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Extended Abstract

Since the 1988 tutorial on behavioral (high-level) synthesis
which appeared in the DAC [1] proceedings (and later in the
proceedings of the IEEE [2]) much has happened in the field.
Behavioral synthesis is now considered mainstream EDA as
evidenced by the number of articles at conferences, journals
and books. May be even more significant, several products
are being offered commercially, and the number of designers
using behavioral synthesis is probably in the hundreds. The
initial promise of behavioral synthesis, to dramatically
increase productivity by elevating the level of design, has
been fulfilled. The increase in productivity of behavioral
design versus RTL design is typically quoted at 5 times. What
came as a surprise to most researchers in the field, is that this
is achieved without impacting the quality of results (area,
timing)! If anything, behavioral designs are slightly smaller
and faster that their RTL counterparts, mainly because much
more architectural exploration can be afforded at the
behavioral level, thus providing a better starting point for
synthesis.

Yet, there is one caveat.  Behavioral synthesis is not as
general purpose as RTL or logic level synthesis.  Applications
that are “good” to be designed at the behavioral level are
characterized by a high algorithmic content. Without really
getting into more detail on what this exactly means, let me
give some examples: graphical applications, printers, disk
controllers, parts of ATM, a wide range of DSP applications,
complex arithmetic computations,  etc. Applications which
are not really suitable for behavioral design are for example
high performance computers, controllers described by totally
specified finite state machines, combinational logic, etc.
Overall  however, behavioral synthesis can be considered
“general purpose” (if this can be quantified at all, what is
meant is that a majority of designs done today at the RTL are
suitable for behavioral synthesis).

Rather than attempting to give a survey of the field which
would require a very large amount of space, the rest of this
presentation focuses on a few selected problems which are
addressed in more depth in several papers in this volume. The
topics covered are memory synthesis, code generation,
incorporating interconnect delays at a high level, pre
synthesis optimization, and high level power optimization in
different flavors. Test and fault tolerance at a high level are
covered in Ken Wagner’s tutorial [3]. This tutorial presents
the problems in context - the reader is referred to the full
papers in this volume for any detail.

Memory synthesis is becoming increasingly important. In the
general case, the problem is to map the data in the
behavioral description to memory elements such as registers,
register files and memories. The classical register allocation
problem is to determine the smallest amount of shared
registers for a given set of variables with associated lifetimes
(derived from a control-data flow graph), e.g. [4]. These
registers can be clustered into register files. If the amount of
data in the behavioral description is very large, typically
represented by vectors and multi-dimensional arrays, it is
necessary to map it to random access memories [5]. In special
cases, other memory structures are more optimal. Ercanli and
Papachristou [6] show how shifting register files can be used
advantageously in conjunction with expansion scheduling.

Mehendale et. al. [7] address the problem of  optimizing code
for single register, accumulator based DSP architectures,
which are quite common today. Generating code for
embedded processors will become increasingly important [8];
this is an area where HW and SW design meet. The particular
problem addressed in [7] deals with linear transforms of the
form Y=AX where Y are the outputs, X the inputs and A the
transformation matrix containing only 0, 1 and -1, i.e. this is a
linear, multiplication free transform.

One of the big challenges at present is what is often called
“deep sub micron” design.  The challenge arises from the fact
that most delay in small technologies is due to the
interconnect rather  than due to the circuits themselves. This
has multiple causes such as the resistance of wires becoming
comparable to the internal resistance of the drivers, and, to
complicate matters further, the cross capacitance of wires
may dominate the wire to ground capacitance. The meaning
for behavioral synthesis is that although it aims at elevating
the level of abstraction, it has to take into account
increasingly the physical design (low-level). The paper by
Monahan and Brewer [9] shows how to take into account
some of the effects of interconnect in the data path at a high
level.

Li and Gupta [10] address the problem of pre-synthesis. It is
widely acknowledged that very much like software,  synthesis
in general is sensitive to the style of the input specification
(the HDL program). Functionally equivalent HDL programs
written in different styles can yield to widely different quality
of results (area, speed). The method presented uses timed
decision tables for pre synthesis in a way which is relatively
insensitive to individual programming styles.

After optimization for area and timing, power is gaining more
and more importance. The drive for portable, battery operated
devices and the limitation of circuit density by  power
dissipation in small technologies are probably the most
important causes for this trend [11]. Power optimization at the
behavioral level potentially yields more savings than at lower
levels. Significant savings of power result from architectural
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changes which allow to reduce the clock speed, shutting down
inactive parts of a design using techniques such as gated
clocks or isolation with transparent latches. Power
optimization is a “hot” topic at present, and  consequently this
volume contains numerous in this important area.

Raghunathan et.al. [12] address the problem of glitch
propagation. Stopping glitches as close to the source as
possible maximizes power savings. The techniques used
include enhancing data correlation,  clocking control signals
and gating clock signals. The power reduction reported ranges
from 17% to 26%.

Another approach to minimizing power is to use multiple
clocks. Each of the multiple clock phases runs at a fraction of
the speed than a single clock would do, operating the clocked
modules only during the corresponding duty cycle, thus
reducing power. Papachristou et.al. [13] show how 3 clocks
allow to reduce power consumption by 2-3 times over a
single, non gated clock.

An alternative way to look at power management is to shut
down pieces of a design while they are not used. Monteiro
[14] et.al. present a scheduling algorithm that exploits the
slack of operations to obtain a schedule that allows to manage
power in this way. The savings reported amount to roughly
40%.

A more specialized approach is introduced by Srivastava and
Potkonjak [15]. They minimize power in linear systems
unfolding the computations and implementing them
maximally fast. This allows to reduce the supply voltage,
which reduces the power consumption by a factor of 2.7 in a
single processor implementation and by a factor of  15.6 in
the multiprocessor case. In the case of a custom ASIC data
path implementation, the reported savings is an  impressive
30 times.

A topic closely related to power minimization is
electromigration reliability. The mean time to failure (MTF)
due to electromigration is inversely proportional to the
current density J. Maximizing MTF means minimizing J,
which is different from minimizing power - although lower
power consumption means lower current densities on average.
Dasgupta and Karri [16] present a scheduling and binding
algorithm to maximize MTF or power. They show that for a
set of 3 examples, the “best-reliability” architecture has on
average a 48% higher MTF than the lowest power
architecture obtained by their algorithm .

Summarizing, although the classical problems of scheduling,
allocation and binding have been thoroughly explored in the
past, behavioral synthesis is still an active and vital area of
research.  The cross section of problems addressed in the
present volume prove this point.
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