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Abstract
We describe a model that supports the functional par-

titioning of a system-level functional specification among
hardware and software components. The model includes
only the information needed by partitioning, and thus can
be communicated freely and generated automatically. Based
on characteristics of several real examples, we describe a
technique for automatically generating generic model in-
stances, on which partitioning heuristics can be applied
and fairly compared. Such comparisons will become in-
creasingly important as research begins to focus on fast yet
effective functional partitioning techniques. We describe a
set of tools for converting a specification to the model, for
generating generic model instances, and for applying and
comparing partitioning heuristics, available via ftp. Use
of these tools may greatly reduce duplicated efforts among
researchers wishing to investigate hardware/software par-
titioning heuristics.

1 Introd uction

Given a system's functional specification, written in a
VHDL or C-like language, a system designer must assign
specification pieces, such as procedures, processes, vari-
ables, and communication channels, to one or more sys-
tem components, such as standard processors, custom-
synthesized processors, memories, and buses. System com-
ponents may be stand-alone packages or embedded within
other components, as in the case of an embedded core pro-
cessor and several custom hardware blocks and memories
on a single ASIC.

Functional partitioning becomes necessary when a spec-
ification will be implemented with more than one system
component. We may use more than one component for
several reasons. First, we can perform tradeoffs between
hardware and software. Specifically, we can reduce the
execution time of a primarily software system by using a
custom hardware component for time-consuming computa-
tions. Such a technique was used in [1] to reduce the execu-
tion time of an example from 22,403 down to 16,394 cycles.
Conversely, we can reduce the hardware cost of a primar-
ily hardware system by moving some hardware functions
to a standard processor component. Second, we can de-
crease execution time by increasing concurrency with two
custom/standard processors rather than one; a reduction
from 10 down to 6.5 microseconds is demonstrated for an
example in [2]. Third, we may use functional partitioning
to better meet hardware packaging constraints. For exam-
ple, results in [3] describe an example that would require
two 832-pin FPGA's if structurally partitioned two ways
(a clearly impractical number of pins), while only requir-
ing two 164-pin FPGA's if functionally partitioned. Fi-
nally, we can use functional partitioning to achieve greatly
improved synthesis-tool performance. In [3], the logic syn-
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thesis time for an example was reduced from 19 down to
1.25 hours using functional partitioning.

For the above reasons, hardware and software func-
tional partitioning heuristics will likely become increas-
ingly important. We say hardware and software, rather
than hardware/software, because we may at times wish to
partition among hardware components only, or amongsoft-
ware components only. Recently, many techniques have
been described that use existing or new heuristics forhard-
ware/software partitioning [1, 4, 5, 6, 7, 8] as well as hard-
ware/hardware partitioning [9, 10, 11, 12]. The former
techniques focus on maximizing performance while mini-
mizing hardware size, and the latter on satisfying pack-
aging constraints while minimizing communication time.
Other techniques assume a manual partitioning [13, 14, 15,
16, 17], but could certainly be extended to use heuristics.
The work presented here is intended to greatly improve
the ability to make fair comparisons of various heuristics.
In particular, we need a well-defined model on which to
apply partitioning heuristics.

A model represents the specification information re-
quired for partitioning. It represents specification pieces
to be partitioned (thus defining the granularity of par-
titioning), as well as information used to evaluate parti-
tions, such as the size and execution time of each piece.
The model need not represent the full functionality. A
well-defined model is needed for several reasons. First, we
can use automatic generation to create large numbers of
generic model instances, thus permitting application of a
new partitioning heuristic on many examples, providing
enough data for a good evaluation of average/worst/best
case heuristic performance. If instead we used real exam-
ples, we would need several weeks to develop each the ex-
ample, meaning that we could only develop a few examples,
making heuristic evaluation difficult. Second, we can freely
communicate model instances among researchers, because
the model does not represent a system's full functionality
and thus does not contain proprietary information typi-
cally found in real examples, even when the model is de-
rived from a real example. Such communication enables
fair comparison of partitioning heuristics. Finally, a well-
defined model provides for partitioning from a partial spec-
ification, because the designer need only summarize the in-
formation necessary to build the model (e.g., the size and
parameters of a procedure rather than its contents).

This paper is organized as follows. In Section 2, we de-
scribe the problem being addressed. In Section 3, we high-
light the features of our model. In Section 4, we describe
our technique for generating generic model instances. In
Section 5, we describe a tool to support partitioning of the
model, and experiments comparing existing heuristics for
hardware/software partitioning. In Section 6, we provide
conclusions.
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2 Problem definition
We assume the input specification is written in a se-

quential program-like language, such as VHDL or C. The
specification is modular, consisting of many procedures;
large sections of non-procedural code can be modularized
using techniques in [18]. The specification may contain
multiple processes and large arrays. The procedures de-
scribe task-level algorithms, as opposed to states or arith-
metic components. The specification may possess some
architectural-level structural detail, including predesigned
components such as a DMA controller, priority interrupt
controller, or FFT module, and may describe an initial
partition among hardware and software components.

Our goal is to partition the procedures/processes, vari-
ables, and communication channels among allocated sys-
tem components and buses, such that we minimize a given
objective function value. System-level objective functions
are hard to define, because we must consider many com-
peting metrics, such as size, I/O (input/output), execution
time, power, design time, modifiability, and monetary cost.
We use a function that sums all constraint violations, and
in this paper we consider constraints on the metrics of aver-
age execution time of a procedure or process (1 iteration),
the size capacity of a hardware or software component,
and the I/O capacity of a hardware component. Viola-
tion values must be zero or positive (negative values are
forced to 0), and each value is normalized by dividing by
the constraint value.

Figure 1 shows the roles of a model in a typical parti-
tioning system intended to solve the above problem. The
model will be derived from the input specification. It must
explicitly represent the objects to be partitioned among
components; in our case, those objects are procedures and
processes, variables and communication channels. It must
provide enough information to provide fast yet accurate
metric estimations. It must be able to reflect the parti-
tioning results. We shall now highlight the model we use
for these roles.

,Input Output

Fig. 1: Typical partitioning system configuration

3 Model
We use the SLIF - Specification-Level Intermediate For-

mat - representation as our model for partitioning. SLIF
was introduced in [19] and its usefuI'~ess was shown for es-
timating size, execution time, I/O and bitrate metrics. In

r-

its simplest form, SLIF is a directed acyclic graph, where
each node represents a behavior or variable, and each di-
rected edge represents an access initiated by a behavior to
another behavior or variable. For example, Figure 2 shows
a partial VHDL specification of a fuzzy controller, and Fig-
ure 3(a) shows its SLIF representation (Convolve has been
omitted for readability of the figure). As a convention, be-
havior names are initially capitalized, while variables are
not, and process names are underlined. Note that the edge
from EvalRul.e to inl val points to in1val, even though data
flows to EvalRule. In other words, the direction shows the
initiator of the access, not the flow of data; data might
actually flow in both directions. Thus, we call this an ac-
cess graph. Such a representation of accesses, rather than
data dependencies, is crucial to represent procedural spec-
ifications for partitioning. In particular, in the common
case that a procedure is called from many locations, the
access graph uses one node for the procedure with multiple
incoming edges. If we instead represented data dependen-
cies, then we would have to duplicate any procedure node
that was called from more than one location, since data
dependencies will be different for each call, resulting in a
very large number of nodes.

FuzzyMaln: process procedure EvalRule(num : In Integer) Is
variable trune : Integer; - truncated value

variable In1val, In2val : Integer, begin
type mearray Is array (1 to 384) " (num = 1}then

of Integer, trune:= Mln{mr1(ln1val),mr1{128+ln1val));
variablemr1,mr2:mearray; elBiI(num=2)then
type tmr_array Is array (1 to 128) trune:= Mln{mr2{ln2vaO,mr2{128+ln2val));

01 Integer, end If;
beglnvariable tmr1, tmr2: tmr_array;

... forlln1t01281oop
In1val:=ln1; In2val:=ln2; If{num=1)lhen
EvaiRule(1); Imr1(1):=Mln(trune,mr1{256+I));
EvaiRule(2); elslf(num=2) then
Convolve; tmr2(I):=Mln(trune,mr2(256+I));
out1<=Centroid; end If;
walt until ... end loop;

end process; end;

Fig. 2: Example VHDL specification

The SLIF is hierarchical. We can group nodes into a
new hierarchical node. These nodes may simply be nodes
that should not be separated during partitioning. More
importantly, the hierarchical node may represent a system
component, such as a processor. Likewise, we can group
edges into a hierarchical (undirected) edge. The new edge
may represent a physical bus. For example, Figure 3(b)
shows the SLIF after all behaviors and variables have been
assigned to one of three component nodes: a custom hard-
ware block, a standard processor block, and a memory
block. In addition, several edges have been assigned to a
single bus.

SLIF is heavily annotated for the purpose of metric es-
timations. First, each node may be bound to a library
component. In the example, node Blockl is bound to a
Xilinx XC4000 FPGA, and edge Busl is bound to an 8-
bit ISA bus. Note that any of the procedure nodes could
be bound to a component also, meaning that the proce-
dure would be implemented using a predesigned compo-
nent. Second, each node may have a size annotation. In
the example, procedure node Centro~d is annotated with a
size of 9000 gates when bound to an XC4000, and a size
of 60 instructions when bound to an Intel386 processor.
Third, each edge node may have an internal computation
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Fig. 3: SLIF model: (a) access graph, (b) partitioned.

time (ict) annotation, indicating the start-to-finish com-
putation time of the node excluding time for accesses to
other nodes. In the example, Centroid executes in 80 mi-
croseconds on an XC4000, and 1600 microseconds on an
Inte1386. A variable's ict represents the time to fetch the
data from its (usually memory) component. Fourth, each
non-hierarchical edge may have bits and frequency anno-
tations. The bits value represents the number of data bits
that must be transferred during each access. Frequency
represents the average number of accesses over the edge
during an execution of the edge's source node. In the ex-
ample, the access of EvalRule to mr2 requires a transfer
of 15 bits (address and data), and the access is made 65
times on the average. Finally, each edge may have a wires
annotation, indicating the number of physical wires. In
the example, Busl has a width of 27 wires, which is the
number of wires involved for an 8-bit ISA bus (including
address, data and control).

Annotations are determined using estimators, synthe-
sis tools, or manually. For all cases where average values
are used, we could also associate minimum and maximum
values.

Estimations of metric values are determined directly
from the annotations. For example, the size metric (in-
structions) for a processor node is determined as the sum
of the sizes of the children nodes. Other metrics involve
more complex combinations of annotations; for details, we
refer the reader to [19]. We also point out that annotations

can be much more complex than just numbers, to account
for interaction between nodes when implemented on the
same component. For example, complex annotations for
performing hardware size estimation while accounting for
hardware sharing are described in [20].

Note that annotations provide a simple means to over-
ride an estimation; the user just changes the annotation.
They also provide a means for partitioning in the absence
of a complete specification; the user can create an empty
procedure, and then provide necessary annotations manu-
ally.

4

4.1
Generating generic model instances

Overview

A generic model is one generated from statistical data
rather than from a particular specification. It does not
represent a "real" example, yet has characteristics similar
to those of a real example. A generic model, of nearly any
size, can be generated automatically in a matter of seconds.
A real example, on the other hand, may require weeksor
months to develop. Generic models therefore provide a
means to quickly create a large number of examples on
which we can compare partitioning heuristics. In addition,
we can generate generic models of varying sizes, to examine
how a heuristic's performance is affected by the problem
size.

We chose six examples from which to obtain statistical
data, which would later be used to generate generic mod-
els. The examples were: (1) ana, a telephone answering
machine controller characterized by many small procedures
and loose timing constraints; (2) ether, an Ethernet copro-
cessor characterized by multiple processes and tight tim-
ing constraints, with much data manipulation; (3) fuzzy,
a fuzzy controller with large arrays and a single timing
constraint, with much data computation; (4) itv, an inter-
active television processor with some tightly-constrained
processes and many large, loosely constrained procedures;
(5) mwt, a microwave transmitter controller with several
levels of procedure call nesting and very loose constraints;
and (6) vol, a volume-measuring medical instrument con-
troller characterized by a sequence of procedures with a
single timing constraint, with some data computation. The
examples represent a mix of control and control/data sys-
tems, with a variety of sizes ranging from 222 to 1021 lines
of VHDL, and 31 to 124 SLIF nodes. Each example re-
quired an average of roughly 1 person-week to develop in
an untested (draft) form, and, another week in a tested
form. Three of the examples are proprietary.

4.2 Statistical method

We obtained statistical data from the above examples.
This data would be used to generate the structure of a
generic SLIF access graph, i.e., the nodes and edges. It
would also be used to generate the annotations of node
ict and size, and edge frequency and bits. We also sought
to find correlations among the annotations, in particular
between a-Ilode's ict value for a hardware implementation
and its ict value for a software implementation; likewise
for a node's size in hardware and software.
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We now provide some brief background of the statisti-
cal techniques used in this paper. Given a large number
of data points to be plotted on x and y axes, we can sum-
marize the data by choosing intervals along the x-axis and
creating a histogram, as shown in Figure 4. The histogram
illustrates the relative frequencies of set of observations on
a range of values. It records the percentage or fraction
of data in a particular interval relative to the other inter-
vals. To display the shape of the distribution without the
lumpiness of the histogram, we use a smooth curve to ap-
proximate the histogram, as shown in Figure 4. This is
the probability function that describes the distribution.
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Fig. 4: Distribution of probability histogram

We use a simple linear regression in parts of our gen-
eration procedure. Such a regression has one explanatory
variable and one response variable. The explanatory vari-
ables can be a node's hardware size or internal computa-
tion time, whereas the response variable can be the size of
node's software size or internal computation time. Mathe-
matically, a simple linear regression equation expresses the
relationship of these two variables, having the form:

y=bx+a

The method for calculating a linear regression equation
by the least-squ'are regression method can be found in any
introductory statistics textbook. Note that the regression
equation does not describe the nature of association be-
tween explanatory and respons!:) variables.

We use a correlation coefficient to measure the strength
and direction of the linear association of two variables.
Two variables have positive association when the above-
average values of one variable accompany the above-average
values of other variable; otherwise, they have a negative as-
sociation. The range of a correlation coefficient is between
-1 and 1, where 1 is perfect positive association, and -1 is
perfect dissociation.

4.3 Access graph generation

We now describe how we generate model instances from
the statistical data. We start by generating an unanno-
tated access graph. The user specifies the number of nodes
n, and we must then generate some number of edges e that
connect the nodes. One might consider computing e as a

multiple of n (our data showed this multiple to be 1.2),
and then randomly selecting two nodes for each edge, en-
suring that no cycles are created. However, such a graph
does not reflect the real examples' characteristic that some
nodes have many outgoing edges (such as the main process
node), and most nodes have just a few incoming edges.
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Fig. 5: Distribution of nodes and fanin for real examples
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Fig. 6: Distribution of nodes and fanin for generated
examples
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Fig. 7: Range of fanin and level

For a more realistic graph structure, we measured the
fanin of each node. The fanin of a node is the number of
incoming edges. Figure 5 shows the probability distribu-
tion of fanin for the real examples. The distribution shows
that most nodes have a fanin of 1 or 2. For example, 80%
of fuzzy's nodes and 40% of ether's nodes have a fanin of
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1. Between 10% and 30% of all nodes have a fanin of 2,
and only a small percentage of nodes have a fanin of 3 or
greater.

From the real examples, we generate the average per-
centage of nodes that have each possible fanin value, as
shown in Figure 6. For example, the figure shows that
60% of nodes have a fanin of 1,13% have a fanin of 2,10%
have a fanin of 3, etc.

We then noted that a node's fanin was related to its
level in the access graph. The level of a node is the max-
imum number of edges that must be traversed to reach
the node from a root node (Le., a node with no incom-
ing edges), plus 1. In the real examples, a node with a
high level typically had higher fanin. These higher-fanin
nodes represented commonly-accessed procedures or vari-
ables. Figure 7 shows the relationship between fanin and
level for the real examples. Level 2 nodes had fanins be-
tween 1 and 3, level 3 nodes between 2 and 5, and level 4
nodes between 4 and 9.

Using the fanin information and level data described
above, we can generate the edges of the generic model in-
stance as follows. First, we assign a fanin for each node,
such that the percentage of nodes with a particular fanin
matches the distribution of Figure 6. For example, 60% of
nodes will be assigned a fanin of 1. Second, we assign each
node to a level based on its fanin. For example, anode
with a fanin of 3 could be assigned to level 2 or level 3, as
shown in Figure 7. Third, we create a number of incom-
ing edges for each node equal to the fanini each such edge
originates from a randomly-selected node of a lower level.

4.4 Annotation generation

Having generated a realistic unannotated access graph,
we turn our attention to generating annotations for the
nodes and edges of the graph.

4.4.1 Internal computation time

I
I

I

I

We consider generating an internal computation time (ict)
value for each node. We first determined each real exam-
ple's node hardware ict value, Le., the ict for a custom
hardware implementation of the node, determined using
the method in [19]. The distribution of ict values is shown
in Figure 8, where we plot the probability that a node has
a particular ict value (using intervals of 5 clocks). The fig-
ure shows that between 60% and 90% of nodes had an ict
between 1 and 5 clock cycles (excluding the fuzzy exam-
ple, whose values were much higher). Most ict values were
between 1 and 25. For each generated SLIF model, we
randomly choose one ict distribution from the real exam-
ples. From the chosen ict distribution, we generate the ict
annotations for each node by randomly choosing a value
from the ict interval with respect to the probability of the
distribution. This gives annotations that reflect the real
examples. Figure 9 shows the ict value distribution for
five generated examples, containing 20, 40, 60, 80 and 100
nodes, respectively. (We tried randomly selecting an equa-
tion for each node, rather than each model, but this led to
poor results).

We then must generate a node's software ict value. We
could generate a node's software ict value using an ap-
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Fig. 8: Hardware ict distribution for real examples

Fig. 9: Hardware ict distribution for generated examples

proach similar to the method used to generate the hard-
ware ict value. However, such an approach would ignore
the observed positive correlation between a node's hard-
ware ict and software ict values. Such a correlation is
intuitive, since a node representing a complex computa-
tion would typically need more time in both hardware
and software than other simpler nodes. For example, Fig-
ure 10 shows hardware versus software ict values for the
ether example. Note the strong correlation. We have
drawn the regression line, which is described as the func-
tion ict(hardware) = 0.228 + 0.022 * ict(software). The
regression equations and correlation coefficients for all six
real examples are shown in 'rable 1. Given a node, we
generate a software ict value from the hardware ict value
by selecting the equation from the same example that we
used to generate the ict of hardware above.

4.4.2 Size

We now consider generating a size value for each node. We
use the same approach as used for ict. Specifically, we first
examine the distribution of hardware sizes for the nodes
of the real examples, where node size is determined as de-
scribed in [19, 20]. The distribution is shown in Figure 11
with intervals of 500 gates. Node sizes ranged between
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Table 1: Internal compo time regression equations
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Fig. 10: Regression line of ict for ether example

1 and 2500 gates. Similar to the ict generation above,
for each generated model SLIF, we randomly select one
size distribution from the real examples. From the chosen
size distribution, we generate the size annotations for each
node by randomly choosing a value from the size interval
with respect to the probability of distribution. The distri-
bution for five generated examples is shown in Figure 12.

As was the case with ict values,' there is a strong pos-
itive correlation between a node's hardware size and soft.
ware size in the real examples. Figure 13 plots hardware
versus software size for the ether example, and shows the
strong correlation. Once again, we determine regression
equations for the real examples, as shown in Table 2, and
select for each SLIF model the equation corresponding to
the example of the chosen hardware size distribution.

Fig. 11: Distribution of hardware size for real examples
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Fig. 12: Distribution of hardware size for generated ex-
amples
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Fig. 13: Regression line of size for ether example

4.4.3 Edge bits, frequency and wires

We now turn our attention to the edge annotations of bits,
frequency and wires. We determined the range of values of
edge bits from the real examples. For each generated edge,
we randomly select a bits value from that range, assuming
a uniform distribution. Frequency and wires values are
generated similarly.

4.4.4 Execution-time constraints

In addition to creating the annotated SLIF, we also gener-
ate execution-time constraints. The user provides a range
for the number of such constraints. For each constraint,
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Ex Nodes Regression equation Lorr.
ANS 44 ictJlw - 1.12 + 0.0404 Ict-5W +0.58
ETHER 124 ict_hw = 0.228 + 0.0220 ict-5W +0.92
FUZZY 69 ict.hw = 0.24 + 0.0191 ict-5W +0.98
ITV 84 ict_hw = -0.070 + 0.0406 ict-5W +0.89
MWT 31 ict_hw = 0.462 + 0.0188 ict-5W +0.83
VOL 38 ict_hw = 0.245 + 0.0330 ict-5W +0.78
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Ex .L Nodes Regressionequation Corr.
44 sizeJlw - 39.1 + 16.4 slze..sw +0.70

ETHER 124 sizeJlw = 61.9 + 8.4 size-5W +0.93
FUZZY 69 sizeJlw = 729.0 + 0.862 size-5W +0.35
ITV 84 size.hw=28.4 + 8.06 size..sw +0.71
MWT 31 sizeJlw = 7.2 + 11.8 size-5W +0.94
VOL 38 sizeJlw = 63.3 + 9.36 size-5W +0.69

Table 2: Size regression equations
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we randomly select a node; this node will have its execu-
tion time constrained. We then determine the execution
time for this node when all nodes are partitioned into one
custom hardware block. This execution time is the sum
of the internal computation time and the communication
time, where communication time is the time to transfer
data to/from accessed nodes plus the execution time of
those accessed nodes, as described in [19]. We use this ex-
ecution time, times a small factor, as the constraint value.

Input
(VHDL)

SUF
parameters

Output

Fig. 14: Tools for SLIF creation and partitioning

5 Implementation and experiments
We have implemented several tools to support the cre-

ation and partitioning of SLIF models, as illustrated in
Figure 14. First, we have developed a VHDL to SLIF con-
verter, vhd12slif, which reads a VHDL specification, and
then builds and outputs a textual SLIF model. Second,
we have developed a generic SLIF generator, gpslifgen,
which outputs a generic textual SLIF model whose arbi-
trary size is user-specified. Third, we have developed a
SLIF partitioning tool, gpslifpart, which partitions the
SLIF among a set of user-provided components, given a set
of user-specified constraints. This tool uses the GPP (Gen-
eral Purpose Partitioner) engine to perform the partition-
ing. GPP currently provides several heuristics, including
a greedy heuristic, group migration, simulated annealing,
genetic evolution, and hierarchical clustering. New heuris-
tics can be easily incorporated into GPP. All of these tools
are available via ftp at cs.ucr.edu.

I

I

Table 3: Hardware/software partitioning of real examples

We have performed two experiments to demonstrate the
usefulness of the SLIF model, gpslifgen and gpslifpart. In
the first experiment, we compared four partitioning heuris-
tics on their ability to perform a hardware/software par-

Table 4: Hardware/software part. of generated examples

titioning of the six real examples described above, among
an Intel 8086processorand a Xilinx 4000 FPGA. For each
heuristic, we measured heuristic CPU time and output
quality (as measured using the violation-minimizing objec-
tive function described in Section 2). The four heuristics
were: Random, a random partitioning, used as an initial
partition and thus providing a reference to see how much
cost reduction other heuristics obtained; Greedy, a greedy
improvement heuristic that accepts cost decreasing moves
of a node from hardware to software, or vice-versa, until
no cost-decreasing move can be found; GM, a group mi-
gration heuristic [21] that uses the Kernighan/Lin control
strategy [22] to overcome local minima; SA, a simulated
annealing implementation using the parameters described
in [3]. Results are shown in Table 3.

We then generated 8 generic examples ranging in size
from 30 to 100 nodes, and applied the same four heuris-
tics. Results are 'Shown in Table 4. The results show that
the relative performance of the various heuristics is ap-
proximately the same for the real and generated examples.
Specifically, greedy is fast but usually yields inferior parti-
tions; GM yields partitions close to those of SA for most
examples in less time, but sometimes yields much worse
partitions or uses more time. Though both the real and
generated examples enable us to evaluate the heuristics,
the examples were created with a very different amount of
effort: only a few minutes for the generated examples, but
nearly two months for the real examples.

We performed a second experiment, similar to the first,
in which we performed a hardware/hardware partitioning
of the real and generated examples. Results are shown
in Table 5 and Table 6. Once again, results show that
relative performance of the heuristics for the real examples
is approximately the same as for the generated examples.

Table 5: 2-way hardware partitioning of real examples

At this point, we mention some limitations of our model
and techniques. First, the model does not currently sup-
port scheduling of the nodes. Second, the generation tech-
niques are based on only six examples; a possibly very
useful tool would be one that creates the statistical data
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Examples Random Greedy GM SA
C T C T C T C T

ANS 6911 0 10 2 0 7 0 34
ETHER 3985 1 279 7 151 516 151 448
FUZZY 6998 0 31 7 41 101 19 208

ITV 1658 0 100 6 75 144 75 501
MWT 1028 0 16 2 10 18 10 337
VOL 719 0 319 2 224 39 202 453

Examples Random Greedy GM SA
C T C T C T C T

30 3575 0 146 2 76 13 11 60
40 8557 0 78 2 61 125 21 156
50 877 0 130 2 0 8 0 26
60 1477 0 58 3 0 49 0 37
70 12110 0 68 5 49 374 52 178
80 10022 1 13 4 0 26 0 47
90 363 1 45 9 4 459 0 266
100 3901 1 7 9 0 115 0 110

Examples Random Greedy GM SA
C T C T C T C T

ANS 210 0 210 2 210 38 205 283
ETHER 356 0 64 10 64 369 53 531
FUZZY 487 0 423 5 404 161 404 690

ITV 704 0 180 6 130 186 138 629
MWT 895 0 6 2 3 14 0 139
VOL 881 0 411 3 411 28 398 476



Table 6: 2-way hw. partitioning of generated examples

for any given set of examples, and then updates gpslifgen
to generate examples with the characteristics of that data.
We might even want to look at a large number of real
examples to determine if there exists a set of equivalence
classes into which examples could be classified.

6 Conclusion

We have described SLIF, a model suitable for function-
ally partitioning a specification among hardware and/or
software components. The model, unlike a dataflow model,
is well-suited for procedural specifications. We have de-
tailed a technique for generating arbitrary-sized general
model instances having characteristics similar to real ex-
amples. The model and its supporting tools enable fair
comparison of functional partitioning heuristics, and such
comparison will become more important as researchers be-
gin to focus on developing such heuristics. The supporting
tools provide the infrastructure for developing and com-
paring heuristics, so may greatly reduce the time needed
by researchers for such development and comparison.

With the existing models and tools, we plan to investi-
gate heuristics for partitioning. In particular, we plan to
evaluate popular heuristics such as Kernighan/Lin, in or-
der to make control strategy improvements specifically for
functional partitioning. We also plan to investigate the ef-
fects of SLIF transformations on partitioning results. Such
transformations include procedure cloning to reduce chip
I/O, and process splitting to improve performance.
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Examples Random Greedy GM SA
C T C T C T C T

30 708 0 198 1 103 9 16 110
40 1114 0 73 1 0 17 0 3
50 916 0 210 2 136 63 63 209
60 446 0 52 5 0 140 0 122
70 1175 0 319 6 128 229 101 352
80 550 0 154 4 2 741 0 102
90 886 1 264 9 142 295 146 263
100 732 1 175 6 7 253 0 154
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