
Pattern Generation for a Deterministic BIST Scheme

Sybille Hellebrand*, Birgit Reeb*, Steffen Tarnick**, Hans-Joachim Wunderlich*
* University of Siegen, Germany

** Max-Planck Society, University of Potsdam, Germany

Abstract

Recently a deterministic built-in self-test scheme has
been presented based on reseeding of multiple-polynomial
linear feedback shift registers. This scheme encodes de-
terministic test sets at distinctly lower costs than previ-
ously known approaches. In this paper it is shown how
this scheme can be supported during test pattern genera-
tion. The presented ATPG algorithm generates test sets
which can be encoded very efficiently. Experiments show
that the area required for synthesizing a BIST scheme that
encodes these patterns is significantly less than the area
needed for storing a compact test set. Furthermore, it is
demonstrated that the proposed approach of combining
ATPG and BIST synthesis leads to a considerably reduced
hardware overhead compared to encoding a convention-
ally generated test set.

1. Introduction

The efficiency of a built-in self-test (BIST) implemen-
tation is characterized by the test length and the hardware
overhead required to achieve complete or sufficiently high
fault coverage. Various BIST architectures based on
pseudo-exhaustive, random, weighted random and deter-
ministic patterns offering different trade-offs between the
two parameters have been developed in the past [1, 2, 4, 5,
8, 9, 14, 25, 26, 27].

This paper targets an efficient test-per-scan architecture
combining pseudo-random and deterministic BIST. Such a
scheme is very attractive because of the moderate hard-
ware overhead and the simplicity of the implementation.
The LFSR required for test pattern generation can be syn-
thesized automatically together with the circuit structure,
and if the synthesized circuit is completely testable by an
acceptable number of patterns, a “one-pass” synthesis is

 Part of the work has been supported by the DFG grant „Test und
Synthese schneller eingebetteter Systeme“ and by the ESPRIT Project
7107 ARCHIMEDES.

sufficient. If the circuit contains random pattern resistant
faults the pseudo-random BIST architecture can easily be
extended to a mixed mode scheme which combines a
pseudo-random sequence of limited length and determinis-
tic patterns for the hard to detect faults [15, 18, 23]. The
hardware overhead is then determined by the storage re-
quirements for the deterministic patterns.

In [15] a mixed mode test-per-scan architecture based
on multiple-polynomial LFSRs has been presented which
allows a very efficient encoding of the deterministic test
vectors. This approach exploits the fact that in many cases
the deterministic patterns are not fully specified: a test
pattern with s specified bits can be encoded into an s bit
word with a very high probability of success. Further opti-
mizations are possible for complete test sets [16, 23]. The
actual storage capacity for the deterministic test set, how-
ever, strongly depends on the properties of the ATPG al-
gorithm used to generate the patterns. With s(t) denoting
the number of specified bits in a test pattern t the storage
amount for a test set T = {t1, …, tN} is determined by the
maximum number of specified bits smax = max {s(t) | t ∈
T} and the distribution of the numbers s(t1), …, s(tN).

Automatic test pattern generation has been a major
concern of research for many years, and powerful and ef-
ficient algorithms have been developed [10, 11, 21, 24].
To support deterministic and mixed mode BIST a number
of procedures targeting minimal test sets have been pro-
posed [13, 17, 19, 20, 22]. Although some of these proce-
dures try to maximize the number of unspecified bits in
intermediate steps, the number and distribution of speci-
fied bits in the final test set has not been particularly ad-
dressed. In this paper a procedure for ATPG is proposed
which puts additional focus on generating an “efficiently
encodable” test set. To minimize the storage amount for
the final encoded test set the algorithm interactively com-
bines the ATPG and the encoding process.

Before the proposed ATPG approach is described in
more detail in Section 3, the underlying BIST architecture
will be sketched briefly in Section 2. Experimental results
will be discussed in Section 4.



2. The Target BIST Scheme

A “test-per-scan” architecture is assumed where the
scan chain includes m flip-flops corresponding to the
width of a test pattern. The BIST scheme is based on mul-
tiple-polynomial LFSRs (see Figure 1) [15].

The LFSR can operate to a limited number of different
feedback polynomials, and is used for both the generation
of pseudo-random patterns and the decompression of en-
coded deterministic patterns. A deterministic pattern is en-
coded as a polynomial identifier (abbreviated as “id” in
Figure 1) and a seed for the respective polynomial. During
test mode the pattern can be reproduced by establishing
the feedback links corresponding to the polynomial identi-
fier, loading the seed into the LFSR and performing m au-
tonomous transitions of the LFSR. After the m-th transi-
tion the scan chain contains the desired pattern which is
then applied to the CUT.

.

scan chain output data
evaluation

feedback

……

id seed

polynomial
selection

LFSR

CUT

Figure 1: BIST scheme based on a multiple-polynomial LFSR.

To calculate the encoding a system of linear equations
has to be solved. For a fixed feedback polynomial
h(X) = Xk + hk-1·Xk-1 + … + h0   the LFSR produces an
output sequence (ai)i≥0 satisfying the feedback equations
ai  =ai-k·h0 + ai-k+1·h1 + … + ai-1·hk-1 for all i ≥ k. The
LFSR-sequence is compatible with a desired test pattern
t = (t1, …, tm) if for all specified bits ai = ti holds. Recur-
sively applying the feedback equation provides a system
of linear equations in the seed variables a0, …, ak-1. If no
solution can be found for the given polynomial the next
available polynomial is tried, and in [15] it has been
shown that already for 16 polynomials there is a very high
probability of success that a deterministic pattern with s
specified bits can be encoded into an s-bit seed. The iden-
tifier for the required feedback polynomial can be omitted
if the seeds for specific polynomials are grouped together
and a “next-bit” is used to indicate whether the feedback
polynomial has to be changed [16].

Hence, for a test set T =  {t1, …, tN} with maximum
number of specified bits smax =  max {s(t) | t ∈  T} the
seeds and the next bits require (smax + 1) · N bits of stor-

age. If P polynomials are used additional smax · P bits are
required for storing the feedback taps, such that the overall
storage requirements are S(T) :=  (N + P)smax +  N bits.
Minimizing S(T) requires both minimizing the maximal
number of carebits smax and the number of patterns N.

The number of patterns which have to be encoded and
the number of feedback polynomials can be reduced sig-
nificantly if “concatenation” of test patterns as described
in [16] is supported. This technique makes use of the fact
that the length of an encoded test pattern is independent of
the length of the original test pattern. Thus, if a subset T‘⊂
T of test patterns is concatenated to one long test pattern
tcon(T‘) whose number of care bits is not exceeding smax,
then encoding the pattern tcon(T‘) requires the same num-
ber of bits as each of the original patterns. Furthermore, if
T‘ consists of M patterns t1, …, tM, then any permutation
of these patterns can be used to build the concatenated
pattern tcon(T‘). Since it is sufficient to find an encoding
for one of the M! possible patterns representing T‘, the
probability to find an encoding for T‘ as a seed of a spe-
cific polynomial is increased or, equivalently, a high prob-
ability of successful encoding can be guaranteed with a re-
duced number of polynomials. Figure 2 illustrates this
with the help of an example.

1 1 1 0

T = {t1, t2, t3}, m = 5, smax = 4, h(X) = X4 + X3 +1

t1 = (x, x, 1, 1, x), 

t2 = (x, 1, x, x, 0),

t3 = (1, 0, x, 0, 1)

T' = {t1, t2}

1st possibility to concatenate t1 and t2:

tcon(T') = (x, x, 1, 1, x, x, 1, x, x, 0)

Equations: a0 = 0, a3 = 1,

a6 = a0 + a1 + a2 + a3 =1

a7 = a0 + a1 + a2 = 1

⇒ no solution

a1 = 1, a2 = 1,

a5 = a0 + a1 + a3 = 0

a8 = a1 + a2 + a3 = 1

⇒ a3 =1, a0 = 0

2nd possibility to concatenate t1 and t2:

tcon(T') = (x, 1, x, x, 0, x, x, 1, 1, x)

Equations:

Sequence generated by the seed (1, 1, 1, 0):

t2' t1'

tseq = (1, 1, 0, 1, 0, 1, 1, 1, 1, 0)

Figure 2: Concatenation of test patterns.



If the patterns of the test set T in Figure 2 are encoded
separately, three seeds for the polynomial h(X) have to be
stored. If concatenation is used, two seeds are sufficient:
one for T‘ = {t1, t2} and one for T“ = {t3}.

To implement a test set grouped into concatenated pat-
terns a slight variation of the BIST scheme shown in Fig-
ure 1 is used. Assume that T is grouped into G subsets T1,
…, TG consisting of at most M patterns each, then once
the seed for a pattern tcon(Ti) is loaded, the LFSR works
in autonomous mode for M · m clock cycles. After each m
cycles a test pattern is completely loaded into the scan
chain and can be applied to the circuit under test. For sub-
sets containing less than M patterns this implies the appli-
cation of some additional random patterns. The storage
requirements for  T are reduced to S(T) = (G + P)smax + G
bits. The number of carebits accepted in a concatenated
pattern can be increased to a parameter sB ≥ smax  to allow
even better compaction. In [16] an algorithm has been pro-
posed to minimize G for a given test set T. In the next
section it will be shown how the possibilities for concate-
nation can be exploited during ATPG.

3. Automatic Test Pattern Generation

In this section the ATPG procedure SCARLETT (Self-
Test Codable And Reduced LEngth Test Tool) is pre-
sented which is specifically tailored for the BIST scheme
of Section 2.

The proposed procedure is applied to the hard-to-detect
faults remaining after a pseudo-random sequence of length
R and minimizes the storage requirements S(T) for the
resulting deterministic test set T. The proposed algorithm
supports the concatenation of patterns and requires as
input parameters the maximum number of patterns M and
the maximum number sB of specified bits accepted in a
group of patterns to be concatenated. The basic idea to
achieve an efficient encoding is to alternate test pattern
generation and the encoding of test patterns as sketched in
Figure 3.

Test patterns are generated until the limits M or sB for a
group of patterns to be concatenated are reached. All
patterns in this group are concatenated to one pattern tcon
which is encoded as a seed for one of the available feed-
back polynomials, and the first M·m bits of the LFSR
sequence resulting from this seed are determined. Since
this subsequence corresponds to the fully specified pat-
terns fed into the scan chain during test mode, it is fault-
simulated against the remaining fault set. Faults which are
detected in addition to the original target faults can be
dropped immediately, and the process is repeated. The
main procedures of the complete algorithm are explained
in more detail in the sequel.

m = 5, M = 2, sB = 4, h(X) = X4 + X3 +1

Decoding the seed: 
LFSR-sequence 
produced by (1, 1, 1, 0)

⇒ Fault simulation of  t1' and t2' provides all faults 

actually detected during BIST

Concatenation 
of t1 and t2:

Encoding tcon:

Pattern 
generation:

seed(tcon) = (1, 1, 1, 0)

t1 = (x, x, 1, 1, x), 

t2 = (x, 1, x, x, 0)

tcon = (x, 1, x, x, 0, x, x, 1, 1, x)

t2' t1'

tseq = (1, 1, 0, 1, 0, 1, 1, 1, 1, 0)

Figure 3: Example for alternating test pattern generation and
encoding.

3.1 Preprocessing

Since the supported BIST approach uses the same
LFSR to generate pseudo-random and deterministic test
vectors, the degree of the feedback polynomial should be
fixed before simulating the pseudo-random sequence. To
guarantee that the deterministic patterns for the hard-to-
detect faults can be encoded with a high probability of
success the degree should be selected equal to the para-
meter sB ≥ smax  = max {s(t) | t ∈  T}, where T is the
deterministic test set for the hard-to-detect faults. In the
preprocessing phase ATPG is performed for all faults in
the circuit to get an approximation for smax and thus a
guideline how to select sB. Also, redundant faults are
eliminated during preprocessing.

Next, for a number of different primitive polynomials
of degree sB a pseudo-random sequence of length R  is
generated and fault simulated. The polynomial corre-
sponding to the pseudo-random sequence with the highest
fault coverage is selected for pseudo-random pattern gen-
eration.

3.2 Generation of a test pattern group

A subset T‘ of test patterns can be grouped together for
concatenation if

|T‘| ≤ M and ∑t∈ T‘ s(t) ≤ sB

hold. Assume that k patterns t1, …, tk have already been
generated and the group is not yet complete, i. e.

k ≤ M and ∑ k
i=1 s(ti) < sB.



Then there are two chances to detect an additional fault
from the list of remaining faults F:
1) By increasing the number of specified bits in one of

the patterns t1, …, tk, i.e. one pattern tj is replaced by
a pattern tj* which is covered by tj. This approach is
also known as “dynamic compaction”, but in contrast
to classical applications here only a restricted number
of bits can be specified additionally [12].

2) If k < M, then an additional fault can also be detected
by a new pattern tk+1.

If k = 0 or all of the patterns t1, …, tk are already fully
specified, dynamic compaction is not possible. Also, if the
number of specified bits in each of the patterns t1, …, tk
exceeds a user-defined limit, dynamic compaction is not
expected to be successful and not considered therefore. To
keep the final test set small, in this case a target fault f ∈  F
is selected, such that the number of undetected faults on a
path from the fault location to a primary output is maxi-
mal. A new pattern tk+1 is generated for f and the resulting
number of carebits

s = ∑ k
i=1 s(ti) + s(tk+1)

is determined. If s >  sB  the fault f cannot be detected
within the current test group. It is postponed for the next
test group, and a new target fault f‘ is selected from F.

In all other cases, both possibilities for additional fault
detection are investigated as follows. From the list of pat-
terns t1, …, tk the pattern with the least number of speci-
fied bits is selected and for all circuit nodes the observ-
abilities corresponding to this partial assignment are com-
puted by critical path tracing [3]. The first observable fault
f ∈  F is selected as new target fault. All patterns t1, …, tk
are checked if they cover a pattern for f, and a pattern tj*
is determined such that the resulting number of carebits

s1 = ∑ k
i=1,i≠j s(ti)  + s(tj*)

is minimal. Additionally, a new pattern tk+1 is generated
for f and

s2 = ∑ k
i=1 s(ti) + s(tk+1)

is computed. If both s1 > sB and s2 > sB the fault f cannot
be detected within the current test group, and a new target
fault f‘ is selected from F. Otherwise, if s1 ≤ sB or s2 ≤ sB
or both s1, s2 ≤ sB, the possibility resulting in a minimal
number of carebits is chosen. The computational effort for
this procedure can be reduced by checking only those
pattern in {t1, …, tk} where the number of specified bits
does not exceed a user-defined limit.

The underlying ATPG-procedure is based on the FAN-
algorithm [10]. Both static and dynamic global implica-
tions and unique sensitization techniques are applied to
accelerate the process of test pattern generation and the
identification of redundancies [21]. Decisions are guided
by a number of heuristics which particularly aim at gener-

ating test patterns with a large number of unspecified bits,
and keeping the overall test set small. As mentioned
above, the heuristics use observability values which are
determined by critical path tracing and which are updated
dynamically for each partial assignment. Controllability
values are used as follows: the i-controllability of a node
corresponds to the minimal number of primary inputs in
order to put the value i on that node.

For the propagation of fault effects a node on the D-
frontier is selected which is as close as possible to the
primary outputs and is located on a path with a maximum
number of undetected faults. To minimize the number of
specified bits, the number of primary inputs which must
be set to propagate the fault effect, is used as a second cri-
terion.

For line justification the user can chose between
“rotating backtrace” as introduced in [19] or a mechanism
based on observability values as follows: When there is a
choice of a gate input line to be set to a controlling value,
two cases are distinguished:
a) If the gate output is observable a gate input line is

selected such that the number of undetected faults
preceding this line is maximum.

b) If the gate output is not observable a gate input line is
selected such that the number of primary inputs to be
set is minimal.

In addition to that, the “maximal compaction” tech-
nique suggested in [19] is used to minimize the number of
specified bits in a test pattern. For each specified bit also
the complementary logic value is simulated. If the target
fault is still detected the bit position is considered as don‘t
care. Since only single bits are flipped while keeping the
original values for the other specified bits, the resulting
pattern need no longer be a test for the target fault. Expe-
rience shows that this is not very likely to happen, but if
the fault simulation step in Figure 3 reveals such a prob-
lem the fault is processed again without maximal com-
paction.

3.3 Encoding and fault simulation

To encode a group T‘ of test patterns the following
steps are performed:
1) If |T‘| < M is true, then M - |T‘| unspecified “dummy”

patterns are added to T‘.
2) A feedback polynomial h(X) of degree sB is selected

from the table of primitive polynomials. To reduce
the overall number P of feedback functions to be im-
plemented, the polynomials required for pseudo-ran-
dom pattern generation or for other test groups al-
ready encoded are tried first.

3) A permutation of the patterns t1, …, tM in T‘ is gener-
ated, and the system of linear equations correspond-



ing to the concatenated pattern tcon and the polyno-
mial h(X) is derived as described in Section 2. Stan-
dard techniques for solving linear equations are ap-
plied to this system. If a solution exists the seed value
and the polynomial identifier are stored and the pat-
tern tseq consisting of the M·m first bits of the corre-
sponding LFSR-sequence is calculated. If there is no
solution another permutation of t1, …,tM is generated
and analyzed.

4) If no encoding can be found in step 3, the process is
repeated for another feedback polynomial.

The encoding procedure provides a seed for a polyno-
mial h(X), for which during test mode the first M·m au-
tonomous cycles of the LFSR produce a pattern tseq. This
process is simulated and the resulting pattern tseq is split
into M single patterns (the i-th pattern consisting of the
i-th m bits of tseq) corresponding to the patterns generated
for the current test group. In contrast to the original pat-
terns in the test group, the patterns obtained from tseq are
fully specified and will be actually applied to the circuit
under test. Fault simulation performed for these patterns is
thus less complex and allows to drop faults immediately
which are additionally detected by the LFSR-sequence.

4. Experimental Results

A series of experiments has been performed to deter-
mine the trade-offs between the length of the pseudo-ran-
dom sequence and the storage requirements for the deter-
ministic patterns. For the first experiment a complete de-
terministic BIST has been assumed. Allowing M = 8 pat-
terns to be concatenated, the storage requirements S(Tenc)
for an encoded test set Tenc generated by the presented
tool SCARLETT have been compared to the number of
bits S(Tcomp) in the minimum deterministic test set re-
ported in any of the papers [13, 17, 20, 22]. Tables 1 and 2
show the results for the ISCAS-85 and ISCAS-89 circuits
[6, 7]. For the circuits s35932 and s38584 a compact test
set has been generated by an own ATPG implementation
similar to the one described in [19].

The columns of Table 1 list the number of primary
inputs pi, the maximal number smax of specified bits after
preprocessing the number of specified bits sB accepted in
M patterns to be concatenated, the number of testgroups
G, the required number of feedback polynomials P and the
overall storage requirements S(Tenc) = (G + P) · sB + G
for the presented approach. For comparison, in Table 2 the
number of primary inputs,  the size of the compact test set
|Tcomp| and the number of bits necessary to store the com-
pact test set S(Tcomp) = |Tcomp| · pi are shown. The last
column of Table 2 reports the ratio S(Tenc)/S(Tcomp). In
cases with smax being very large also values sB < smax
have been tried successfully.

Circuit pi smax sB G P S(Tenc)

c432 36 20 30 16 2 556

c499 41 41 41 23 5 1171

c880 60 26 27 19 5 667

c1355 41 41 41 41 1 1763

c1908 33 31 33 67 5 2443

c2670 157 48 60 59 6 3959

c3540 50 28 30 48 5 1638

c5315 178 47 80 30 3 2670

c6288 32 32 32 6 2 262

c7552 206 130 100 74 18 9218

s208 19 12 12 16 2 232

s298 17 7 10 10 2 130

s344 24 9 9 7 2 88

s349 24 9 9 8 2 98

s382 24 9 9 13 3 157

s386 13 11 12 34 2 466

s420 35 20 20 29 4 689

s444 24 11 9 12 2 138

s510 25 9 9 20 2 218

s526 24 14 14 36 2 568

s526n 24 14 14 32 2 508

s641 54 22 24 24 3 672

s713 54 22 22 27 4 686

s820 23 13 13 65 3 949

s832 23 14 13 62 5 933

s838 67 36 36 51 4 2013

s953 45 15 15 46 4 796

s1196 32 17 17 82 6 1578

s1238 32 17 17 84 7 1614

s1423 91 41 42 26 8 1328

s1488 14 12 12 56 3 764

s1494 14 12 12 55 3 751

s5378 214 29 27 129 3 3973

s9234 247 63 60 166 5 10426

s13207 700 24 30 244 4 7684

s15850 611 44 40 222 5 9302

s35932 1763 8 11 16 3 225

s38417 1664 84 91 403 6 37622

s38584 1464 55 70 182 2 13062

Table 1: Number of bits to be stored for encodable test sets
S(Tenc) for  M = 8.

For most of the circuits, the proposed approach reduces
the storage requirements down to around 25% - 50%. For
the larger circuits with a large number of primary inputs
the gain is still significantly higher. For the circuits
s13207 to s38584 the necessary memory for test data is
reduced down to 1% - 25%.

This experiment has been repeated for pseudo-random
sequences of 1000 and 10000 patterns preceding the deter-
ministic test pattern generation. For the remaining faults



Circuit pi |Tcomp| S(Tcomp) S(Tenc)
S(Tcomp)

c432 36 29 1044 0.53

c499 41 52 2132 0.55

c880 60 21 1260 0.53

c1355 41 84 3444 0.51

c1908 33 108 3564 0.69

c2670 157 51 8007 0.49

c3540 50 97 4850 0.34

c5315 178 49 8722 0.31

c6288 32 16 512 0.51

c7552 206 84 17304 0.53

s208 19 27 513 0.45

s298 17 23 391 0.33

s344 24 15 360 0.24

s349 24 13 312 0.31

s382 24 25 600 0.26

s386 13 64 832 0.56

s420 35 43 1505 0.46

s444 24 24 576 0.24

s510 25 55 1375 0.16

s526 24 50 1200 0.47

s526n 24 51 1224 0.42

s641 54 24 1296 0.52

s713 54 23 1242 0.55

s820 23 95 2185 0.43

s832 23 96 2208 0.42

s838 67 75 5025 0.40

s953 45 77 3465 0.23

s1196 32 117 3744 0.42

s1238 32 129 4128 0.39

s1423 91 29 2639 0.50

s1488 14 102 1428 0.54

s1494 14 101 1414 0.53

s5378 214 104 22256 0.18

s9234 247 116 28652 0.36

s13207 700 235 164500 0.05

s15850 611 113 69043 0.13

s35932 1763 18 31734 0.01

s38417 1664 91 151424 0.25

s38584 1464 141 206424 0.06

Table 2: Number of bits to be stored for compact test sets
S(Tcomp) and ratio S(Tenc)/S(Tcomp).

an encodable test set provided by SCARLETT has been
compared to a compact test set generated by the own
ATPG implementation mentioned before.

Both experiments showed the same trends as observed
for the first experiment. The results for 10000 random
patterns are listed in Table 3 and 4; examples where only a
few or no patterns remain are not reported. Here smax
denotes the maximal number of specified bits in a test set
generated for the remaining faults.

Circuit pi smax sB G P S(Tenc)

c2670 157 48 60 52 4 3412

c7552 206 100 100 41 11 5241

s420 35 20 20 10 2 250

s641 54 22 22 7 1 183

s713 54 22 22 7 1 183

s838 67 36 36 39 5 1623

s953 45 15 15 6 3 141

s1196 32 17 17 12 3 267

s1238 32 17 17 11 3 249

s5378 214 19 27 24 2 726

s9234 247 66 61 103 7 6923

s13207 700 24 24 138 5 3570

s15850 611 45 46 134 5 6528

s35932 1763 9 11 6 2 83

s38417 1664 72 91 259 5 24283

s38584 1464 55 70 46 2 3406

Table 3: S(Tenc) after a pseudo-random sequence of 10 000
patterns, M = 8.

Circuit pi |Tcomp| S(Tcomp) S(Tenc)
S(Tcomp)

c2670 157 44 6908 0.49

c7552 206 35 7210 0.73

s420 35 10 350 0.71

s641 54 7 378 0.48

s713 54 7 378 0.48

s838 67 42 2814 0.58

s953 45 6 270 0.52

s1196 32 12 384 0.70

s1238 32 11 352 0.71

s5378 214 26 5564 0.13

s9234 247 95 23465 0.30

s13207 700 78 54600 0.07

s15850 611 33 20163 0.32

s35932 1763 5 8815 0.01

s38417 1664 85 141440 0.17

s38584 1464 41 60024 0.06

Table 4: S(Tcomp) and the ratio S(Tenc)/S(Tcomp) after a
pseudo-random sequence of 10 000 patterns, M = 8.

Tables 3 and 4 show that for the smaller circuits the
presented approach reduces the test data storage down to
30% - 70%, but for the larger circuits a reduction down to
1% - 30% is achieved. In all experiments, the number of
bits required for easily encodable test sets is significantly
smaller than the number of bits of a compact test set.

Comparing the presented approach of combining ATPG
and encoding of patterns to the encoding of complete test
sets also a considerable gain in efficiency can be observed.
In [23, 16] results for the circuits s5378, s9234 and s13207
after 1000 and 10000 random patterns are reported, where



patterns generated by SOCRATES were encoded. Table 5
compares the storage requirements in bits to the proposed
approach and to storing compact test sets.

Circuit # random
patterns

S(Tenc) [23] S(Tcomp)

s5378 1000
10000

2629
726

11008
4096

13696
5564

s9234 1000
10000

9329
6923

19152
13482

28405
23465

s13207 1000
10000

6720
3570

59175
6615

119700
54600

Table 5: S(Tenc) compared to S(Tcomp) and the storage
requirements after encoding a complete test set.

5. Conclusions

A deterministic BIST scheme is feasible if already
during ATPG additional requirements are taken into ac-
count. A compact deterministic test set is often not the
best choice as both the number of carebits and the number
of patterns determine the size of the BIST memory. By
combining pattern generation and pattern encoding the
amount of bits to be stored is significantly reduced com-
pared approaches known before.

References

1 V.K. Agarwal, E. Cerny: “Store and Generate Built-In Test-
ing Approach”, Proc. 11th Int. Symp. Fault-Tolerant
Comput., 1981, pp. 35-40

2 S.B. Akers and W. Jansz: “Test Set Embedding in Built-In
Self-Test Environment”, Proc. IEEE Int. Test Conf.,
Washington D.C., 1989, pp. 257-263

3 M. Abramovici, P.R. Melon, D.T. Miller: “Critical Path
Tracing - An Alternative to Fault Simulation”, Proc. of 20th
Design Automation Conf., 1983, pp. 214-220

4 P. Bardell, W.H. McAnney and J. Savir: “Built-In Test for
VLSI”, New York: Wiley-Interscience, 1987

5 Z. Barzilai, D. Coppersmith, A.L. Rosenberg: “Exhaustive
Generation of Bit Patterns with Applications to VLSI Self-
Testing” IEEE Trans. on Comp., Vol. C-32, No. 2, Feb.
1983, pp. 190-194

6 F. Brglez et al.: “Accelerated ATPG and fault grading via
testability analysis”; Proceedings IEEE Int. Symp. on
Circuits and Systems, Kyoto, 1985

7 F. Brglez, D. Bryan and K. Kozminski: “Combinational Pro-
files of Sequential Benchmark Circuits” Proc. IEEE Int.
Symp. on Circuits and Systems, 1989, pp. 1929-1934

8 F. Brglez et al: “Hardware-Based Weighted Random Pattern
Generation for Boundary-Scan” Proc. IEEE Int. Test Conf.,
Washington D.C., 1989, pp. 264-274

9 W. Daehn, J. Mucha: “Hardware Test Pattern Generators for
Built-In Test”, Proc. IEEE Int. Test Conf., 1981, pp. 110-113

10 H. Fujiwara and T. Shimono: “On the Acceleration of Test
Generation Algorithms”, IEEE Trans. on Comp., Vol. C-32,
No. 12, December 1983, pp. 1137-1144

11 P. Goel: “An Implicit Enumeration Algorithm to Generate
Tests for Combinational Logic Circuits”, IEEE Trans. on
Comp., Vol. C-30, No. 3, March 1981, pp. 215-222

12 P. Goel and B. C. Rosales: “Test Generation and Dynamic
Compaction of Tests”, Proc. IEEE Test Conf., Cherry Hill,
N. J., 1979, pp. 189-192

13 H. Higuchi, N. Ishiura, and S. Yajima: “Compaction of Test
Sets Based on Symbolic Fault Simulation”, Synthesis and
Simulation Meeting and Int. Interchange, pp. 253-262, 1992

14 S. Hellebrand, H.-J. Wunderlich, O. F. Haberl: “Generating
Pseudo-Exhaustive Vectors for External Testing”, Proc.
IEEE Int. Test Conf., Washington DC, 1990, pp. 670-679

15 S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois:
“Generation of Vector Patterns Through Reseeding of Mul-
tiple-Polynomial Linear Feedback Shift Registers”, Proc.
IEEE Int. Test Conf., Baltimore 1992, pp. 120-129

16 S. Hellebrand et al.: “Built-In Test for Circuits with Scan
Based on Reseeding of Multiple-Polynomial Linear Feed-
back Shift Registers”, IEEE Trans. on Comp., Vol. 44, No.
2, Feb. 1995, pp. 223-233

17 S. Kajihara, I. Pomeranz, K. Kinoshita, S. M. Reddy: “Cost-
Effective Generation of Minimal Test Sets for Stuck-at
Faults in Combinational Logic Circuits”, Proc. 30th
ACM/IEEE Design Automation Conf., 1993, pp. 102-106

18 B. Koenemann: “LFSR-Coded Test Patterns for Scan De-
signs”, Proc. Europ. Test Conf., Munich 1991, pp. 237-242

19 I. Pomeranz, L.N. Reddy and S.M. Reddy: “COMPAC-
TEST: A Method to Generate Compact Test Sets for Com-
binational Circuits”, Proc. Int. Test Conf., 1991, pp. 194-203

20 L.N. Reddy, I. Pomeranz, and S.M. Reddy: “ROTCO: A Re-
verse Order Test Compaction Technique”, Proc. IEEE
EURO-ASIC Conf., September 1992, pp. 189-194

21 M. Schulz and E. Auth: “Advanced Automatic Test Genera-
tion and Redundancy Identification Techniques”, Proc. 18th
Int. Symp. Fault-Tolerant Comput., Tokyo 1988, pp. 30-35

22 G. Tromp: “Minimal Test Sets for Combinational Circuits”,
Proc. IEEE Int. Test Conf., 1991, pp. 204-209

23 S. Venkataraman, J. Rajski, S. Hellebrand and S. Tarnick:
“An Efficient BIST Scheme Based on Reseeding of Multiple
Polynomial Linear Feedback Shift Registers”, Proc.
IEEE/ACM Int. Conf. on Computer-Aided Design, Santa
Clara 1993, pp. 572-577

24 J. A. Waicukauski, P. A. Shupe, D. J. Giramma, and A.
Matin: “ATPG for Ultra-Large Structured Designs”, Proc.
IEEE Int. Test Conf., Washingtion, D.C., 1990, pp. 44 - 51

25 L.T. Wang and E.J. McCluskey: “Circuits for Pseudo-Ex-
haustive Test Pattern Generation” Proc. IEEE Int. Test
Conf., 1986, pp. 25-37

26 H.-J. Wunderlich: “Self Test Using Unequiprobable Random
Patterns”, Proc. 17th Int. Symp. Fault-Tolerant Comput.,
Pittsburgh 1987, pp. 258-263

27 H.-J. Wunderlich: “Multiple Distributions for Biased Ran-
dom Test Patterns”, Proc. IEEE Int. Test Conf., Washington
D.C. 1988, pp. 236-244


	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index


