
High-Density Reachability Analysis �

Kavita Ravi Fabio Somenzi

Dept. of Electrical and Computer Engineering

University of Colorado at Boulder

Abstract
We address the problem of reachability analysis for large �nite
state systems. Symbolic techniques have revolutionized reacha-
bility analysis but still have limitations in traversing large sys-
tems. We present techniques to improve the symbolic breadth-
�rst traversal and compute a lower bound on the reachable states.
We identify the problem as one of density during traversal and
our techniques seek to improve the same. Our results show a
marked improvement on the existing breadth-�rst traversal meth-
ods.

1 Introduction
Coudert et al. [1] have shown that breadth-�rst traversal

is more amenable to symbolic treatment than depth-�rst

traversal, and hence can deal with sequential machines with

many more states. Although quite successful, the symbolic

methods developed so far (see, for instance, [2, 3, 4]) cannot

complete the reachability analysis of many large �nite state

machines, because they require too much memory, or are

computationally intensive.

Approximate traversal [5, 6] addresses this problem by

computing a superset of the reachable states, thus enabling

conservative veri�cation. In this paper, we propose an al-

ternative approach that can produce either certi�ed exact

reachability information, or a large sample of the entire

reachable state set, thus enabling partial veri�cation. There-

fore, one can compute both a lower bound and an upper

bound to the number of reachable states, and hence obtain

a better characterization of the state space of a large se-

quential circuit.

Our approach targets at two important problems in the

traversal of large sequential machines: the memory resources

available for traversal and e�ciency of traversal using sym-

bolic techniques. Binary Decision Diagrams(BDDs) are ex-

tremely useful in representing characteristic functions of var-

ious sets in these symbolic algorithms. Since the e�ciency

of most BDD operations is dependent on the size of the

BDDs, it is advantageous to keep their sizes(in terms of

number of nodes) small. We claim that this advantage can

be characterized as a density measure of BDDs, where den-

sity is de�ned as the ratio of minterms to nodes. We have,

therefore, combined several techniques aimed at increasing

density and present a reachability analysis algorithm that

mixes breadth-�rst traversal and depth-�rst traversal.

The advantages of this mixed approach are two-fold;

The mixed approach will, typically, reach more states with

smaller memory resources as it is not constrained by a �xed

sequence of states as in the breadth-�rst search. Even when

the number of states are comparable, the mixed approach

ventures farther away from the initial states, thereby pro-

ducing a more uniform sampling of the reachable set. This

helps �nd more errors in designs (subtle errors often require

rather long sequences of events to be uncovered), and makes

the results of partial veri�cation more reliable in case of suc-

cess.

Our combination of breadth-�rst and depth-�rst searches

proceeds in breadth-�rst mode as long as the BDDs used in

�This work was supported in part by NSF/DARPA grant MIP-

9115432 and SRC contract 93-DJ-560.

image computation are small. When they become too large,

a small, dense subset is retained and used to proceed with

traversal. Once we reach a stage where no new states are

added we take the image of the entire reached set, which

may be smaller towards the end, thus making this compu-

tation easier. This �nal computation is indeed critical from

both the CPU time and the memory standpoint; hence, the

algorithm may not be able to complete it, and return only

a subset of the reachable states.

Previous attempts to mixed breadth-�rst/ depth-�rst

traversal have focused on explicit search techniques [7], that

are limited in the number of states they can explore, and

on the combination of breadth-�rst traversal with geomet-

ric chaining [8]. Our approach is therefore the �rst fully

general, symbolic solution to the problem. In the following

section, we discuss the preliminaries. Section 3 contains the

mixed breadth-�rst depth-�rst algorithm and techniques for

subsetting. We report the results in Section 4.

2 Preliminaries
A Finite State Machine is de�ned as a 6-tuple hI;O;S;�;�;S0

i,

where I is the input alphabet, O is the output alphabet, S

is the (�nite, non-empty) set of states, � : S � I ! S is the

next state function, � : S � I ! O is the output function,

and S
0
� S is the set of initial (reset) states.

Binary Decision Diagrams (BDDs) [9, 10] are directly

acyclic graphs (DAGs) representing switching functions. Re-

duced Ordered BDDs are BDDs with the same ordering of

variables appearing in di�erent paths and are canonical rep-

resentations of logic functions. Each internal node of a BDD

is labeled with a variable v, and has two children, labeled T

and E. The function f at any node, is evaluated as:

f = v � fT + v
0

� fE :

BDDs have proved to be very e�cient data structures and

are widely used in traversal applications.

The generalized cofactor, �rst proposed by Coudert et

al [1], is an operator widely used in image computation.

The generalized cofactor of a function f with respect to a

function g is de�ned as:

f # g = f(�g(x));

where �g(x) is an apppropriate mapping of each minterm in

the o�set of g(x) to a minterm in the on-set of g(x).

Exact Traversal: Symbolic FSM traversal has been

based so far on a breadth-�rst search (BFS) of the set of

reachable states from a given set of initial states. At each

iteration, the set of states, reachable from a given set (From)

in one time-step, is computed. The set of new states, from

this computation, are added to the reachable set (Reached)

using the next state function. The algorithm terminates

when the cumulative reached set attains a �xed point. All

sets of states are represented as characteristic functions and

BDDs are used to manipulate these characteristic functions.

Image Computation: We use the transition function

method with the input splitting approach for image com-

putation. The image is computed by �rst constraining �

with the set of states at each iteration (� # From), and

then computing the range of the constrained �. There are

two approaches to this image computation: based on input

splitting and output splitting respectively. The e�ciency

of the transition function method lies in partitioning the

components based on disjoint support and caching identical

subproblems.

3 Improving Density
The main problem with symbolic BFS traversal is that it

runs outs of memory when the size of BDDs representing

the characteristic functions become too large. It has also

been observed experimentally that in many cases the BDDs

at completion are smaller than the intermediate ones. These

observations suggest that the problem is due to the low den-

sity of the BDDs during traversal.

The sparse BDDs may represent di�erent functions of

the symbolic FSM traversal, one of which is Reached . The

size of the Reached BDD grows as new states are added to

it in each iteration. The BDD node size of Reached during

traversal may show two di�erent trends: Either it grows

large and remains large or the intermediate size may be large

but eventually the large number of minterms result in a

smaller BDD. If the set of new states added at each iteration

to Reached form a set of scattered minterms, the size of

the BDD may explode. This problem may be especially

alleviated by increasing the density of BDDs.

A second source of memory problems is image computa-

tion, which is carried out by computing the image of the con-

strained � (Image(� # From)). We observed that, in many

circuits, as BFS traversal progressed and the size of From in-

creased, the constrained � was several orders of magnitude

larger than the original �. The transition relation su�ers

from a similar inconvenience. A third set of sparse BDDs

are the partial results of image computation.

One method of increasing the density of a given set of

BDDs is to reorder the variables. Periodic reordering of the

Reached BDD and dynamic reordering [11] during image

computation, keeps the partial results small and increases

density by lowering size. Our approach is to extract a dense

subset of the set of states manipulated at a given iteration,

such that the BDD for the subset is small. We target at

exact traversal of large machines, failing which, we establish

a lower bound. In this section, we discuss several techniques

to improve density during traversal.

3.1 Combining Breadth-First and Depth-
First Search

The modi�ed BFS algorithm is shown in Figure 1. The ma-

chine is traversed with BFS traversal until the size of From

exceeds a certain threshold; then, a dense subset is extracted

and this subset of From is used to proceed with traversal.

When no new states are produced, the sub-traversal may

have reached the actual �xed point (the one that would be

obtained during pure BFS traversal) or a dead-end , which

arises from having discarded some states during the process

of subsetting. Termination is checked by computing the im-

age of Reached , which recovers those states that may have

been discarded and not subsequently reached again.

A dense subset of From will have a positive impact on

the size of the constrained � as well as the size of Reached .

Normally, adding a small BDD to that of Reached will not

SubsettingTraverse (�; S0) f
Reached = From = S

0;
subsetting traversal = 0;
while (true) f

To = Img (�,From);
New = To � Reached;
if (New = 0) f

if (subsetting traversal = 1)
To = Img (�, (Reached[New));

if (To = Reached) return Reached;
else New = To � Reached;

g
From = New ;
if (size(From) > threshold) f

From = subset (From);
subsetting traversal = 1;

g
Reached = Reached [From;

g
g

Figure 1: Breadth-First Traversal with Subsetting.

1

2 3 4

5 6

initial
state

Figure 2: Example FSM.

increase the size of Reached as much as adding one large

BDD. The advantage of subsetting lies in keeping the overall

size and memory occupation low at all stages of the traver-

sal. The threshold is chosen heuristically, trying to achieve

fast image computation (by lowering the size of � # From)

and small intermediate results, while not excessively increas-

ing the number of iterations.

An example of traversal reaching a dead-end without

reaching a �xed point is shown in Figure 2. At the second

iteration of BFS traversal, From is f2; 5g. Suppose sub-

setting reduces it to f2g. Three more iterations lead to a

dead-end where Reached = f1; 2; 3; 4g. Computing the im-

age of Reached yields f1; 2; 3; 4; 5g. Traversal is therefore

resumed with From = f5g, and proceeds until all six states

are reached. Notice subsetting sometimes leads to overesti-

mating the distance of a state from the reset states. In the

example of Figure 2, State 6 is reached after �ve iterations,

whereas, in pure BFS traversal, two iterations would su�ce.

3.2 Computing Dense Subsets of BDDs
The problem of subsetting can be posed in the following way:

Given a BDD for f with n nodes and a threshold k < n, �nd

g � f such that the BDD for g hasm � k nodes and that the

number of minterms of g is maximum. If f has p minterms,

there are 2p choices for g. We therefore �nd it convenient

to restrict ourselves to this modi�ed version of the problem:

Subsetting Problem: Given a BDD F for f with n nodes

and a threshold k < n, �nd a BDD G with m � k nodes,

such that:

1. G is obtained from F by eliminating some nodes, replac-

ing all pointers to the eliminated nodes with pointers to

the constant 0, and reducing the resulting graph.

2. The number of paths from the root of G to the constant

1 is maximum. The paths must be counted by assuming

that each edge is indeed a multi-edge with multiplicity

2d, where d is the di�erence between the indices of the

F

0

1

2 2

3

4 4

5

28

20

812

20

15 5

10

A

B

C D

E

H J

L

1 0

Figure 3: Shortcoming of Using the Number of Paths

Through a Node for Subsetting.

two nodes connected by the edge. The index of the con-

stant 1 is the largest variable index plus one.

The number of paths to the constant 1 in G is, according

to the adopted de�nition, the number of minterms of the

function g represented by G.

It is possible to compute in time linear in the size of F

the number of paths from the root of F to the constant 1 that

go through each node v of F . The number of paths through

v gives the reduction in the number of minterms when v

is eliminated (replacing all pointers to it by the constant

0). Hence, the numbers of paths through each node allow

one to solve exactly the subsetting problem in linear time,

for the case k = n � 1. However, for larger k, this would

be suboptimal. Recomputing the number of paths through

each node may result in better solutions but will still be

expensive and suboptimal. Besides, this method may result

in an unconnected graph.

Example: Consider the BDD of Figure 3, where each

of the eight internal nodes is annotated with the number of

paths from the root of F to the constant 1 that go through

it. The best choice if we want a 7-node G is to remove node

J . However, if we want a 3-node G and we discard the nodes

with the fewest paths through them, J , D, L, C, and H, the

resulting G, after reduction, is the constant 0. On the other

hand, discarding D, E, H, J , and L gives, after reduction,

a G with three nodes and eight minterms.

The two methods presented in the sequel try to address

this problem in two di�erent ways.

3.2.1 Heavy Branch Subsetting

The Heavy Branch method is based on the simple observa-

tion that a subset of a given BDD can be created by setting

one cofactor of a node to the constant 0 [12] and retaining

the other. This method uses the minterm and node count

for each node in the BDD to guide the choice of the sub-

set. The above two statistics for each node are computed

and stored in a table as described in Figure 4. This method

completes in 3 passes on the BDD.

Heavy Branch (From, threshold) f
minterm count(v) = count minterm (From);
node count(v) = di�erential node count (From,

minterm count(v));
subset size = bdd size (From);
subset = build bdd (From, subset size, threshold,

minterm count(v), node count(v));
return (subset);

g

Figure 4: Heavy Branch Subsetting Algorithm.

1. In the �rst step, the count minterm procedure counts

the number of minterms for each node, v, in the BDD

and stores it in minterm count(v).

2. The di�erential node count procedure computes two mea-

sures for each node, v, in the BDD. One measure is the

size of the DAG rooted at this node. The procedure

�rst visits the branch with larger number of minterms

(heavier child). By taking the heavier branch �rst, it is

also possible to compute the di�erential node count of

the lighter child of the node. The di�erential node count

of the lighter child is de�ned as the number of nodes be-

longing exclusively to the lighter child i.e., a count that

does not include nodes that are shared with the heav-

ier child. Thus, each node, v, is labeled with its node

count (size of BDD rooted at this node) and the di�eren-

tial node count of its lighter child, and this information

is stored in node count(v).

3. The next step of this procedure, starting at the root

node, creates a subset of the given BDD by discarding

(setting to the constant 0) the lighter child at each node.

The size of the subset at each node v, created by elimi-

nating the lighter child, is equal to the sum of the num-

ber of nodes on the path taken from the root node to v,

and the node count of v less the di�erential node count of

the discarded child. The process of discarding the lighter

child continues until the size of the subset drops below

the given threshold.

The advantage of this method is that it is fast and is

linear in the size of the BDD being subset. In keeping the

child with larger minterms, the subset of minterms retained

is maximized. Pruning from the root node keeps a precise

count of the size of the subset being created. The disadvan-

tage of this method lies in the creation of a string of nodes

at the top of the BDD, each of which has one child set to the

constant 0. These nodes may cause a loss of recombination

that may be acquired at no cost. Another drawback of this

method is that it is dependent on the variable ordering in

the BDD. The lighter branches from the top will always be

eliminated, irrespective of the order of the variables present

in the BDD. However, this dependence is o�set to some ex-

tent by reordering.

Example: Consider the BDD in the Figure 5(a). The

nodes of this graph, F, are annotated with the minterm

count. Starting at the root node, A, the lighter children

are eliminated until we reach the given threshold. If the

threshold is 3, the resulting graph contains the nodes, A, B,

and C, where the lighter children, D and E, are discarded.

The resulting subset has 8 minterms vs. the 28 of F.

3.2.2 Short Paths Subsetting

The Short Paths method extracts the shortest paths be-

tween the root node and the constant 1(ONE). In a BDD,

the shortest paths to ONE represent the largest sets of

minterms, while the longest paths represent the smallest sets

of minterms. Therefore, it is favorable to keep the shortest

paths while creating a subset.

Consider a node v in the BDD. We de�ne the path length

of this node as the sum of its shortest distances from the root

and to ONE. The distance between two nodes in a BDD is

F

0

1

2 2

3

4 4

5

28

40

1648

32

48 16

32

A

B

C D

E

H J

L

1 0

F

0

1

2 2

3

4 4

5

3

3

43

4

4 5

5

A

B

C D

E

H J

L

1 0
(a) (b)

Figure 5: (a) Heavy Branch Subsetting (b) Short Paths Sub-

setting.

short paths subsetting (From, threshold) f
root dist(v) = �nd shortest root dist (From);
(ONE dist(v), path length(v)) =

�nd shortest ONE dist (From, root dist(v));
path length array(n) =
�nd shortest path lengths(root dist(v),

ONE dist(v));
max path = �nd max path (path length array,

threshold);
subset = build subset (From, path length(v),

max path, threshold);
return (subset);

g

Figure 6: Short Paths Subsetting Algorithm.

de�ned as the number of edges between them. If vpath length

denotes the path length of v, then any node, w, lying on the

shortest path between the root node and ONE through v,

has a wpath length that is less than or equal to vpath length.

Thus, keeping the nodes with the shortest path lengths is

equivalent to retaining the shortest paths in the BDD be-

tween the root node and ONE. The method involves choos-

ing a maximum allowable path length and building a sub-

graph with nodes that have path lengths less than or equal

to the maximum allowable. Connectedness of the subgraph

is ensured, since any node, v, with path length, vpath length,

has at least one child with path length less than or equal

to vpath length, which provides a path to ONE. The Short

Paths method completes in 3 passes of the BDD.

1. The �rst step is to �nd the shortest distance of each node

from the root. This is requires in a breadth-�rst search

of the BDD. Procedure �nd shortest root dist stores the

computed distance for each node in root dist(v).

2. In the next step, �nd shortest ONE dist computes the

shortest distance of each node from ONE in a depth-

�rst search of the BDD. Once the shortest distances from

ONE are recorded, the path length of each node can also

be computed. The number of nodes labeled with each

unique path length are stored in path length array ; if n is

the number of variables, at most n di�erent path lengths

are possible.

3. The third step involves computing max path, the max-

imum path length such that the number of nodes with

path lengths less than or equal to max path sum up to

the given threshold. The threshold may be such that

not all nodes labeled with max path are required.

4. The procedure, build subset , generates a subset of From

using the path length information of each node. This pro-

cedure discards all nodes with path length greater than

max path and retains as many complete paths as allowed

be the threshold criterion. Choosing only a fraction of

nodes of max path may create an incomplete path i.e.,

retain nodes on a path that do not connect the root to

ONE. In this case, the shortest path from this node to

either ONE or any other node with path length less than

or equal to max path is added to the subset. Some ad-

ditional minterms are gained by adding this path with

little overhead in terms of nodes (at most (n� 1) nodes

beyond the threshold are to the added subset).

This method is designed to increase the density of sub-

sets. Since paths of equal length contribute to the same

number of minterms, and there is no relative advantage in

choosing one over the other, this method performs best when

the BDD has paths of varied lengths. However, since a sub-

set of paths in the BDD are extracted, these paths may be

disjoint. Consequently, a chosen set of paths may have very

little sharing and this will have a negative impact on the

density of the subset.

Example: Consider the example shown in Figure 5(b).

The nodes of this graph F are annotated with path lengths.

The nodes, A, B, C, are labeled with path length 3, since

the shortest path to ONE through them is A-B-C. Nodes,

D, E, F, are labeled with path length 4, where the shortest

path they lie on is A-D-E-H. Nodes J and L are labeled 5 as

they lie on the path A-B-E-J-L, which is 5 nodes long. If a

3-node graph is required, then nodes A, B, C are chosen to

form the subset since they have the shortest path lengths.

Caching: Caching computed results, during image com-

putation, can substantially improve the speed of traversal.

Due to recombination in BDDs, the same subproblems could

occur when taking di�erent paths in the BDD. The input

splitting approach bene�ts from this recombination espe-

cially as the subproblems get small.

Dynamic Reordering during Image Computation:

Reordering of variables increases the density of BDDs in

traversal by reducing their size and the speedup due to the

smaller BDDs often o�sets the time spent reordering. It has

also been observed experimentally that the best order for

� is often not the best one for traversal. Periodic reorder-

ing of variables during traversal is required to keep the size

small at all times. Sometimes, traversal runs out of mem-

ory during image computation since the partial results are

large. The incorporation of dynamic reordering [11], during

image computation, has shown dramatic improvements in

being able to overcome the size increase that occurs when

traversing some circuits.

4 Experimental Results
In this section, we present experimental results on the im-

proved techniques for traversal. we have integrated our tech-

niques into the symbolic FSM traversal package, verif [4].

All experiments were conducted on a 275MHz DEC Alpha

workstation. We set a time limit of 22000 CPU seconds on

the experiments and a memory limit of 440M.

Table 1 contains results for some of the ISCAS89 bench-

mark circuits and a data link controller circuit, controller.

The third row of this table shows results for the s5378 bench-

mark optimized with VERITAS [13]. The optimization

was done by removing redundant latches using approximate

Example Statistics BFS Dyn. Cache & Subsetting
Reord. Dyn. Heavy Short

Branch Paths
controller Time Mem. Out > 22000s 2593s
(172 latches) Reached states 2.85e+45 2.85e+45 2.85e+45

Reached nodes 2503632 97015 40175
iterations 1 1 6998

s5378 Time Mem. Out >22000s >22000s >22000s >22000s
(164 latches) Reached states 1.27e+09 1.73e+12 1.73e+12 3.40e+12 1.13e+15

Reached nodes 3177637 14240 8014 56853 38066
iterations 2 3 3 115 13

s5378 opt Time Mem. Out >22000s >22000s >22000s >22000s
(121 latches) Reached states 4.57e+07 1.67e+14 1.35e+16 1.66e+17 1.08e+17

Reached nodes 873004 10672 39053 13319 23686
iterations 2 4 12 147 56

s9234 Time >22000s >22000s >22000s
(228 latches) Reached states 7.82e+08 2.06e+09 1.32e+12

Reached nodes 86257 2006 1944
iterations 392 454 1284

s1423 Time Mem. Out Mem. Out Mem. Out >22000s >22000s
(74 latches) Reached states 4.8e+08 7.99e+09 4.8e+08 5.56e+11 1.34e+11

Reached nodes 792380 590812 134765 209806 109137
iterations 9 11 10 232 353

Table 1: Experimental Results of Subsetting Traversal.

traversal which reduced the number of latches to 121. These

circuits are reasonably large and have proved intractable us-

ing BFS traversal. Column 2 shows statistics of the breadth-

�rst traversal. Most circuits ran out of memory during im-

age computation. Column 3 reports results of BFS traver-

sal with dynamic reordering. Column 4 reports results on

the incorporation of the cache during image computation.

Columns 5 and 6 report traversal results with the subset-

ting techniques.

As indicated by the table, the subsetting techniques are

very e�ective and produce a larger Reached set than any

other column. In the case of the controller example and

s9234, the From BDDs are very small and subsetting was

not required. As reported in [13], the upper bound for s5378

opt and s5378 is 2.95e+17. With subsetting, in the case of

s5378 opt, we have a Reached set that has more than half

the number of states in the upper bound. We ran the s1423

example for longer than the time limit speci�ed on the above

results and obtained a reached set of size 1.67e+14 while

the upper bound reported in [13] is 6.25e+18. In general,

the subsetting method of Short Paths produced very dense

subsets and the ratio of the densities of the subset BDD to

the original BDD was sometimes as high as 5.35. The table

reects the impact of these high densities on the reduction of

the number of iterations to reach the same number of states.

5 Conclusions and Future Work
In this paper, we have presented techniques that increase

the density of traversal. These results can be viewed as a

practical improvement over simulation in terms of number

of states sampled per CPU second. The subsetting tech-

niques have also proved very e�ective in furthering traversal

and establishing a lower bound of the reachable set. Com-

pared to the symbolic BFS traversal, our method is well

behaved, in terms of memory occupation and does better

in terms of the number of reachable states. In some cases,

we can combine our results with approximate traversal and

prove tight bounds on the number of reachable states of

the machine. The subsetting techniques can be extended

to any �xed point computation problem that behaves like

FSM traversal. In the future, we propose to study the ap-

plications of these techniques to approximate traversal and

model checking.

Acknowledgemnts We would like to thank Carl Pixley

and Bernard Plessier for providing us with examples.

References
[1] O. Coudert, C. Berthet, and J. C. Madre, \Veri�cation of se-

quential machines using boolean functional vectors," in Proc.
IFIP International Workshop on Applied Formal Methods for

Correct VLSI Design (L. Claesen, ed.), (Leuven, Belgium),
pp. 111{128, Nov. 1989.

[2] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill, \Symbolic model checking for sequential circuit veri�ca-
tion," IEEE Transactions on Computer-Aided Design, vol. 13,
pp. 401{424, Apr. 1994.

[3] H. Cho, G. D. Hachtel, S.-W. Jeong, B. Plessier, E. Schwarz,
and F. Somenzi, \ATPG aspects of FSM veri�cation," in Proc.
ICCAD , pp. 134{137, Nov. 1990.

[4] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi, \Vari-
able ordering and selection for FSM traversal," in Proc. ICCAD
, (Santa Clara, CA), pp. 476{479, Nov. 1991.

[5] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi,
\Algorithms for approximate FSM traversal based on state space
decomposition," in Proc. DAC, (Dallas, TX), pp. 25{30, June
1993.

[6] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi,
\A structural approach to state space decomposition for approx-
imate reachability analysis," in Proc. ICCD , (Cambridge, MA),
pp. 236{239, Oct. 1994.

[7] D. L. Dill, A. J. Drexler, A. J. Hu, and C. Han Yang, \Pro-
tocol veri�cation as a hardware design aid," in Proc. ICCD ,
(Cambridge, MA), pp. 522{525, Oct. 1992.

[8] A. Ghosh and S. Devadas, \A mixed depth-�rst/breadth-�rst
technique for sequential logic veri�cation," in IWLS , (MCNC,
Research Triangle Park, NC), May 1991.

[9] R. E. Bryant, \Graph-based algorithms for boolean function
manipulation," IEEE Transactions on Computers, vol. C-35,
pp. 677{691, Aug. 1986.

[10] K. S. Brace, R. L. Rudell, and R. E. Bryant, \E�cient imple-
mentation of a BDD package," in Proc. DAC , (Orlando, FL),
pp. 40{45, June 1990.

[11] R. Rudell, \Dynamic variable ordering for ordered binary deci-
sion diagrams," in Proc. ICCAD , (Santa Clara, CA), pp. 42{47,
Nov. 1993.

[12] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, \Func-
tional partitioning for veri�cation and related problems," in
Brown/MIT VLSI Conference, Mar. 1992.

[13] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, K. Ravi, and
F. Somenzi, \Approximate �nite state machine traversal: Ex-
tensions and new results." Presented at IWLS95, Lake Tahoe,
CA., May 1995.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

