
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Efficient Partial Enumeration for
Timing Analysis of Asynchronous Systems

Eric Verlind, Gjalt de Jong and Bill Lin

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract — This paper presents an efficient method for the
timing verification of concurrent systems, modeled as labeled
Timed Petri nets. The verification problems we consider re-
quire us to analyze the system’s reachable behaviors under the
specified time delays. Our geometric timing analysis algo-
rithm improves over existing ones by enumerating the state
space only partially. The algorithm relies on a concept called
pre-mature firing and a new, extended notion of clocks with
a negative age. We have tested the fully automated proce-
dure on a number of examples. Experimental results obtained
on highly concurrent Petri nets with more than 6000 nodes
and 10210 reachable states show that the proposed method can
drastically reduce computational cost.

I Introduction
Efficient timing verification algorithms are essential in the de-
velopment of correctly workingconcurrent systems. Our work
is mainly motivated by the need to verify asynchronous cir-
cuits where correctness of a design may depend on both func-
tional and timing aspects. For example, some design methods,
such as those for timed circuits [9], directly use timing infor-
mation for optimization. Other design methods rely on delay
information for the removal of hazards [8] or to ensure a fun-
damental mode of operation [14]. Timing verification can be a
computationally expensive task due to exponential factors in-
troduced by state enumeration and timing considerations.

The verification problems that we consider require timed
reachability analysis. An approach to this is geometric tim-
ing analysis (GTA). GTA algorithms have been studied by
Berthomieu [2], Dill [5], Alur [1], among others. These meth-
ods can be relatively efficient in practice, but for highly con-
current systems, they can still be prohibitively expensive due
to state explosion exponential in the concurrency parameter.

The GTA approach of Rokicki [10] improves on the basic
procedure, but it suffers still from significant complexity prob-
lems, since it also traverses the complete state space. Related
work by Hulgaard and Burns [7] is very efficient, but does not
address verification problems that require reachability analy-
sis and thus can not be directly compared with GTA methods.

To address the complexity problems in GTA, we propose an
efficient state space traversal algorithm for the timing analysis
of concurrent systems, modeled using a labeled timed Petri net
(TPN). The TPN model used may combine different combina-
tions of choice and concurrency, within a class of n-safe nets.

Our method offers a key improvement compared to existing
GTA work by taking into account and exploitingindependence
information such that it suffices to traverse the state space only
partially. It relies on the pre-mature firing concept, using a
modified geometric representation, which incorporates an ex-
tended notion of clocks with a negative age. The canonization
of the geometric regions required during each step of the enu-

meration is also extended to account for these two concepts.
Since our GTA algorithm relies on partial enumeration of the
state space, it requires path selection. Hence, we have devel-
oped several path selection heuristics.

Due to space limitation this paper focuses only on the anal-
ysis aspects. However we would like to stress that our formal-
ism also includes notions of specification, circuit composition,
and refinement pre-orders, required for timed circuit verifica-
tion.

Experiments using our fully automated method show that
for problems involving a high degree of concurrency, our
approach indeed offers significant improvement over exist-
ing methods. Petri nets with more than 6000 nodes and
10210 reachable states have been analyzed using the proposed
method.

Section II gives the formal terminology. Section III exam-
ines GTA and its complexity problems in detail. Section IV
presents our analysis method, while section V presents exper-
imental results.

II Model
We model a concurrent system as a Petri net extended with
timing information: a timed Petri net (TPN) � is a tuple
hP; T;B; F; � i. Here, P is a finite set of places, T is a finite
set of transitions, B � P � T is the consumption flow re-
lation, and F � T � P is the production flow relation. Tim-
ing information is specified by a static timing interval mapping
� : P ! Q�� (Q�[f1g), where � (p) = [�p;�p], such that
�p � �p � 1.

Note that the timing information is represented as interval
time delays specified on the places of the net, rather than on
transitions, as for example in Berthomieu’s work [2]. Presets
�t and �p and postsets t� and p� are defined as usual.

We denote the TPN’s marking or untimed state by �, be-
ing a mappingP !N, where�i is a shorthand for�(pi). �[ti
denotes the untimed enabling of transition t. The untimed fir-
ing rule is defined as in ordinary Petri nets.

Besides a marking, a TPN state has also a timing compo-
nent. A state � for a TPN � is a tuple h�;
i, with � a marking
and
 a mapping
 : P�N! Q�, which is defined for (pi; s)
for 0 � s � �i.

Mapping
 associates a local time with each token, set to 0
when the token is produced. In the sequel, we use the short-
hand
is to denote
(pi; s) and call it a clock variable or sim-
ply a clock. Furthermore we will omit the second subscript for
clocks
i1 (
i denotes
i1).

A (timed) Petri net is n-safe iff for all reachable markings
�, 8pi 2 P : �i � n. A 1-safe net is also just called safe. A
transition t is enabled in timed state � = h�;
i, denoted by
�[ti, iff �[ti and 8pi 2 �t : �i �
i and 9pi 2 �t :
i � �i.

While first designed only to operate on 1-safe nets, our ver-

ifier now operates on an extended model called SFTPN (tran-
sition Single-enabledness FIFO TPN), which is an n-safe
TPN with a FIFO firing rule and transitions that are not multi-
ply enabled.

The SFTPN model we propose is comparable to, but more
general than the orbital net model used in Rokicki’s work [10],
in the sense that it does not have the significant restriction of
allowing only a single (behavioral) input place for a transition.
Furthermore, our model contains a class of n-safe nets, instead
of just 1-safe. This allows to analyze a wider class of prob-
lems. In the above discussion, we have not dealt with verifi-
cation of timingproperties. However, in our model we provide
means for checking and measuring these.

III Geometric Timing Analysis
A GTA: principle and complexity problems

During GTA, we deal with sets of states �, which can be rep-
resented in various ways. The basic representation entity is
a geometric region, representing for a marking � with corre-
sponding set of clocks, a system of inequalities of the follow-
ing form:

8(pi; s); s � �i : 'i �
is � �i

8(pi; s); (pj; v) 2 �i; s � �i; v � �j : 'ij �
is�
jv � �ij

The first set of inequalities describes restrictions on single
clocks
i, while the second set describes mutual restrictions
between pairs of clocks (
is ;
jv). The inequalities describe
a class of convex regions in QjP j, in terms of clock variables

i. For such geometric regions, calculations can be done by
efficient graph algorithms. The contiguity of the static timing
intervals in the model often yields a natural and efficient repre-
sentation in terms of these regions during analysis. However,
as this section will show, analysis can still be prohibitively
complex, depending on the problem.

The basic GTA method is described in the approaches of
[2, 10], which, given a particular timed Petri net model, per-
forms a reachability analysis, continuing along paths until a
stop criterion is met. The core of the algorithm is formed by
the following operations:

� advancement of time as much as possible;
� determination of all fireable transitions;
� firing of the transitions, leading to new timed regions.

The above basic GTA procedure gets prohibitively expen-
sive for two reasons. First, there can be a blow-up in number
of traversed markings, like in ordinary PNs. Additional to this,
since representation of timing information introduces an extra
level of complexity, a blow-up in the number of regions asso-
ciated with individual markings can occur.

p1 p3

p4p2
[0,0]

[3,7]

[5,6]

t1

t2

t0

p0

Figure 1: TPN with two parallel execution paths

Figure 1 shows a TPN to illustrate these problems. In the de-
picted TPN, concurrent transitions t1 and t2 are (untimed) en-
abled. Their independent firings produce a final marking �34

of one token in both p3 and p4. Standard analysis evaluates all
possible firing interleavings, in this case two, as t1 could fire
before t2 or vice-versa.

Before arriving at �34, each interleaving passes a different
intermediate marking. Besides of this, in �34, each interleav-
ing has a different set of timing values, so they end up in two
different regions, as shown by figure 2. It is clear from this,
that in a complex system, we are very likely to see a state ex-
plosion effect because of the above problems.

γ3

γ4
t2->t1

t1->t2

Figure 2: Firing interleavings/ pre-mature

B Improvement by Process Enumeration
To reduce the complexity problems of the basic GTA, Rokicki
[10] proposes a partial order method using the concept of pro-
cess enumeration. Its prime achievement is the reduction of
the effects of the extra complexity caused by timing informa-
tion, as compared to untimed analysis. As [9] shows, for a
number of analysis examples, the number of different timing
regions associated with a particular untimed state is on aver-
age very close to one, which is a drastic improvement over the
standard method. However, if a parameterizable system has a
number of reachable untimed states that is growing exponen-
tially in function of its parameter n, the analysis will still show
state explosion. The cause of the problem is the analysis pro-
cedure still visiting every reachable untimed state in the sys-
tem. To alleviate these problems, we propose our method, as
discussed in the remainder of the paper.

IV Partial Geometric Timing Analysis
In order to tackle the problems discussed in section III, we pro-
pose a partial enumeration approach related to stubborn sets
[11], partial orders [6] and anticipation [4]. By traversing the
state space partially, we aim at avoiding a combinational ex-
plosion for highly concurrent systems.

Figure 3 shows a simple, yet extreme case of a concurrent
system, with n independent transitions with mutually overlap-
ping firing intervals. The untimed state graph is a hypercube
of dimension n, as figure 4 shows for n = 3.

t1

t2

tn

[0,10]

[0,10]

[0,10]

Figure 3: Parallel en-
abled transitions

000 100

110

111

001

011

010

101

t1

t1

t1

t1

t2 t2

t2 t2

t3 t3

t3 t3

Figure 4: Untimed state space of
highly parallel system

Standard GTA traverses n! paths through the system, with
n:n! edges and n:n! + 1 visited regions. The method of [10]
traverses 2n edges and visits 2n regions, still showing expo-
nential complexity. Our approach, aimed at highly concurrent
systems, however, reduces the number of traversed paths for
this example to a single one, thus only traversing n edges and
reaching n + 1 regions. Since for many complex problems,
concurrency is an essential feature, our method will in many
such cases show significantly better performance.

For timing analysis, we take into account implicitly the ef-
fects of firing path interleavings that were not selected, using
only the traversal of a single selected interleaving. Figure 5
shows procedure “ra dfs”, which implements this depth-first
GTA algorithm. Since we have to calculate the final timing
region for a set of interleavings out of one interleaving, we
have devised a special firing computation, different from the
one used in standard geometric timing analysis. Therefore,
we introduce the notion of pre-mature firing (section A) which
enables us to perform these computations. Besides this, our
pruning method is heuristic in nature and therefore requires a
transition selection strategy, discussed in section B.

ra dfs(�)
f

R = ;;
Q = f�0g;
while (Q 6= ;) f
R = get head(Q);
advance time(R);
if (R 2 R)

continue;
R = R[fRg;
det untimed enabled trans(R);
det timed enabled trans(R);
C = select trans set(R);
foreach tf 2 C f

foreach pi 2 �tf f

Rci = strip convex(R; pi);
if (Rci 6= ;) f
Rnew =
�re premature(Rci; tf);
add head(Q;Rnew);

ggggg

fire premature(Rc;tf)
f

== v
0 denotes quantity in

== created region R
0
c

foreach pi 2 �
 i = maxj2�t(max('j; �j) + 'ij);

foreach pk 2 tf� f

�0

k
= �i

min
� �i

min
;

'
0

k
= 'imax

��imax
;

foreach pj 2 �
0
� tf� f

�0

kj
= � j ;

'
0

kj
= 'ij ��imax

;
g

foreach pi; pj 2 tf�
�0

ij
= 0; === �'

0

ji

foreach pi; pj 2 �
0
� tf�

�0

ij
= �ij ; === �'

0

ji

returnR0
c;

g

Figure 5: Reachability analysis and pre-mature firing

A Pre-mature firing calculation

When a transition firing produces a token in place pi, clock
i
(assuming 1-safe net for simplicity) is initialized to 0. A new
conceptual idea that we propose here is to allow a clock also
to have a negative age, with
i < 0 in fact meaning that it
will take j
ij time before the token is produced. The idea here
is that of a coordinate transformation, removing clocks
i for
pi 2 �t and adding clocks
0

i
for p0

i
2 t�. This firing is called

pre-mature firing, which is done for an enabled transition that
is sure to be fired because of independence of any other tran-
sitions.

The pre-mature firing procedure fires a transition t also for
timed states in a region for which t is not enabled yet, before it
could have fired and takes account of this implicitly by record-
ing a negative value in the clock of the produced token. Thus,
we take account of the various interleavings of independently
evolving parallel computations in a rather natural way.

Consider figure 1 with marking �12 = fp1; p2g, with
1 =

2 = 0. Pre-mature firing of t1 would yield �32 = fp3; p2g
with �7 �
3 � �3 ^
2 = 0. Consecutively executing
a pre-mature firing of t2 yields �34 = fp3; p4g, with �7 �

3 � �3 ^ �6 �
4 � �5 ^ �2 �
3 �
4 � 3. Figure 2
shows the result of the calculation, after advancing time to the
positive quadrant (assuming tokens stay in p3 and p4), being

the union of the regions after normal firing.
The set of inequalities contains the information about the

extreme relative difference in the production times of the to-
kens in p3 and p4. The information kept thus, is sufficient
for our verification purposes. It would otherwise have been
scattered over the two regions resulting from firing each in-
terleaving, section III. Thus, by performing the pre-mature
firing procedure, we have brought down the number of eval-
uated paths to just one. Procedure “ra dfs” (figure 5) calls
“fire premature” which implements the calculation of a new
region, following the pre-mature firing of transition tf in Rc.
Because of the nonlinear character of maximum firing time
enabling semantics, sometimes region splitting occurs, but
we will not go into detail about it in this paper. Procedure
“strip convex” implements this by selecting part of a region
for which pi contains the limiting maximum timing bound. In
“fire premature”, index imin refers to a clock
imin

2 �tf ,
which is limiting as far as the minimum firing time of tf is
concerned, while imax refers to
imax

2 �tf limiting the max-
imum firing time.
B State space pruning selection heuristic
Our partial state space traversal exploits the fact that partic-
ular concurrent fireable transitions are independent. During
traversal, in a region only a subset of the enabled transitions
is (pre-maturely) fired, while firing other ones is postponed.
So we need two things: calculation of independence (in gen-
eral dynamic) and a selection criterion. As calculating exact
independence can be prohibitively expensive, we use approx-
imations. A computationally cheap solution is to use asimple
structural notion of independence in Petri nets (extended free
choice) as well as unique choice [7]. Our analyzer also in-
cludes an approximation that takes into account timingdynam-
ically. This is both more powerful and more costly. For the
highly concurrent problems we have experimented with, the
simple structural approximation combined with a greedy se-
lection criterion used in procedure “select trans set” appeared
to work rather well.

C Generation of complete state graph
For the verification of more global functional properties com-
pared to the checks currently done and for synthesis applica-
tions, one might need the complete region graph under tim-
ing restrictions, after state minimization. Calculating it di-
rectly using full GTA is not possible because of complexity
problems. We propose to follow a conceptually two-stage ap-
proach: first, perform pruned GTA to obtain a Petri net unfold-
ing with timing information. Timing ordering between transi-
tions is then encoded in the unfolding structure by additional
ordering edges, i.e. timing ordering is now represented with-
out timing information. Second, use efficient implicit BDD [3]
traversal techniques to generate an implicit representation of
the complete state graph.
V Experiments

To assess the viability of our geometric timing analysis ap-
proach, we have carried out a number of experiments1 that suf-
fer from state explosion when existing methods are used. We
compare to Rokicki’s approach [10], which in general signifi-
cantly outperforms the basic GTA algorithm2. Table 1 shows
some of the results obtained. Examples “mmu”, “master-
read”, “vme-write” and “mux-1” are highly concurrent STGs.
The other examples are parameterised examples constructed

1implementation in “C”, 64 MB HP 9000/715
2We implemented his method in “C” to be more favorable to it (orig. “Scheme”)

Examples jP j jT j jBj Untimed Process[10] Partial
+jF j states enumeration enumeration

regions CPU[s] regions CPU[s]
mmu 20 16 40 174 47 0:10 17 0:04

master-read 36 26 72 8932 8097 207:51 89 0:19
master-read2 38 26 76 1882 2440 51:91 62 0:13

vme-write 38 26 76 236 183 0:72 26 0:04
mux-1 43 35 93 9392 4512 51:12 107 0:14

3 PAR 39 28 78 748 321 1:15 36 0:05
5 PAR 65 44 130 1:87� 104 2407 24:16 52 0:08
7 PAR 91 60 182 4:69� 105 12654 313:66 68 0:12
10 PAR 130 84 260 5:86� 107 out of time 92 0:20
100 PAR 1300 804 2600 4:73� 1070 out of time 812 14:69
300 PAR 3900 2404 7800 2:95� 10210 out of time 2412 261:56

4 RDZ 24 14 48 128 137 0:78 20 0:05
8 RDZ 56 30 112 3:28� 104 out of time 51 0:23
16 RDZ 120 62 240 2:15� 109 out of time 126 2:32
32 RDZ 248 126 496 9:22� 1018 out of time 319 22:86
64 RDZ 504 254 1008 1:70� 1038 out of time 759 228:26

4 SEQ 42 28 84 6156 140 0:46 31 0:06
8 SEQ 98 60 196 4:61� 107 697 6:05 63 0:15
16 SEQ 210 124 420 2:15� 1015 6516 731:72 127 0:49
32 SEQ 434 252 868 4:18� 1030 out of time 255 1:94
64 SEQ 882 508 1764 1:48� 1061 out of time 511 9:81
128 SEQ 1778 1020 3556 1:78� 10122 out of time 1023 60:58
256 SEQ 3570 2044 7140 2:51� 10244 out of time 2047 404:08

Table 1: Experimental results
jP j, jT j and jBj+ jF j: TPN size parameters. “Untimed states”: #states in untimed analysis. Then results obtained using

method of [10] and the results obtained using our approach. Parametrized examples: size indicates nr. of elements for “PAR”
system and nr. of 4-phase handshake input ports for “RDZ” and “SEQ” systems.

using basic elements from the synthesis approach of [12]. For
instance, “RDZ” is a balanced tree of rendezvous C-elements,
while the other examples are composed of other handshake
blocks. The figures show that the method we propose success-
fully analyzes systems of significant size, while the analysis
method from [10] could only analyze moderate problem in-
stances.

VI Conclusion

The basic geometric timing analysis (GTA) method may suffer
from combinational explosion both in the number of untimed
states and in the timing information. The improved approach
of [10] still suffers from state explosion for systems involv-
ing a high degree of concurrency. To tackle these problems,
we have presented an approach that exploits the concurrency
available in a system to arrive at a more efficient analysis.

Our partial enumeration GTA approach works with a rele-
vant n-safe class of timed Petri nets. It relies on an extended
geometric representation that is used by a “pre-mature firing”
algorithm. The method also uses path selection heuristics. Ex-
periments show the viability of the approach: it is highly ef-
ficient for a class of high concurrency problems, which are
impossible to analyze with previous methods. The verifier is
currently incorporated in the Assassin asynchronous interface
compiler [13].

Acknowledgment - We would like to thank Tomas Rokicki,
Chris Myers, Tilman Kolks and Steven Vercauteren for several

insightful discussions.
References
[1] R. Alur, C.Courcoubetis, D. Dill, N.Halbwachs, and H.W.Toi. An implementation

of three algorithms for timing verification based on automata emptiness. In Proc.
of the Real-Time Systems Symposium. IEEE Computer Society Press, 1992.

[2] B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent
Systems Using Time Petri Nets. IEEE Transactions on Software Engineering,
17(3):259–273, March 1991.

[3] R.E. Bryant. Algorithmic Aspects of Symbolic Switch Network Analysis. IEEE
Transactions on Computer-Aided Design, CAD-6(4):618–633, July 1987.

[4] G.G. de Jong. Verification of Data Flow Graphs using Temporal Logic. In L. Clae-
sen, editor, Applied Formal Methods For Correct VLSI Design, volume 1, pages
301–310, November 1989.

[5] D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Proc. Workshop on Automatic Verification Methods for Finite-State Systems, June
1989.

[6] P. Godefroid. Using Partial Orders to ImproveAutomatic Verification Methods. In
LNCS vol. 531, pages 176–185. Springer-Verlag, June 1990.

[7] H. Hulgaard and S.M. Burns. Efficient Timing Analysis of a Class of Petri Nets.
In Proc. Computer Aided Verification Workshop, 1995.

[8] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis
of hazard-freeasynchronouscircuits. In Proc. 28th ACM/IEEE Design Automation
Conference, June 1991.

[9] C.J. Myers, T.G. Rokicki, and T.H.-Y. Meng. Automatic Synthesis and Verification
of Gate-level Timed Circuits. Technical Report CSL-TR-94-652, Stanford Un.,
Computer Systems Lab, December 1994.

[10] T.G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford
University, December 1993.

[11] A. Valmari. Stubborn sets for reduced state space generation. In Int. Conference
on Applications and Theory of Petri Nets, pages 1–22, 1989.

[12] K. van Berkel. Handshake circuits: an intermediary between communicating pro-
cesses and VLSI. PhD thesis, Technische Universiteit Eindhoven, 1992.

[13] C. Ykman-Couvreur, B. Lin, and H. De Man. ASSASSIN: A Synthesis System for
Asynchronous Control Circuits. Technical report, IMEC, September 1994. User
and Tutorial manual.

[14] K.Y. Yun. Synthesis of Asynchronous Controllers for Heterogeneous Systems.
Technical Report CSL-TR-95-644, Stanford Un., Computer Systems Lab, August
1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

