
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Optimized Code Generation of

Multiplication-free Linear Transforms

Mahesh Mehendale G. Venkatesh, S.D. Sherlekar

Texas Instruments (India) Ltd. Dept. of Computer Sc. and Engg.
Golf View Homes, Wind Tunnel Road, Indian Institute of Technology, Powai,

Bangalore 560017, INDIA Mumbai, 400076, INDIA

Abstract
We present code generation of multiplication-free lin-

ear transforms targeted to single-register DSP architec-
tures such as TMS320C2x/C5x. We �rst present an
algorithm to generate optimized code from a DAG rep-
resentation. We then present techniques that transform
a DAG so as to minimize the number of nodes and
the accumulator-spills. We then introduce a concept of
spill-free DAGs and present an algorithm for synthesiz-
ing such DAGs. The results for Walsh-Hadamard, Haar
and Slant transforms show 25% to 40% reduction in the
cycle count using our techniques.

1 Introduction
Many signal processing applications such as image

transforms[1], error correction/detection involve matrix
multiplication of the form Y = A?X, where X and Y are
the input and the output vectors and A is the transfor-
mationmatrix whose elements are 1,-1 and 0. In this pa-
per we present optimized code generation of these trans-
forms targeted to programmable Digital Signal Proces-
sors. While some of the code optimization techniques
presented in this paper are generic, our focus is primar-
ily on single-register, accumulator-based DSP architec-
tures such as TMS320C2x[2] and TMS320C5x[3].

Code optimization techniques discussed in the
literature[4-7] address the problems of instruction se-
lection and scheduling, register allocation and storage
assignment to minimize code size and/or number of cy-
cles. These techniques operate on a DAG representation
of the code being optimized and can be applied to im-
plement the multiplication-free linear transforms. How-
ever, the amount of optimization achieved using these
techniques is limited by the initial DAG representation.
Much higher gains are possible by optimizing the DAG
itself.

One approach to optimizing the DAG is to minimize
the number of additions by utilizing the redundancy in
the computation of two or more outputs. In this pa-
per we present an algorithm for minimizing number of

additions, which is based on the algorithm presented in
[8]. Our approach is di�erent than that presented in
[9] and is based on iterative elimination of two-element
common subexpressions in the transformation matrix.

For single-register architectures, minimumnumber of
additions in most cases does not translate into minimum
number of execution cycles. The common subexpres-
sions typically cause accumulator spills which result in
`load' and `store' overhead. In this paper we present four
DAG transformations to reduce the number of cycles by
minimizing accumulator spills.

Another approach to DAG optimization is to mini-
mize the number of additions under the constraint of
zero accumulator spills. In this paper we present an al-
gorithm for spill-free implementation of multiplication-
free linear transforms in minimumnumber of execution
cycles.

The paper is organized as follows. In section 2, we
present the target architecture model which is a suit-
able abstraction of 'C2x/'C5x architectures. We then
present an algorithm for integrated instruction schedul-
ing and register+memory allocation. In section 3, we
present the algorithm for minimizing number of addi-
tions. In section 4, we present DAG optimizing transfor-
mations to optimize code in terms of number of cycles.
In section 5, we present the algorithm for spill-free im-
plementation requiring minimum number of cycles. We
present results for Walsh-Hadamard, Haar and Slant
transforms in section 6 and conclude in section 7 with
our future work.

2 Code generation from DAG represen-

tation

2.1 Target Architecture Model

The code generation techniques presented in this pa-
per are targeted to the architecture model shown in �g-
ure 1. This model is a suitable abstraction of 'C2x and
'C5x and shows datapath of interest to multiplication-
free linear transforms. As can be seen from the �g-
ure, the target architecture is a single-register, non-
commutative machine in which the available operations
are :
1. < acc >(< acc > :op: < mem >;< shift >

(instructions ADD and SUB)
2. < acc >(< mem >;< shift >

(instruction LAC)
3. < mem >(< Acc >;< shift >

(instruction SAC)

ACC

<<

+ / -
MEMORY

DATA

<<

Figure 1: Target Architecture Model

4. < acc >(� < Acc >
(instruction NEG)

2.2 Code Generation Rules
One of the inputs to the code generator is a DAG

representation of the desired computation. The output
and the intermediate nodes represent either an ADD or
a SUBTRACT operation and have fanin of 2.

The other input to the code generator is a sequence
in which the nodes of the DAG need to be evaluated.
Given the sequence and the DAG, following rules are
used to generate the code :

Let `current' node be the latest evaluated node and
`new' node be the new node for which the code is being
generated.
1. If the `current' node is not one of the fanin nodes
of the `new' node, save the `current' node (SAC instruc-
tion), load the left fanin node of the `new' node (LAC in-
struction) and ADD/SUBTRACT the right fanin node
of the `new' node.
2. If the `current' node is a left fanin node of the `new'
node, ADD/SUBTRACT the right fanin node of the
`new' node.
3. If the `current' node is a right fanin node of the
`new' node and the `new' node function is SUBTRACT,
negate the `current' node (NEG) instruction and ADD
the left fanin node of the `new' node.
4. If the `new' node is an output node or an interme-
diate node with fanout � 2, store the new node (SAC
instruction) before proceeding with the next node.

For a given DAG, the code size and consequently the
number of cycles depend on the sequence in which the
nodes are evaluated. The code optimization problem
thus maps onto the problem of �nding an optimum se-
quence of DAG node evaluations.

2.3 Computation Scheduling Algorithm
We now present an algorithm for scheduling the DAG

computations for minimum number of cycles. The al-
gorithm uses the following knowledge-base derived from
the code generation rules presented in sub-section 2.2.
1. A node can be scheduled for computation only if
both its fanin nodes are already computed or are input
nodes.
2. The computation of output nodes and the interme-
diate nodes with fanout � 2, always needs to be stored
irrespective of the next computation node.
3. If the 'current' node is one of the fanin nodes of
the 'new' node, it avoids accumulator-spill and hence
reduces the 'store' and 'load' overhead.

These factors are used to assign weights to the candi-
date nodes at each iteration of the scheduling algorithm
and the node with the highest weight is selected. Here
is the overall algorithm :
scheduled-node-list = fg; current-node = ;

Y2

Y4
-1

-1

-1

-1

X2

X3

X4

X1 Y1

Y3

X2 X3 X4

X2 X3 X4

X1

X1 Y3

Y4

-1 -1

-1 -1

X2 X3 X4

X2 X3 X4

X1 Y2

-1 -1

X1 Y1

(a) Initial DAG (b) Optimized DAG

Figure 2: DAGs for 4x4 Walsh-Hadamard transform

while (no.of-scheduled-nodes < total-no.of
intermediate+output nodes) f

/* build candidate-node-list */
candidate-node-list = fg
for all (nodei 62 scheduled-node-list) f
if ((nodei.left-fanin + nodei.right-fanin) 2
(input+scheduled node-list))
candidate-node-list += nodei

/* assign weights to the candidate-nodes */
for (each nodei 2 candidate-node-list) f
nodei.weight = 1
if ((nodei 2 output-node-list) .or.
(nodei.fanout � 2)) nodei.weight++

if ((nodei.left-fanin = current-node) .or.
((nodei.right-fanin = current-node) .and.
(nodei.op = ADD))) nodei.weight += 2

if (nodei.fanout-node.right-fanin 2
scheduled-node-list) nodei.weight += 2

g
/* schedule the node with the highest weight */
�nd (nodem 2 candidate-node-list) such that
nodem.weight is maximum

scheduled-node-list += nodem
current-node = nodem

g

3 Minimizing Number of Additions
The amount of optimization achievable using the

computation scheduling algorithm is limited by the
DAG representation. In this section we present an al-
gorithm that minimizes the number of additions and
e�ectively the number of nodes in the DAG to compute
the multiplication-free linear transform.

Consider the 4x4 Walsh-Hadamard transform[1]
shown below. The DAG representation of this compu-
tation is shown in �gure 2(a). It has 12 nodes (i.e. 12
additions+ subtractions).

2
64

Y 1
Y 2
Y 3
Y 4

3
75 =

2
64

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3
75

2
64

X1
X2
X3
X4

3
75

From the DAG it can be observed that there is some
amount of redundancy in the computation. For exam-
ple, the sub-computation (X1+X2) is used to compute
both Y1 and Y3. Similarly, the sub-computation (X1-
X2) is used to compute both Y2 and Y4. The total
number of additions can be reduced by pre-computing
such common sub-computations. The common sub-
computations are of two types
1. CS++ in which the elements in 2 columns of the
matrix are both 1 or both -1 for more than 1 row (e.g.
X12+, columns 1,2 for rows 1 and 3).

X1

X2

X3

X4

T1

T2

Y1

LAC X1

ADD X2

SAC T1

LAC X3

ADD X4

ADD T1

SAC Y1

X1

X2

X3

X4 Y1

LAC X1

ADD X2

ADD X3

ADD X4

SAC Y1

Figure 3: Tree to Chain Conversion

2. C+- in which the elements in 2 columns of the ma-
trix are +1,-1 or -1,+1 for more that 1 row (e.g. X12-,
columns 1,2 for rows 2 and 4)

The amount of reduction due to pre-computing a
common sub-computation depends on the number of
rows in which it appears. The DAG minimization algo-
rithm uses a steepest descent approach[8] which during
each iteration pre-computes a common sub-computation
with the highest occurrence. This is done by construct-
ing a common sub-computation graph with the nodes
representing the columns in the transformation matrix.
There are 2 arcs between every two nodes, which repre-
sent CS++ and CS+- type common sub-computations.
The arcs are assigned weights indicating the number of
occurrences of the sub-computations.

Once the sub-computation corresponding to the most
weighted arc is identi�ed, the transformation matrix is
updated to reect the pre-computation. This is done by
adding a new column to the transformation matrix and
suitably updating the matrix elements. The common
sub-computation graph is also updated by adding a new
node and re-computing arc weights. This procedure is
repeated until no arc has a weight of two or more.

Figure 2(b) shows the DAG for 4x4 Walsh-
Hadamard transform with minimum number of ad-
ditions+subtractions. It has 8 nodes (8 addi-
tions+subtractions) compared to 12 nodes of the origi-
nal DAG shown in �gure 2(a).

4 DAG Optimizing Transformations
We used the scheduling algorithmdiscussed in section

2, to schedule the DAGs shown in �gures 2(a) and 2(b).
While the DAG shown in �gure 2(a) requires 20 cycles,
the DAG in �gure 2(b) requires 22 cycles to compute
the transform, eventhough it has 4 less nodes. Clearly,
fewer number of nodes does not always translate into
fewer number of cycles. The main reason for the DAG
in �gure 2(b) requiring more cycles, is that all its in-
termediate nodes have fanout � 2. For a single-register
or accumulator-based architectures, such intermediate
nodes result in accumulator spilling, and consequently
in `store' and `load' overhead.

In this section we present four DAG transformations
that minimize the accumulator-spill and hence the num-
ber of execution cycles.

4.1 Tree to Chain conversion

This transform converts a `tree' structure in a DAG
to a `chain' structure. This eliminates need to store the
intermediate computations and hence reduce the num-
ber of cycles. Figure 3 shows an example of this trans-
form. While the DAG with a `tree' structure requires
7 cycles to compute the output, and the transformed
`chain' structure performs the computation in 5 cycles.

LAC X1

ADD X2

SAC Y1

LAC X1

SUB X2

SAC Y2

X1

X2 Y2

Y1

-1

X1

X2 Y2

Y1

-2

LAC X1

ADD X2

SAC Y1

SUB X2,1

SAC Y2

X1

X2 Y2

Y1

-1

+2

LAC X1

SUB X2

SAC Y2

ADD X2,1

SAC Y1

OR

Figure 4: Serializing a Buttery

X4

Y1

Y2

T1
X2

X1

X3LAC X1

ADD X2

SAC T1

ADD X3

SAC Y1

LAC T1

ADD X4

SAC Y2

X1

X2

X4

X4

X3 Y1

Y2

-1

LAC X1

ADD X2

ADD X4

SAC Y2

SUB X4

ADD X3

SAC Y1

LAC X1

ADD X2

ADD X3

SAC Y1

LAC X1

ADD X2

ADD X4

SAC Y2

X1

X2

X2

X1

X4

X3

Y2

Y1

FANOUT REDUCTION MERGING

OR

Figure 5: Fanout reduction and Merging

4.2 Serializing a buttery
Many image transform DAGs have `buttery' struc-

tures that perform the computations of the type (Y1 =
X1 + X2, Y2 = X1 - X2). Such buttery structures can
be serialized by computing one of the buttery outputs
in terms of the other output, and using a SHIFT oper-
ation which when performed along with ADD or SUB-
TRACT does not result in an additional cycle. Figure 4
shows the serialized DAGs which require 5 cycles com-
pared to 6 cycles required for the buttery computation.

As can be seen from the �gure, there are two ways
of serializing a buttery depending on whether Y1 is
computed in terms of Y2 (Y1 = Y2 + 2*X2) or Y2 is
computed in terms of Y1 (Y2 = Y1 - 2*X2). The choice
of the transform depends on the context in which the
buttery appears in the overall DAG.

4.3 Fanout reduction
Since the intermediate nodes with fanout � 2 re-

sult in accumulator-spilling, this transformation reduces
fanout of an intermediate node in a DAG. Unlike the
�rst 2 transforms, this transform increases the number
of nodes in the DAG by 1. Figure 5 shows an example
of this transformation applied to a 4 input, 2 output
DAG. It can be noted the fanout of the intermediate
node T1 in the transformed DAG is 1 (i.e. 1 less than
in the original DAG). While the original DAG has 3
nodes and requires 8 cycles, the transformed DAG has
4 nodes but requires 7 cycles.

4.4 Merging
Merging is another transform that reduces the fanout

of intermediate nodes. Unlike the earlier transforms,
this transform does not reduce the number of cycles.
However it transforms the DAG so that other transfor-
mations can be applied to the modi�ed DAG. Figure 5
also shows an example of the 'merging' transformation
applied to the 4 input, 2 output DAG.

Figure 6 shows how these transformations can be ap-
plied to the DAG in �gure 2(b). The resultant DAG
requires 16 cycles (6 cycles less) to compute the 4x4
Walsh-Hadamard transform.

The amount of optimization possible using these
transforms depends on the sequence in which the nodes
are selected and the choice of transformations applied.
One approach is to search the DAG for potential nodes
for transformation and for a selected node, apply the
transformation that results in most saving. This greedy
approach does not often give the optimum solution. We

-1

-1
X2

X3

X4

X1 Y1

Y3

-2

-2

Y4

Y2 X4

X3

X3 -2

-2

-1-1

X4

X3

X3

-2

+2

Y1

Y3

Y2

Y4

X1

X2

X1

X2

-1
X2

X3

X4

X1 Y1

Y3
-2

X4

-1

-1

-2
X3

Y2

Y4

SERIALIZING A BUTTERFLY TREE TO CHAIN CONVERSIONMERGING

Figure 6: Optimizing DAG using transformations

are currently developing an algorithm that explores a
wider search space to arrive at a DAG that requires
fewest number of cycles.

5 Synthesis of Spill-free DAGs
A DAG that can be scheduled without any

accumulator-spills provides certain advantages. Firstly,
it simpli�es code generation. Secondly, since there are
no accumulator-spills, no intermediate storage is re-
quired, thus reducing the memory requirements to im-
plement the transform. The DAG in �gure 2(a) is an
example of such a DAG. It however requires 20 cycles to
compute the transform. It can be noted that the �nal
optimized DAG in �gure 6 is also a spill-free DAG. This
DAG however requires just 16 cycles. The main reason
for the reduced cycles is the fact that this DAG uses
pre-computed outputs along with the inputs. For ex-
ample, Y3 is computed in terms of Y1, X3 and X4, and
Y4 is computed in terms of Y2, X3 and X4. Instead of
generating a DAG with minimum number of additions
and then applying transformations, this DAG can be di-
rectly generated from the transformation matrix, if the
sequence of output computation is known.

We now present an algorithm that arrives at an op-
timum sequence of output computations such that the
resultant spill-free DAG requires fewest number of cy-
cles. Our algorithm operates on a graph whose nodes
represent the outputs. The nodes are of three types -
corresponding to
1. the most recently computed output
2. other outputs that are already computed
3. outputs that are yet to computed
Each node in the graph has an edge (self loop) that
starts and ends in itself. These self-loops are assigned
costs which are given by the number of cycles required
to compute the output independently (i.e. without us-
ing any of the precomputed outputs). There are also
edges between every `already computed' output node to
all the `yet to be computed' nodes. Each edge is as-
signed a cost given by the number of cycles required to
compute the `yet to be computed' output in terms of
the `already computed output'. Our algorithm uses the
steepest descent approach, which at every stage selects
an output that results in minimum incremental cost. In
case of more than one outputs having the same lowest
incremental cost, one output is selected randomly. Once
an output is selected, it is marked as the most recently
computed output. All the edges between this node and
already-computed nodes are deleted, and new edges are
added between this node and the other `yet to be com-
puted' nodes. The newly added edges are then assigned
appropriate costs. This process is repeated to cover all
the outputs. The overall algorithm is given below :

Y44 Y2 4

Y1

4

Y3

4

Y1

Y2

Y3

Y4 44

4

2

2

2

Y1

Y2

Y3

Y4 44

2 2

3 3

X2 X3 X4 X3 X2 X3 X4

Y4Y2Y3

-2 -2 +2 -2 -2 +2

Y1X1
Y1

Y2

Y3

Y44

3

2

3

I II III

IV

Figure 7: Spill-free DAG synthesis

already-computed-output-list = f g
most-recently-computed-output = ;
/* construct initial graph and compute edge costs */
for (i=0,i<no-of-outputs;i++) f
edge[i,i].cost = no. of non-zero entries in row-i + 1 g

repeat f
�nd the edge E(M,N) with lowest cost.
if (M == N) f /* self loop */
generate DAG to compute output(N)
in terms of only inputs
g else f
generate DAG to compute output(N)
in terms of inputs and output(M)
g
/* update the graph */
delete edge E(N,N)
for each node (i 2 already-computed-output-list) f
delete edge E(i,N) g

already-computed-output-list += N
for each node (i 2 yet-to-be-computed-output-list)
f E(most-recently-computed-output,i).cost++ g

most-recently-computed-output = N
for each node i 2 yet-to-be-computed-output-list f
add edge E(N,i)
E(N,i).cost = no. of mis-matches between rows
N and i of the transformation matrix g

g until (yet-to-be-computed-output-list == fg)
Figure 7 shows each iteration of the algorithmapplied

to the 4x4 Walsh-Hadamard transform matrix, and the
resultant DAG. It can be noted that the resultant DAG
is spill-free and requires just 14 cycles to compute the
transform.

6 Results

The code generation algorithm presented in sec-
tion 2, the algorithm for minimizing number of addi-
tions+subtractions presented in section 3 and the al-
gorithm for synthesizing spill-free DAGs presented in
section 5 have all been implemented in C under Unix.

We compared the code generated by our algorithm
with that generated using optimizing C compiler for
TMS320C5x. The DAGs for 4x4 Walsh-Hadamard
transform shown in �gures 2(a), 2(b) and 7 were con-
verted to an equivalent C program and compiled with
highest optimization level. The generated code which
used indirect addressing, was converted to use direct
addressing thus reducing number of cycles. Table I be-
low shows the comparison in terms of number of cycles
assuming that the program and data are available in
on-chip memories.

-1

-1

-1

-1

Y2

Y1

Y3

Y4

Y5

Y6

Y7

Y8

Y2

Y1

Y3

Y4

Y5

Y6

Y7

Y8

X1

X2

X3

X4

X5

X6

X7

X8

-2

-2

-2

-2

-2

-2

-2

-2

X1

X2

X3

X4

X5

X6

X7

X8

-1

-1

-1

-1

-1

-1

-1

-1 -2

-2

-2

-2

Figure 8: DAGs for 8x8 Walsh-Hadamard transform

DAG 'C5x C compiler Code Generator
no. of cycles no. of cycles

Fig.3 20 20
Fig.4 22 22
Fig.9 19 14

Table I: Code generator vs 'C5x C Compiler

The results show that our code generator generates
as compact code as the 'C5x C compiler for the �rst 2
DAGs. It does better in case of the DAG in �gure 7. The
main reason for this is that the C compiler during its
optimization phase modi�es the DAG and in the process
generates code with more number of cycles.

In sections 3,4 and 5 we have presented results for
4x4 Walsh-Hadamard transform in terms of minimizing
number of additions, optimizing transformations and
synthesis of spill-free DAGs. We now present results for
8x8 Walsh-Hadamard transform, 8x8 Haar transform
and 4x4 Slant transforms.

The 8x8 Walsh-Hadamard transform[1] matrix is
given by:

2
66666664

1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1
1 �1 �1 1 �1 1 1 �1

3
77777775

The direct computation of this transform re-
quires 56 additions+subtractions and the correspond-
ing code executes in 72 cycles. The number of addi-
tions+subtractions can be minimized to 24 using the
algorithm presented in section 3. The resultant DAG
is shown in �gure 8. The code corresponding to this
DAG requires 64 cycles. We applied optimizing trans-
formations to serialize all the butteries in this DAG.
The resultant DAG is also shown in �gure 8. This DAG
also has 24 nodes but the corresponding code requires
52 cycles.

We synthesized a spill-free DAG for the 8x8 Walsh-
Hadamard transform using the algorithm presented in
section 5. The resultant DAG is shown in �gure 9. The
DAG has 35 nodes and the corresponding code requires
44 cycles. The results so far indicate that for both
4x4 and 8x8 Walsh-Hadamard transforms, the spill-free
DAGs result in most e�cient code. We modi�ed the
DAG for 8x8 Walsh-Hadamard transform to extract a

X8

X7 X6 X5 X4 X3 X2 X1 X2 X4 X6 X8

X2X6

-2-2

X2 X6 X7

X4

+2

X8X2X3X8 X5

-2

X2

-2

X4X6X8X2X3X6X7

-2

Y1 Y3Y2

Y6 Y5 Y4

Y7

-2 -2 -2 -2 +2

X3

-2 +2 -2

+2 -2 +2 +2 +2 -2 -2 +2 +2 +2

X8

X7 X6 X5 X4 X3 X2 X1

X2X6

-2-2

X4

+2

X8

+2

X5X2X6X2X6

Y1

Y4

Y5

X2 X4 X2 X3 X6 X7

Y3Y2

X5 X7

Y6Y7

Y8

X3X4X6X3X7X4

+2

X8

X2 X4 X6 X8

Y8
-2 +2 +2 -2

-2 -2 -2 +2 +2 +2 -2 +2 -2

+2-2-2+2+2-2-2+2-2+2-2

Figure 9: DAGs for 8x8 Walsh-Hadamard transform

Y1

Y3

Y8

Y5

Y6

Y2

Y7

Y4

Y1

Y3

Y8

Y5

Y6

Y2

Y7

Y4

X1

X2

X3

X4

X5

X6

X7

X8

-1

-1

-1

-1

-1

-1

-1

X1

X2

X3

X4

X5

X6

X7

X8 -1

-1

-1

-1

-1

-1

-1

+2

+2

+2

+2

+2

+2 +2

Figure 10: DAGs for 8x8 Haar transform

common sub-computation (X5 + X6 + X7 + X8). The
resultant DAG is also shown in �gure 9. This DAG has
32 nodes and it does result in one accumulator spill.
The code corresponding to this DAG requires 42 cycles
(2 less than the spill-free DAG).

The 8x8 Haar transform[1] matrix is given by :

2
66666664

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 1 �1 �1 0 0 0 0
0 0 0 0 1 1 �1 �1
1 �1 0 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 �1

3
77777775

The direct computation of this transform re-
quires 24 additions+subtractions and the correspond-
ing code executes in 40 cycles. The number of addi-
tions+subtractions can be minimized to 14 using the
algorithm presented in section 3. The resultant DAG is
shown in �gure 10. The code corresponding to this DAG
requires 39 cycles. We applied optimizing transforma-
tions to serialize all the butteries in this DAG. The
resultant DAG is also shown in �gure 10. This DAG
also has 14 nodes but the corresponding code requires
30 cycles.

We synthesized a spill-free DAG for the 8x8 Haar
transform using the algorithm presented in section 5.

The resultant DAG has 20 nodes and the corresponding
code requires 32 cycles.

The 4x4 Slant transform[1] can be transformed into
a 4x8 multiplication-free transform as shown below :

2
64

Y 1
Y 2
Y 3
Y 4

3
75 =

2
64

1 1 1 1
3 1 �1 �3
1 �1 �1 1
1 �3 3 �1

3
75

2
64

X1=2
X2=2

p
5

X3=2
X4=2

p
5

3
75 =

2
64

1 1 1 1 0 0 0 0
1 1 �1 �1 1 0 0 �1
1 �1 �1 1 0 0 0 0
1 �1 1 �1 0 �1 1 0

3
75

2
6666666664

X1=2
X2=2

p
5

X3=2
X4=2

p
5

X1
X2=

p
5

X3
X4=

p
5

3
7777777775

The direct computation of the 4x8 transform re-
quires 16 additions+ subtractions and the correspond-
ing code executes in 24 cycles. The number of addi-
tions+subtractions can be minimized to 12 using the
algorithm presented in section 3. The code correspond-
ing to the resultant DAG requires 26 cycles.

Interestingly the spill-free DAG can be synthesized
directly from the 4x4 matrix with elements 1,-1,3 and
-3. The four outputs can be computed as

Y1 = X1 + X2 + X3 + X4
Y2 = Y1 + X1�1 - X3�1 - X4�2
Y3 = Y2 - X1�1 - X2�1 + X4�2
Y4 = Y3 - X2�1 + X3�2 - X4�1

The DAG for the above computation has 12 nodes and
requires 17 cycles. The results presented so far are sum-
merized in the table below (Ns - number of nodes, Cs -
number of cycles):

Initial Min. Serial spill-
Transform adds b'ies free

Ns Cs Ns Cs Ns Cs Ns Cs
4x4 Walsh 12 20 8 22 8 19 9 14
8x8 Walsh 56 72 24 64 24 52 35 44
8x8 Haar 24 40 14 39 14 30 20 32
4x4 Slant 16 24 12 26 12 23 12 17

7 Conclusion and Future Work
In this paper we have presented techniques for op-

timized code generation of multiplication-free linear
transforms. The code generation is targeted to single-
register, accumulator-based DSP architectures such as
TMS320C2x and TMS320C5x. We have presented
a code generation algorithm that performs integrated
scheduling and register allocation so as to minimize ac-
cumulator spills and generate code that executes in min-
imum number of cycles. Since the quality of the gen-
erated code is limited by the initial DAG representa-
tions, we have presented techniques for optimizing DAG
representations of multiplication-free linear transforms.
We have presented an algorithm which is based on it-
erative elimination of common-subcomputations so as
to minimize the number of additions. We have shown
that the resultant DAG though optimized in terms of
number of nodes does not result in the most optimized

code on a single-register machine. We have presented
four optimizing transformations that optimize code by
minimizing accumulator-spills. These transformations
utilize the 'shift' operations which can be performed on
the data being added/subtracted to/from the accumula-
tor, without any clock cycle overhead. Finally, we have
presented a new approach to DAG optimization that is
based on synthesizing spill-free DAGs. This technique
has been found to give promising results for most of
the multiplication-free linear transforms that we have
experimented with.

We have presented results for 4x4 Walsh-Hadamard,
8x8 Walsh-Hadamard, 8x8 Haar transform and 4x4
Slant transforms. The code generated using these opti-
mization techniques requires 25% to 40% fewer number
of cycles. We are currently evaluating the e�ectiveness
of these techniques for error correcting/detecting codes
and are also looking at optimized code generation of FIR
�lters on architectures that do not support a hardware
multiplier.

As part of our future work, we are developing an
algorithm to automate the DAG optimization by ap-
plying various transformations. As a �rst step we have
developed an algorithm that searches the DAG for all
buttery patterns and serializes them by appropriately
selecting one of the two possible options.

Our algorithm for synthesizing spill-free DAGs cur-
rently uses only one already-computed-output to com-
pute the new output. Higher gains are possible if more
than one already-computed-outputs are used. We are in
the process of enhancing our synthesis process to com-
prehend such possibilities.

We are also looking at code optimization of
multiplication-free linear transforms on multiple-
register architectures. We believe that the algorithm
for minimizing number of additions+subtractions can
result in signi�cant code optimization for register-rich
architectures.

References
[1] Anil K. Jain, \Fundamentals of Digital Image Process-

ing", Prentice Hall Inc. 1989

[2] TMS320C2x User's Guide, Texas Instruments, 1993

[3] TMS320C5x User's Guide, Texas Instruments, 1993

[4] A. Aho, R. Sethi and J. Ullman, \Compilers Principles,

Techniques and Tools", Addison-Wesley, 1986

[5] Stan Liao et al., \Code Optimization Techniques for

Embedded DSP Microprocessors", DAC 1995

[6] Stan Liao et al.,\Instruction Selection Using Binate

Covering for Code Size Optimization", ICCAD-95

[7] Stan Liao et al.,\Storage Assignment to Decrease Code

Size", ACM conference on Programming Language De-

sign and Implementation, 1995

[8] Mahesh Mehendale, G. Venkatesh and S.D. Sherlekar,

\Synthesis of Multiplier-less FIR Filters with Minimum

Number of Additions", ICCAD-95

[9] M. Potkonjak et al., \E�cient Substitution of Multiple

Constant Multiplications by Shifts and Additions using

Iterative Pairwise Matching", DAC 1994, pp 189-194

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

