-PN) as a TPN in

which any choice is resolved independently of time.
If con
icting transitions of a FC TPN have ranges of

their delays which are either equal or non-overlapping
then such PN is a TIC-PN. If the delay ranges are dif-
ferent but are overlapping, then this choice can be made
time independent by either using the �rst paradigm or by
introducing additional transitions with zero delay range
which will resolve the choice. UC PNs are included into
TIC-PNs. The choice in AC is time independent only if all
input places are marked at the same time or are marked
mutually exclusive. In the �rst case this type of con
ict
can be reduced to FC, in the second { to UC.

III. Time Petri Net Unfolding

The unfolding algorithm for untimed PNs cannot be ap-
plied directly to the analysis of TPNs. Unlike in untimed
PNs, two interleavings of concurrent transitions may lead
into two di�erent time states.
Consider a TPN shown in Figure 1. An invisible action

resets the whole system inserting tokens into all places
of the initial marking at the same time. Using method
explained in [12] we compute the initial set of inequalities
I0, represented as a matrix where each element Iij is an
upper bound of �ring transition ti earlier than tj . All
diagonal elements are set to 0. To check if an instance
of t1 is time-enabled we check that I01;i � 0 for all ti
enabled at m0. The new set of inequalities is computed
using Floyd's algorithm as in [12]. For the purposes of our
veri�cation we restrict ourselves to the class of TIC-PNs.
Similar to the untimed unfolding we de�ne the following

\cornerstone" notions of TPN unfolding.
� A TPN unfolding is an occurrence net N 0 = hN 0; Ii

build from a TPN so that all transition �rings satisfy tim-
ing constraints imposed on them.
� A time con�guration4 is a non-con
icting backwards

closed set of transitions of a TPN unfolding. The least
time con�guration including transition t0 is called time lo-
cal con�guration (TLC) of t0. It may correspond to some
con�guration of the unfolding of underlying PN if any
\untimed" concurrent to t0 transition is time-preceding
t0. For example, TLC of t03 (Figure 1(e)) in TPN un-
folding of TPN from Figure 1(a) includes both t01 and t

0

2.

3FC is also a structural property.
4We will simply reuse notation of untimed unfolding inscribing it

with t.



while Queue is not empty do

for each transition t in PN N do

�nd an untried subset of independent occurrences of �t

compute a set of pre-�ring time states of t0

for each pre-�ring timed state F t

s
(t0) do

if t0 is time-enabled then do

insert F t

s
(t0) into the Queue in order of Lo(t0)

end do

end do

end do

pull the �rst time state F t

s
(t0) from the Queue

compute new set of inequalities I.

make a copy t
0 of transition t in the Unfolding

if t0 is a cuto� then do

mark transition t0 and its t0� as cuto� point

end do

end do

Fig. 2. Algorithm for TPN unfolding segment.

A particular instance t0 can be associated with a set of
TLCs.
� A timed �nal state of con�guration Ct is a pair (m; I),

where m is a marking reached by �ring transitions in Ct

and I is a set of inequalities associated with it. The set
of inequalities depends on the order in which transitions
in Ct are �red.
A TLC represents a (possibly in�nite) set of timed �r-

ing sequences which all lead to the states of TPN reach-
able through the �rst possible �ring of the transition t0

in every sequence. Each transition of the TPN unfold-
ing is associated with two time bounds: Lo(t0) and Hi(t0)
representing the earliest and latest times respectively at
which transition t can �re from the start of the system.

Proposition 1 Two transitions t1 and t2 of TIC-TPN
are in con
ict if there exist two of their instances t01 and t

0
2

in TPN unfolding such that instances of some transitions
t03 2 dt01e

t and t04 2 dt02e
t are in structural con
ict. 2

From the above proposition and structural precedence
of the unfolding elements we can determine con
ict, con-
currency and precedence relations between any two in-
stances. Thus we can check the safeness property of TPNs
on their TPN unfolding by simply checking if any two oc-
currences of the same place of the original net are inde-
pendent.
Due to non-con
ictness property of a local con�gura-

tion any sequence of transitions in a TLC leads to the
same PN marking. Moreover, this marking is always
reachable through some �ring sequence represented in this
TLC because the timing constraints imposed on transition
�rings can only restrict reachable markings by ordering
concurrent events.
The above notions allow us to develop an algorithm for

construction of a TPN unfolding of a TIC-PN. The al-
gorithm constructs a possibly in�nite time unfolding of
a TIC-PN. The candidate transitions are ordered accord-
ing to the their earliest time of �ring. Unlike in [6], the
algorithm orders time �nal states (F t

s(dt
0et)). In an un-

timed unfolding, every instance had a uniquely de�ned
�nal state whereas in a TPN unfolding each transition
may have several time �nal states associated with it.

An important step of the algorithm is computing the
pre-�ring TS for t0, which is considered in more detail
below.
� Suppose for simplicity that each transition in �(�t0)

has only one TLC5. Pre-�ring con�guration �dt0et is found
as a union of local con�gurations of t0i 2 �(�t0). The pre-
�ring marking of t is F t

s(�dt
0et).

� Firing time bounds of a newly generated transition
are computed from the �ring bounds of the maximal tran-
sitions of �dt0et as: Lo(t0) = max(Lo(t0m)) + E(t0) and
Hi(t0) = max(Hi(t0m)) + L(t0) 8t0m 2 �dt0e.
From the pre-�ring con�guration, using its structural

information and the �ring bounds of each transition a
matrix M , corresponding to the pre-�ring con�guration
set of inequalities is created.
� By applying Floyd's algorithm obtain the set of in-

equalities �I for the state covering timed states from
which t0 can be �red. Let k be the row corresponding
to t. If 8i : Mk;i � 0, then the t is time-enabled. Other-
wise, �nd a transition te with minimum Mk;e and check
if its occurrence exists in the time unfolding. Intuitively,
this corresponds to �ring the transition with the most
\time penalty", i.e. earliest needed to be �red to time
enable t. If several transitions have equal time penalties,
choose the one which has looser bounds w.r.t. t0m. If no
instance of this transition exists in the unfolding or if t
is no longer enabled after �ring te, then the algorithm
proceeds to analysis of the next time �nal state.
Note, that by construction of TPN unfolding, any TLC

has only one time �nal state explicitly associated with it.
However, in the case when several concurrent branches of
one process are synchronised by one transition, called syn-
chronising transition a �nal state corresponds to a union
of all timed states reachable through transitions of this
TLC. Such a �nal state is called covering �nal state and
has the following properties:
� If a transition is not time-enabled at the covering �nal

state, then it is not enabled in any of the TS which are
covered by this �nal state.
� If a transition is enabled at any of the covered TS,

then it is enabled at the covering �nal state.
The covering �nal states represent the possible future

traces of the net from some particular marking. It is also
possible to show that if any two transitions are enabled at
two di�erent TS covered by one covering state, then there
exists a TS at which both these transitions are enabled.

Proposition 2 A time state s = (m; I) is reachable in
the TSG of TIC-PN i� there exists a time con�guration
Ct such that marking component of F t

s(C) is equal to
marking m and its associated set of inequalities has an
isomorphic to I set of solutions. 2

We develop a termination condition, called cuto� con-
dition, to stop the construction of possibly in�nite TPN
unfolding. Two time states are said to be equivalent if
their markings are equal and their sets of inequalities have
isomorphic set of solutions. A transition of TPN unfold-
ing is said to be a cuto� transition if all its time �nal
states are equivalent to time �nal states of some other

5If transitions have several TLCs, then each combination of those
should be considered.



Benchmark Timed unfolding TSG
Trans. Places Fin. St. States

Example 134 137 133 1249
TransCont. 21 29 21 37
FastF Usafe 30 42 28 292
FastF safe 21 30 21 125
Blocking 21 29 21 29
Ctrl haz. 12 37 11 17

Ctrl haz free 10 32 10 13
Correct ctrl 11 38 11 16

TABLE I
Experimental results

transitions added earlier to the unfolding. The algorithm
producing TPN unfolding segment is given in Figure 2.
It can be shown (similar to the proof in [6]) that for each
time state s = (m; I) reachable in the TSG there exists a
time con�guration Ct in segment of TPN unfolding such
that the F t

s(C
t) is equal to m and the set of inequalities

associated with Ct has an isomorphic to I set of solutions.
Using our algorithm we obtain a �nite segment of TPN

unfolding only examining the basic time states. For the
example fromFigure 1(a) the TPN unfolding contains 134
transitions (137 places) and examines 133 �nal states. For
comparison, TSG constructed using algorithm of [12] has
1249 time states. Figures 1(b-e) show initial state and
TLCs of the �rst instances of transitions.

IV. Application of TPN unfolding

PNs can readily model gates of asynchronous circuits
(e.g. Circuit PNs [11]). In event-driven circuits the actual
level of signal is not important and changes of one signal
can be modelled with one transition. In level-driven cir-
cuits, the value of the signal plays important each signal
is modelled by a set of transitions setting its level to high
(e.g. c+) or to low (c�). Fragments of Circuit PN are
composed together forming a PN for the whole circuit by
simply merging the input and output arcs of the corre-
sponding gates. Resulting net is then composed with a
PN of the circuit environment.
Firstly, a circuit is veri�ed for deadlock freedom. A

deadlock exists in TIC-PN i� it exists in its underlying
PN which follows from the fact that all choices in TIC-
PN are time independent.
Analysis of event-driven circuits for hazards (unspeci-

�ed changes of signals) is done by verifying that the com-
posed net is safe. In TPN, these two input transitions can
be PN enabled, but due to �ring delays there may be no
hazard.
The modelling of level-driven circuits needs more care-

ful consideration. Often, when two gates are combined
together, the resulting PN is no longer FC or UC PN.
If the choice is asymmetric (i.e. only one transition is

disabling another), then this is interpreted as a hazard of
the output signal of a gate and therefore can be analysed
with our method. The method described in this paper
is not capable of verifying other classes of circuits with
non-TIC choice such as circuits with term takeover phe-
nomenon and non-distributive circuits. However, we see
it as a natural extension of the suggested method.
Latch control circuits from the AMULET microproces-

sor [1] were used as examples of event driven circuits.

Verifying these circuits con�rmed that the \fast forward"
micropipeline control circuit has a potential hazard if the
delay of the environment is short.
A 4-phase pipeline control circuit was taken as an exam-

ple of a level driven circuit. Its veri�cation showed that
under certain delay assumptions this circuit would also
be hazardous. A correct implementation of this circuit
presented in [1] was shown to be correct.
In all examples our method explored less number of TS

than in the TSG of the time PN model.

V. Conclusion

In this work we suggested a novel method of timing
analysis based on the time unfolding. Our approach
builds the time-driven unfolding constructing an implicit
representation of the TSG. Although our method is expo-
nential in the worst case, in practice it showed good re-
sults. We have demonstrated application of this method
to the veri�cation of hazard freedom of even-driven and
level-driven circuits.
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