
Architectural Partitioning of Control Memory for

Application Speci�c Programmable Processors

Wei Zhao and Christos A. Papachristouy

Department of Computer Engineering
Case Western Reserve University

Cleveland, OH 44106

Abstract
Because of programmability of Application Speci�c Pro-

grammable Processors(ASPPs), microcode-based control is
e�ectively used to drive ASPP datapaths for di�erent ap-
plications. In ASPPs, each application needs a separate mi-
croprogram resulting in large microcode memory. This pa-
per proposes a distributed microcode memory model in which
only distinct microcodes are stored in each separate mem-
ory module to save memory area. A hierarchical clustering
approach is also proposed for the design of this distributed
microcode memory. Experimental results indicate this ap-
proach is especially well suited for ASPP microcode memory
design because of the existence of repetitive microcodes across
multiple behaviors.

1 Introduction

1.1 Motivation

An Application Speci�c Programmable Processor (ASPP) is
a programmable architecture which can be tuned to a num-
ber of di�erent DSP applications[1]. We have developed an
approach to employ on multiple behaviors[2]. By exploiting
the similarities among the multiple behaviors, our approach
can get an optimal datapath for all behaviors. As to ASPP's
controller design, although there are many ways to imple-
ment the controller for ASICs, microcode seems to be the
best candidate for ASPP's controller because programma-
bility is required.
In most ASIC designs, \Hardwired" FSM is used to im-

plement the controller; however, this can not meet ASPP's
requirement. Once FSM control is decided, it can not be
changed. In practice, some designers still use \hardwired"
controllers to drive their programmable processor with a sep-
arate controller for each application. However, their appli-
cations are well de�ned before design and the number of
applications is very limited, for example, just two. For this
limited case, �nite state machines(FSM) are more area e�-
cient than microcode. However, these kind of processors are
not real programmable processors.
In ASPPs, there are several microcode programs in the

control memory, one for each application. Although some-
times these microprograms can be downloaded to microcode
memory at run time, in most situations, switching from one
application to another must be done in real time, thus this
kind of program loading becomes prohibitive. This requires
that all microprograms be in control memory leading to a
very large memory. In addition, ASPP's microcode memory
can not be o�-chip, in that case memory is not a problem.
The reason is ASPPs are high speed processors, thus o�-chip
microcode memory can not provide instructions in a timely
fashion to sustain high speed computation. Also the datap-
ath of ASPP is relatively more complex than that in ASICs,
so the microcodes for ASPPs usually are much wider than
that of ASICs, and this fact would increase the number of
pins if the microcode memory would be o�-chip. Thus it is

ySupport for this work has come from OAI Contract 94-
1-015 and SRC Contract 94-DJ-527.

vital for ASPP designers to minimize the on-chip microcode
memory area.
The similarity among all input behaviors not only leads

us to a common datapath for all algorithms[2], but also pro-
vides a lot of similarities in control behaviors. For example,
multiply-add is a common operation chain in many DSP ap-
plications; the control signals to this chain can be the same if
there is a same binding for these multiply-add nodes. Apart
from this explicit similarity, some partial similarity may ex-
ist among all or part of the input behaviors. Our objective
is to expose and to make good use of these similarities lead-
ing to simple control unit design. Our work is motivated by
these observations.

1.2 Our Work

In this paper, we propose a distributed microcode memory
model in which only distinct microcodes are stored in each
separate memory module to save area. To �nd out these
commonly shared microcodes, we use a hierarchical clus-
tering approach to merge those microcode �elds that could
lead to maximal decrease in total microcode memory in a
bottom-up fashion. We use a closeness metric between two
microcode �elds to guide their merging.

1.3 Related Work

There has been a lot of research on microcode control unit
design for ASICs. An e�cient microcode compiler was de-
veloped in CATHEDRAL II [3] with emphasis on micropro-
gram scheduling and memory allocation. Retargetable com-
piler techniques were studied in [4] and [5] for recon�gurable
microarchitectures. Di�erent microcode generation and op-
timization techniques are discussed in [6] [7]. As controller
becomes more and more complex, some researchers use par-
titioning to make the design of controller more e�ective. A
novel partition scheme was discussed in [8] [9] for the reduced
area design of PLA-based control tables and PLA-based mi-
crocode. In [10], they propose a partitioning method for
FSM implementation. By grouping the control sequences
into classes, the method reduces the number of minterms and
inputs, thus leads to a reduction in �-controller area. [11]
presents a new e�cient algorithm to reduce the the width of
microcode to save more microcode memory area. A detailed
survey of microcode width minimization can also be found in
[12]. The basic idea on microcode width minimization is to
construct a compatibility graph of microoperations in each
microinstruction and then to use various graph partitioning
schemes to determine which microoperations are compati-
ble. Encoding these compatible microoperations will lead
to minimization of the width of microcode. Although var-
ious methods are di�erent in their time and minimization
e�ciency, they all need additional logic to decode the en-
coded microcode. This may not be a serious problem in
ASIC design; although there is a price to pay for this min-
imization in terms of increased gate delay. However, for
ASPPs, additional decoding logic means more restriction to
programmability. Even small changes to the any of the mul-
tiple behavioral descriptions require a complete redesign of
the decoding logic and whole microcode memory.
We have seen some successful applications of hierarchical

clustering in high-level synthesis [13]. Closeness of two op-
erations in a control/data
ow graph(CDFG) is de�ned in

0101

1011

01010111

01010111

1000

0011

01010100

11010111

0110101

1011101

1110011

1101011

10101

10110

10111

11110

ALU
Control

Operand
Control

BUS
Control

Nest
Address

To ALU To REG To BUS To µ PC

µ PC

Micro

Sequencer

Flag Reg.
Literal

DatapathTo/From

Memory

Figure 1: Microprogrammed Controller Model

BUD [14] [15]. By merging of operations which have small
distance, a cluster tree can be constructed and then used
to guide the unit selection in scheduling and binding. In
APARTY [16] [17], di�erent closeness de�nitions are used
to cluster nodes in di�erent stages. Di�erent cutting lines
give di�erent styles of partition according to di�erent design
considerations. Although these works are very successful,
they focus on the datapath design. In our work, we have
found that hierarchical clustering is very useful not only in
datapath design, but also in controller design.

2 Microprogram Controller Model

Microprogrammed controllers are discussed in detail in [18]
[19]. Here we focus on the most standard and conventional
model, which is built mainly around microcode memory. We
base our discussion on this model because of its good pro-
grammability and simplicity. We show the diagram of this
module in Figure 1.
In this model, the control signals for the datapath are

saved in microcode memory in the form of microcodes. This
microcode memory can be implemented in a RAM , so that
by changing the microcode the whole architecture can be
reprogrammed. A microsequencer can also be attached to
produce the next address �eld as explained in [19] [20]. Here
we focus just on the design of microcode memory, so we omit
the details of the �-sequencer in Fig. 1.
In microcode memory, the control signals are organized

into time steps. One horizontal line of microcode represents
the control signals at a time step and is called a microword.
This format is very good to organize control, but from an-
other point of view, we need to store redundant information
which takes more memory area. To optimize the area cost,
an approach is to store the distinct control signals only once.
For a very long horizontal microcode, it is very di�cult to
�nd two identical microwords for this kind of compaction.
Suppose each control bit has equal chance to be \1" or \0".
The probability of two microwords of width w being iden-
tical is (1

2

)w, so it is very small. Although in practice the
chance of certain sections of microcodes to be identical is
higher than this, it is still too small to get any meaning-
ful compaction. However, for ASPP applications, it is very
likely that repetitive control signals will appear across all
the microcodes. The reasons for us to believe this are:

1. DSP applications are computation intensive and some
computation patterns occur frequently in many appli-
cations. Examples include multiplication/accumulation,
etc.

2. All the applications of ASPP will share a common dat-
apath, some datapath components are repeatedly used
in the same way in many places across all applications.

Although it is di�cult to provide a quantitative analysis
of repetitive microcodes in multiple behaviors, we are con-
vinced that the more similarity across multiple behaviors,
the more repetitive microcode we can have. Figure 2 shows

Time

Steps DCT

Algorithms

(-,+,*) (-,+,*) (-,+,*)

FFT IIR

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 1 0
1 1 0
1 1 0
1 1 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0 1 1
1 1 1
1 1 1
1 1 1
0 1 1
0 1 1

1 0 0 1
0 0 1
0 0 1
1 0 1
1 1 0
1 1 0
0 1 0

0 0 1
0 0 1
0 1 1
0 1 1
0 1 1
0 1 1
1 1 0
1 0 1
1 0 0

7 9Subtotal
3

16

32
7

4

Total

5Distinct

Distinct

Figure 2: Repetitive Microcodes in A Real Example

To ALU

Datapath

Micro
Sequencer

To REG

Literal
Flag Reg.

To BUS

1 1 0 1

0 1 1

1 1

To/From
Memory

µPC

Memory
Pattern
Control

Index1 Index Index2 3 Address
Next

0

1

2

3

1 0 4

1 2 1

3 1 6

2 3 3

Index
Memory

Latch

Figure 3: Distributed MicroprogrammedControl Model

how the repetitive microcodes exist in a real example. The
three algorithms are in the second case in our experiments.
Clearly, from our above observation, another way to in-

crease the chances of repetitive microcodes is to reduce w.
And the only way to do that is to partition the whole mi-
crocode memory horizontally across the �elds into several
small pieces resulting in a distributed microcode memory.

2.1 Distributed Microcode Memory

Figure 3 shows the distributed microcode memory model.
The microcode memory is divided into two parts, one is la-
beled index memory and another is labeled control pattern
memory; each separate memory in control pattern memory
is labeled microcode memory module; the microcode in each
microcode memory module is labeled control patterns here-
after. The index memory has a next address �eld and some
additional index �elds, each for one microcode memory mod-
ule. The conventional microsequencer is attached to the in-
dex memory as usual. Actually, this memory works just
as a conventional microcode memory as illustrated in Fig.
3. The only di�erence is instead of providing control sig-
nals to datapath, it just provides indices to the microcode
memory modules where the control signals are stored. Each
microcode memory module as shown in Fig. 4 on the right
side represents a \slice" of the original control memory, it
receives the indices provided by the index memory and then
provides the control signals to the datapath. Two-level con-
trol has been used earlier in QM-1 [21] and M68000 but in
a di�erent way. This distributed microcode memory has a
two-stage organization and operates in pipeline fashion us-

1 0 0 0
1 1 1 1
1 0 1 0

Control Pattern Index field

1 0 1 0
1 0 0 0
1 0 1 0

1 1 1 1
1 0 0 0
1 0 1 0

1 0 1 0
1 0 0 0

A ‘‘slice’’ of microcode

1 1 1 1

1 1 1 1

0
1
2

2
0
1
0
2
1
1
0
2
0

Figure 4: Mapping Relationship between Two Control
Memory Models

ing latches between the two memory stages to keep the speed
of the control unit with that of datapath, as shown in Fig.
3. While the control pattern memory provides the control
signals to the datapath, the index memory is working on the
next instruction address. This mechanism can makeup the
speed loss in the two level memory design.
In each microcode memory module, only the distinct con-

trol patterns are stored. Fig. 4 shows the mapping rela-
tionship from conventional control memory to distributed
control memory. The microcode memory module can save
area by saving control patterns, while the control sequence
is maintained in the index memory.

Ν
Σ (lg(ln))

Datapath
Component
1

mp-1 p

m m1 2

W1 W2

W Wp-1 p

1 2

pp-1

l l

l l

L

lg(N)
lg(MAX(L i)) n=1

m

mi mip1

Datapath
Component

Datapath
Component

Datapath
Component
2

p-1 p

Index for Control
Pattern in m p

Pattern in m 1

Index for Control

Figure 5: Analysis of Distributed Microprogrammed
Control Model

2.2 Analysis of Distributed Microcode Model

In Figure 5 we illustrate the relevant parameters in the dis-
tributed microcode memory model. Here we can see that the
cost for the compaction in each microcode memory module
is that we must add some additional index �elds in the in-
dex memory. The larger the number of microcode memory
modules we have, the more compaction we might get in each
microcode memory module, but we will also have more index
�elds in the index memory. Thus there is a tradeo� between
these two factors. Sometimes, the additional index �elds can
forfeit the savings in each microcode memory module. The
following analysis indicates their relationship.
Suppose :

N the # of input applications
Ln the # of microcodes in nth application
L total # of microcodes of all the N input

applications
W total width of microcodes that go to the

datapath
wp width of microcodes in pth microcode

memory module
lp length of microcodes in pth microcode

memory module
mp # of memory bits in pth microcode

memory module

cp the compaction ratio, cp =
lp

L
mip # of memory bits in pth microcode

index �eld
P the total # of microcode memory modules
M the total # of memory bits of the

whole original microcode memory
Mp the # of memory bits of the pth

microcode memory module
Mindex the total # of memory bits of the

additional index �elds
Mpartition the total # of memory bits after partitioning
Maddress the total # of memory bits of next

address �eld
Based on Figure 5 we have the following,

L =

NX

n=1

Ln; W =

PX

p=1

wp; mp = lp�wp; mip = dlg
�(lp)e�L;

Maddress = (dlg(N)e+ dlg(MAX(Ln))e) � L

So the total memory bits before partitioning :

M =Maddress +W � L (1)

After partitioning, each microcode memory module for
control patterns:

Mp = wp � lp = wp � cp � L

According to our previous analysis, after partitioning, we
will need some additional �elds to hold the indices to the
control patterns. The number of memory bits required for
these additional �elds can be calculated as follows:

Mindex =

PX

p=1

mip =

PX

p=1

(dlg(cp � L)e � L)

Therefore, the total number of memory bits after parti-
tioning is:

Mpartition =Maddress +Mindex +

PX

p=1

Mp (2)

Our goal is to use partitioning to reduce area, so we would
like to have (2) < (1). We compare (1) and (2), delete L on
both sides and substitute cp on left side by cmin =MIN(cp).
Then we get the following:

P � dlg(L � cmin)e+W � cmin < W (3)

We can further simplify (3) by substituting 1 � cmin by
another coe�cient k as follows :

P < k �
W

dlg(L) + lg(cmin)e
(4)

This tells us that there is an upper bound for the number
of partitions. The upper bound is decided by three param-
eters that are W , L and cmin. If there are more repeti-
tive microcodes in individual memory module, we can get a
smaller cmin, thus a bigger k; this means, when W and L

�lg(x) = log
2
(x) hereafter

0 0 0 1 0
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0

1

0 1 0 1
1 1 1 0
0 0 0 1

1 0 1 0
1 0 1 1
1 0 0 0
0 0 1 1
1 1 0 0
1 0 0 1

2
1

1

0

0

2
3

1
2
3

2

1

2

0
4

5

2

0

1
0

4

1

1

2
1

0

2

1 1 Total=126

54 32 40

0
1
2
3
4
5
1

0

0 0 0 1 0
1 0 0 0 0

0
1

1

0

1

1 0 0 1 0
0 0 0 1 0

0

0
2

2

3

1 1 1 0
1 1 1 0
0 0 0 1
1 1 1 0
0 1 0 1
1 1 1 0
0 1 0 1

5
6

1 0 1 0
1 0 0 0
0 0 1 1
1 0 0 1
1 0 1 0

1 0 1 1
1 1 0 0

1 1 1 0
1 1 1 0

0 1 0 1
1 1 1 0

1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 0 0 1 0
1 0 0 1 0

0 0 0 1 0

0
1
2
3
4
5
6

4

1 0 0 0 0

1 0 0 1 0 5
7

1 1 0 0

1 0 1 0
1 0 0 0
0 0 1 1
1 0 0 1
1 0 1 0

1 0 0 0
1 0 1 1

86 56 102

Total =86+40=126 Total =56+54=110 Total =102+32=134

F1 F2 F3

F1 and F2 merge : F2 and F3 merge : F1 and F3 merge :

Figure 6: An Example : Merging of Microcode Memory
Modules

are �xed, the more repetitive microcode in memory module,
the bigger range for a possible area saving partition.
This distributed microcode memory model is not suitable

for conventional microprocessors. The conventional micro-
processor is built around one ALU with a relatively simple
datapath. This makes the width of the microcode W not
very big. As the functions performed by conventional mi-
croprocessors are much more complex than the functions
performed by ASICs and ASPPs, these functions usually
have long sequence of microcodes, meaning a very big L.
The smaller W , and the relatively large L and cmin, make
it impossible to use partitioning to save some area.

3 Microcode Field Closeness

Before introducing the concepts, let us �rst study an ex-
ample shown in Fig. 6. Suppose we have three microcode
�elds whose microcode memory bits are 54, 32 and 40 for
�eld F1, F2, and F3, respectively, as shown in Fig. 6. The
width of F1 is 4, the length is 6. So the bits in memory
module F1 are 24. In the index �eld of F1, we have the
width dlg(5)e = 3, and length is 10, so the bits in index �eld

are 30 y. Thus we have 54 memory bits in F1. The total
number of memory bits in F1, F2 and F3 is 126. We want
to �nd which two of the three should be merged to reduce
the total memory area. We try to merge any two of them as
shown in Fig. 6. Comparing with 126 which is the number
of the original memory bits before merging, we know that
by merging �elds 2 and 3, we can get a smaller microcode
memory.
The goal of the memory closeness metric is to �nd out

which two microcode �elds will lead to smallest total number
of microcode memory bits if they were merged together. Fig.
7 shows the merging process.
Suppose :
MD

i total # of memory bits of the ith microcode
�eld that goes to datapath

MI
i total # of memory bits of the index �eld of the

ith microcode �eld
MD

ij total # of memory bits of microcode �eld which
is merged from microcode �elds i and j

MI
ij total # of memory bits of the index �eld of

microcode �eld ij

Based on the above de�nition and Figure 7, we have the

yRecall that index �eld is in another memory stage,
please refer to Fig. 3.

Wij

j
i

ij

Index Indexj i

Indexij

M M

M

M

M M

i j

i j

D D

D

ij

ij

l l

l

L

L

I

I I

Microfieldi jMicrofield

iW jW

Figure 7: The Merge Process of Two Microcode Mem-
ory Modules

following for the size of total memoryz before merging :

M =

PX

p=1;p6=i;j

(MD
p +M

I
p) + (MD

i +M
I
i) + (MD

j +M
I
j)

After we merge microcode �elds i and j, we get the fol-
lowing total memory bits:

Mmerge =M � (MD
i +M

I
i)� (MD

j +M
I
j) + (MD

ij +M
I
ij)

We know that after a merge, the total number of memory
bits will change as indicated above. We simply de�ne the
closeness of two microcode �elds as:

�(i; j) = �(MD
i +M

I
i)� (MD

j +M
I
j) + (MD

ij +M
I
ij) (5)

We allow the distance to be negative for the ease of un-
derstanding and computation. By merging two microcode
�elds, this de�nition can guarantee the greatest decrease in
total memory area.
According to this de�nition, the distances between the

�elds in the example in Figure 6 are as follows :

�(1; 2) = 0; �(2; 3) = �16; �(1; 3) = 8;

We can further substitute Equation 5 by some parameters
tagged on Figure 7. We then get the following :

�(i; j) = wi � (lij � li)+wj � (lij � lj)+L � dlg(
lij

li � lj
)e (6)

As `l' means the number of distinct microcodes, so the
distinct number of microcodes in merged �eld wij will have
the following bounds:

max(li; lj) � lij � li + lj

In Equation 6, the �rst two terms will always be positive,
and the third term may be positive, zero, or negative, be-
cause lij may be greater, less than or equal to li�lj . Whether
the value of �(i; j) is positive or negative, depends largely
on the third term in Equation 6. However the third term
is not decisive; the �rst two terms must still be considered.
This is why we can not simplify the �(i; j) function further.

zIn our later discussion, we exclude the address �eld in
microcode which is Maddress because it remains constant
during the partition process.

4 Partition Algorithm

First the control signals that go to the datapath are divided
into basic �elds. Each �eld controls one datapath compo-
nent. These �elds are used as the initial partitions. Then,
they are input to our partitioner. The partitioner will itera-
tively merge those two �elds that have the smallest distance
based on the closeness metric between two �elds, as de�ned
in Equation 5. Finally the partitioner will merge all these
�elds into a uni�ed one which is equivalent to the conven-
tional microcode memory.
In each step, the partitioner decreases the number of par-

titions by 1. The partitioning process travels a path such
that at each move, a locally optimal solution is picked. Many
implementations of this kind of algorithm exist according to
a survey in [13]. The time complexity is linear in the number
of microcode �elds in the original microcodes.
The following is a pseudocode description of the algo-

rithm.

PARTITION(microcode[f], f) /* f is the total
number of microcode fields */

1 while (f > 1) do
2 for i 1 to f do
3 for j 0 to f do
4 calculate closeness[i][j]
5 if (closeness[i][j]<temp)
6 m i; n j;
7 temp closeness[i][j];
8 endfor
9 endfor
10 merge microcode field(m,n);
11 f f - 1
12 calculate total microcode memory bits;
13 save the partition result;
14 endwhile;

5 Experiments

Our partitioner is written in the C programming language
and is linked to SYNTEST [22]. First, the algorithms are fed

to a transformation process[2] for optimizationx , and then

they are input to SYNTEST{ for scheduling and allocation.
Control synthesis is done by SYNTEST incrementally with
allocation. The �nal microcodes of each algorithm are then
fed to our partitioner for partitioning. The partitioner �nds
the best partition and then generates VHDL code for each
microcode memory. The VHDL descriptions are then fed to
COMPASS[23] for layout synthesis.
We use our partitioner for three ASPP design cases. The

�rst one was used as a benchmark during the development of
the partitioner. The second and the third ones are real de-
sign cases whose datapath synthesis was reported in another
paper [2].
We list the relative information of the three cases in Table

1. In this table, the third column lists the types and number
of computation nodes that each behavior has. The fourth
column lists the �nal datapath generated by SYNTEST. The
last three columns list the width, length and number of �elds
of the microcodes.
We illustrate the partitioning process for Case 1, 2 and 3

in Fig. 8. Each curve on the diagram represents the parti-
tion process in one case. One point on the curve corresponds
to one partition result. The point's X-coordinate indicates
the number of partitions. Its Y-coordinate indicates the to-
tal area in number of transistors.
In each curve, the partition process starts from the right-

most point, that is, the largest number in X-axis and �-
nally terminates at \1" on the X-axis which corresponds to
merging all the microcode �elds together. As our analy-

xTo get a minimum common datapath
{Or any other high level synthesis system

Algorithm Behavioral
Description

#2

#3

#1

DataPath Microcode
Fields

Case
Number

Case 1

Case 2

Case 3

DCT

(5-3order)

(radix-2)
FFT

IIR

Bandpass

Biquad
FFT

(radix-2)

Sobel

Hough

Robert

*13,+9,-6,/0

*6,+9,-5,/0

*4,+3,-3,/0

*9,+11,-5,/4

*3,+2,-2,/0

*11,+7,-2,/4

*1,+1,-1

*1,+1,-1

*1,+1,-1

1,+1,-1 4, + 5, - 4

* 3, + 5, - 2

* 2, + 5, - 4

*8, +4, -3

*4, +3, -3

*1,+1,-1

*1,+1,-1

LengthWidth

*2,+1,-1,/1

*2,+1,-1,/1

*2,+1,-1,/1

*2,+1,-1,/1

*2,+1,-1,/1

*2,+1,-1,/1

43

43

43

6

5

5

29

29

29

16

9

7

42

42

42

39

39

39

39

39

39

59

59

59

56

56

56

56

1056

56 10

5

20

5

17

*13, +16, -13

Table 1 : The Algorithms and Their Microcodes in Case 1,
2, 3

50000

100000

150000

200000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
ot

al
 A

re
a(

tr
an

si
st

or
s)

Number of Microcode Memory Modules

Total Microcode Memory Area vs. Number of Microcode Memory Modules

Case 1
Case 2
Case 3

Figure 8: Partitioning Process in Case 1, 2 and 3

sis predictsk , the best solution usually happens at a very
small number of partitions. A large number of partitions
will cause too many additional index �elds, which will for-
feit the savings brought by compaction in each microcode
memory module. We can easily �nd the best partitions in
the three cases. They are all much smaller in area com-
pared with the left-most point in each curve, respectively,
which represents the conventional microcode memory. We
summarize the results in Table 2��.
We also try to use our partitioner to optimize the mi-

crocode memory for each application algorithm in the three
cases separately. The results are summarized in Table 3. In
this experiment, the microcodes of each algorithm are ob-
tained by separately scheduling and binding each algorithm
according to each one's time constraints. We can see that
the saving by this method varies from algorithm to algo-
rithm; however, generally speaking, the results are not as
good as those in ASPP cases. We believe the reason for
this is there are not enough repetitive microcodes within a
single algorithm. In ASPP cases, not only may there exist
enough repetitive microcodes, but also there are more data-

kPlease refer to Equation 4
��The CPU time in the last column is obtained on SUN

SPARC-II with 52 MB memory.

Case 3

Case 2

Case 1

88802

Central
Microcode
Memory
(transistors)

Partitioned
Microcode
Memory
(transistors)

CPU
Time
(s)

181190 140062 6

68335 3

32067 25167 2

276

7

76

21.52%

23.05%

22.70%

Savings
Partitions
Number of

Table 2 : Summary of Experimental Results

#2

#3

#1

DCT

(5-3order)

(radix-2)
FFT

IIR

Bandpass

Biquad
FFT

(radix-2)

Sobel

Hough

Robert

Central
Microcode
Memory
(transistors)

Memory
(transistors)

Microcode
Partitioned

8093

6744

6744

33301

7284

8671

25052

18115

7284

37771

5202

32105

8093

6744

6744

33301

8671

6898

26555

4007

34374

6898

16418

20619

0%

0%

0%

0%

0%

17.29%

22.97%

8.99%

9.37%

5.30%

17.70%

5.30%

Microcode

Width Length

16

9

7

10

10

5

20

5

17

6

5

5

29

29

29

43

22

17

56

40

22

38

20

40

of
Number

1

1

1

2

1

2

2

4

2

9

3

1

Partitions
SavingsAlgorithm

Table 3 : Partitioning Results on Each Algorithm in Case
1, 2 and 3

path components and the width of microcode is bigger than
that in a single algorithm. All these factors contribute to
the better savings in ASPP cases. This result shows that
our partitioner is especially well suited for ASPP microcode
memory designs.

6 Conclusion and Future Work

In this paper, we propose a distributed microcode memory
model for ASPPs. Based on this model, we propose a hier-
archical partitioning algorithm which can maximally exploit
the repetitive control patterns in certain sections of the con-
ventional microcodes. This leads to a reduction in total
microcode memory size.
In the future, we will pursue the following aspects:

1. Simulate the two level control memory model in COM-
PASS to ensure that speed loss will not be a problem.

2. Continue to study to programmability issue with this
model, a preliminary result can be found in [24]

3. As our work is based on the assumption of repetitive
code in multiple behaviors, we will extend our work to
scheduling and allocation phases to create more repet-
itive control signals.

References

[1] P. Paulin, \DSP Design Tool Requirements for Nineties: An In-
dustrial Perspective", Sixth Intl. Workshop on High-Level Syn-
thesis, Laguna Niguel, CA, Nov. 1992.

[2] W. Zhao, C. Papachristou, \An Evolution Programming Ap-

proach on Multiple Behaviors for The Design of Application
Speci�c Programmable Processors", Technical Report, TR-CES-
95-06, Case Western Reserve University.

[3] G. Goossens, J. Rabaey J. Vandewalle, H. De Man, \An E�-
cient Microcode-compiler for Custom DSP-processors", Proc.
of IEEE/ACM ICCAD, pp.24-27, Nov, 1987.

[4] P. Marwedel, \A New Synthesis Algorithm for the MIMOLA
Software System", Proc. of 23rd Design Automation Conference,
pp. 271-277, 1986

[5] P.Marwedel, \A Retargetable Compiler for a High-Level Micro-
programming Languag e", Proc. of 17th Annual Microprogram-
ming Workshop(MICRO-17), pp. 267-276, 1984.

[6] C. Liem, T. May, P. Paulin, \Register Assignment through Re-
source Classi�cation for ASIP Microcode Generation", Proc. of
IEEE/ACM ICCAD, pp.397-402, Nov, 1994.

[7] S. Lin, C. Hwang, Y. Hsu, \E�cient Microcode Arrangement
and Controller Synthesis for App lication Speci�c Intergrated

Circuits", Proc. of IEEE/ACM ICCAD, pp.38-41, Nov, 1991.

[8] C. Papachristou and A. Pandya, \A Design Scheme for PLA-

based Control Tables with Reduced Area and Time-Delay Cost",
IEEE Trans. on Computer-Aided Design of Integrated Circuits &
Systems, Vol. CAD-8, No. 5, pp. 453-472, May 1990.

[9] C. Papachristou and J. Reuter, \Microassembly and Area Re-
duction Techniques for PLA Microcode", 17th IEEE-ACM Mi-
croprogramming Workshop, pp. 86-94, November 1984.

[10] G. Tarroux, B. Rouzeyre, G. Sagnes, \Optimization of Micro-
controllers by Partitioning", Proc. of IEEE/ACM ICCAD,
pp368-373, Nov. 1991.

[11] R. Puri, J. Gu, \An E�cient Algorithm for Microcode Length

Minimization" , Proc. of 29th Design Automation Conference,
pp.651-656, 1992.

[12] R. Puri, J. Gu, \Microword Length Minimization in Micro-
programmed Controller Synthesis", IEEE Trans. on Computer-
aided Design of Integrated Circuits and System, Vol. 12, No.10,
pp.1449-1457, October 1993.

[13] D. Gajski, N. Dutt, A. Wu, S. Lin, \High-Level Synthesis: in-
troduction to chip and system design", Kluwer Academic Pub-
lishers, 1992.

[14] M. McFarland, \Using Bottom-Up Design Techniques in the
synthesis of Digital Hardware from Abstract Behavioral De-

scriptions", Proc. of 23rd Design Automation Conference, pp.
474-480, 1986.

[15] M. McFarland, T. Kowalski, \Incorporating Bottom-Up Design
into Hardware Synthesis", IEEE Trans. on Computer-aided De-
sign of Integrated Circuits and System, Vol. 9, No.9, pp.474-480,
September 1990.

[16] E. Lagnese, D. Thomas, \Architectural Partitioning for Sys-
tem Level Synthesis of Integrated Circuits", IEEE Trans. on
Computer-aided Design of Integrated Circuits and System, Vol.
10, No.7, pp.847-860, July 1991.

[17] E. Lagnese, D. Thomas, \Architectural Partitioning for System
Level Design", Proc. of 26rd Design Automation Conference, pp.
62-67, 1986.

[18] D. Patterson, J. Hennessy, \Computer Organization and De-
sign: the hardware/software interface", MorganKaufmann Pub-
lishers, Inc., 1994.

[19] N. Tredennick, \Microprocessor Logic Design", Murray Printing
Company, 1987.

[20] C. Mead, L. Conway, \Introduction to VLSI systems", Addison-
Wesley Publishing Company, 1980.

[21] A. Salisbury, \Microprogrammable Computer Architectures",
Elsevier North-Holland, Inc., 1977.

[22] H. Harmanani, C. Papachristou, S. Chiu and M. Nourani, \SYN-
TEST : An Environment for System-Level Design for Test",
Proc. European Design Automation Conference (EURO-DAC),
Sept. 1992.

[23] COMPASS Design Automation, Inc., \VHDL for the ASIC Syn-
thesizer User Guide", COMPASS Design Automation, Inc., Aug.
1994.

[24] W. Zhao, C. Papachristou, \Architectural Partitioning of Con-

trol Memory for Application Speci�c Programmable Proces-

sors", Technical Report, TR-CES-95, Case Western Reserve Uni-

versity.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

