
Incremental Synthesis

Daniel Brand Anthony Drumm Sandip Kundu Prakash Narain

IBM Research Division IBM AS/400 Division IBM Research Division IBM Microelectronics
Yorktown Heights, NY Rochester, MN Yorktown Heights, NY Endicott, NY

Abstract
A small change in the input to logic synthesis may cause
a large change in the output implementation. This is
undesirable if a designer has some investment in the old
implementation and does not want it perturbed more than
necessary. We describe a method that solves this problem
by reusing gates from the old implementation, and
restricting synthesis to the modified portions only.

1. Introduction

It is common for a designer to have an investment in
the implementation of his design. Examples of such
investment are effort to synthesize, expense of physical
design, mask generation, any manual changes, or simply
designer's time spent understanding the implementation.
This investment may be jeopardized if the designer has to
modify the specification. Such modifications, commonly
called "engineering changes" or ECs, are necessitated by
changes in requirements, errors, or efforts to speed up the
logic. If the designer synthesizes his new specification
then he may get a completely different implementation,
because synthesis tries to find a minimal representation
of the new function, and a small change in the
specification of a function may cause a large change in its
optimal implementation. Moreover, synthesis systems are
heuristics, making some "arbitrary" choices, which further
contribute to large changes in the implementation.

For this reason it is a common practice to "freeze" a
design, meaning that after a design is sufficiently stable,
synthesis is no longer used, and any modifications are
done manually in both the specification and the
implementation. This is undesirable for three reasons.
First, it is very time-consuming for a designer to
understand how a synthesized implementation relates to
his original specification. Secondly, it is very easy for the
designers to make a mistake in modifying the
implementation. Thirdly, the modified implementation
may be wrong even if no mistake is ever made. The
reason is that some optimization performed on the old
version might be invalid for the new function.

Therefore, several approaches exist for automating this
process. These approaches differ by their objectives.

Some methods restrict themselves to a specific set of ECs
[7,8]. Others have the goal of preserving the final layout,
and allowing modifications only around the perimeter of
the implementation [6,10]. There are several methods
with the same goal as ours, namely, reusing as many gates
from the old implementation as possible. An example is
[9], whose method is applicable if synthesis does not
change logic structure. The method closest to ours is that
of [5], which can handle arbitrary structural differences.
The main distinguishing feature of our method is a
preprocessing step calculating correspondence between the
new specification and the old implementation, which then
gives us not only efficiency, but allows greater reuse of
the old implementation.

2. Methodology

Regular (i.e., non-incremental) synthesis has the
following steps, which are identical for all versions of a
design:
READ(Specification)
REGULAR SYNTHESIS
WRITE(Implementation)

In case of incremental synthesis we have an old and a
new version of a design. The old version is given by
Specification0 (e.g., -- Figure id 'oldsrc' unknown --) and
Implementation0 (e.g., -- Figure id 'oldimpl' unknown --).
The new version is given by Specification1 (e.g., -- Figure
id 'newsrc' unknown --). We will assume all three to be
given as gate networks, which is the normal representation
for logic synthesis. Correspondence between primary IOs
and other nets is indicated by the common letter forming
the name. (This commonality of names is used for
exposition only; our programs do not rely on names.)

For version1 we wish an Implementation1 with the
functionality of Specification1, that reuses as much of
Implementation0 as possible. We use the following steps:
FUNCTIONAL_CORR(Specification0, Implementation0)
READ(Specification1)
STRUCTURAL_CORR(Specification0, Specification1)
INCREMENTAL SYNTHESIS
REGULAR SYNTHESIS
POST_PROCESSING
WRITE(Implementation1)

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0014 $3.50

A0

B0

C0

D0
E0

Figure 1. Specification0

a0

b0

c0

d0

f0

e0

Figure 2. Implementation0

A1

B1

C1

D1

E1

Figure 3. Specification1

a0

b0

c0 f0

e0

D1

Figure 4. Result of incremental synthesis

The main subject of this paper is the step
INCREMENTAL SYNTHESIS (described later), which
forms a preliminary implementation of Specification1 (see
Figure 4). This preliminary implementation has three
kinds of gates -- some gates from Implementation0 (the
shaded NAND gates), some gates from Specification1 (the
XOR gate) and some inverters needed to connect the first
two kinds of gates. We will refer to the gates from
Implementation0 (shaded in our figures) as "old gates" and
all the others as "new gates". Our objective is to minimize
the number of new gates. In particular, primary outputs
that retain their specification should also retain their
implementation.

Once this preliminary implementation is formed it is run
through regular synthesis (including optimization,
technology mapping, etc.) in order to process the new
gates. During this regular synthesis all the old gates are
marked as protected from any synthesis transformations,
and remain unchanged.

The result of regular synthesis must be run through a
post-processing step, where the protection is removed
from the old gates for several reasons. A primary output,
which retains its old implementation, may nevertheless
have different delay because of different loading of some
nets. Also some of its faults might become untestable.
The post-processing step may be needed to adjust power
levels and improve testability.

3. Correspondence calculation

Our general approach to incremental synthesis tries to
identify pieces of logic in Specification1 (e.g., the OR
gate) that can be replaced by pieces of logic from
Implementation0 (the two NAND gates) without altering
the function of Specification1. This is, in general, a
difficult problem, because given a piece of logic in
Specification1, it is not clear what would be good
candidate logic in Implementation0 for the replacement.
It is not clear because there is in general no relationship
between Specification1 and Implementation0. First of all,
they are functionally different; they may even have
different primary IOs. Secondly, they are structurally
different because synthesis tends to make drastic logic
restructuring. In order to derive a correspondence between
Specification1 and Implementation0 (see -- Figure id
'diagram' unknown --), we use Specification0, which is
functionally related to Implementation0 (both should
implement the same function), and it is also structurally
related to Specification1, (in case of only an incremental
change to the specification, the two specifications "look"
similar).

structural correspondence

correspondence for
incremental synthesis

functional
correspondence

Specification0

Implementation0

Specification1

Figure 5. Correspondences

To derive structural correspondence between
Specification0 and Specification1 we use the algorithm of
[1]. For each net X1 in Specification1 that algorithm
computes a net X0 in Specification0, which structurally
corresponds to X1 (if such an X0 exists). (In Figure 1
and Figure 3 corresponding nets are indicated by the same
letter.) Structural correspondence is a mapping from nets
and gates of Specification1 to nets and gates of

Specification0, where corresponding primary IO must be
mapped to each other. The algorithm [1] tries to maximize
the number of gates that are in "agreement". A gate G1
is in complete agreement with a corresponding gate G0 if
they are of the same type, and are connected to
corresponding nets. If two cones are isomorphic then all
their gates can be put in complete agreement, which is
important to detect, so that incremental synthesis can
preserve the implementation of unmodified functions. In
addition, we try to calculate correspondence that will also
put other gates in complete or partial agreement. Two
gates are in only a partial agreement, if they differ in
function or some of their nets do not correspond to each
other. (Even partial agreement is useful in minimizing the
impact of an EC.) In our example of Figure 1 and
Figure 3 the two OR gates are in complete agreement,
while the XOR gate is in partial agreement with the AND
gate.

To derive the functional correspondence between
Specification0 and Implementation0 we use the algorithm
of [2]. That algorithm computes for each net X0 in
Specification0 a net x0 in Implementation0, which
functionally corresponds to X0 (if such an x0 exists). That
does not mean that X0 and x0 have the same function,
merely that the function of x0 can replace the function of
X0 without altering the functionality of Specification0.
(In Figure 1 and Figure 2 corresponding nets are
indicated by the same letter, but we use small case for
names in the implementation.) Since implementations
tend to use negative logic, it is common that X0 cannot
be replaced by x0, but it may be replaceable by x0;
therefore our algorithm, in addition to computing x0 also
computes the right polarity. (In our example, the
correspondence <D0, d0> is negative.)

4. Incremental synthesis algorithm

Having calculated the structural and functional
correspondences we compose them by transitivity to
obtain a correspondence between the nets of
Specification1 and Implementation0. (The correspondence
is calculated before incremental synthesis starts and does
not change during the incremental synthesis algorithm.)
When a net X1 in Specification1 corresponds to a net x0
in Implementation0 then it is likely that x0 (or x0) can
functionally replace X1. We could be assured of the
legality of such a replacement if Specification0 and
Specification1 were identical and if the replacements were
carried out in the order calculated by functional
correspondence. However, since the two specifications
are not identical we must check it explicitly and make the
replacement only if it does not change the function of
Specification1.

Incremental synthesis is done in three phases. Phase I
deals with primary inputs and latches, Phase III deals with
primary outputs and latches, while Phase II handles the
combinational logic in between. For lack of space we will
explain the algorithm only in the simplest case, where

there are no latches and the new and old versions have the
same primary IOs.

Phase I places Specification1 and Implementation0
together, sharing primary inputs only (see -- Figure id
'after1' unknown --). The resulting network still has two
sets of primary outputs.

a0

b0

c0

d0
e0

f0

D1

E1

Figure 6. After Phase I

Phase II takes the two pieces of logic sharing primary
inputs only, and introduces more sharing between them.
The result of Phase II is a network, where Specification1
and Implementation0 are interconnected, and some pieces
of logic are left unused. Phase II may change the
functionality of the primary outputs for Implementation0
(e0), but it must preserve the functionality of the primary
outputs of Specification1 (E1).

Phase II proceeds through the nets of Specification1 in
topological order from inputs to outputs. Given a net X1
in Specification1, the composition of structural and
functional correspondence gives us a corresponding net
x0 in Implementation0. We check whether x0 may
replace X1 without changing the functionality of
Specification1 (using the algorithm of [2]).
Case A: If the answer is "yes", then the net x0 (or x0) gets

connected wherever X1 used to be connected.
Case B: If the answer is "no", then the net X1 (or X1) gets

connected wherever x0 used to be connected.
Case A (the desirable case) represents the situation of

logic X1 that was not modified and thus can use the gates
of x0. The cone of X1 becomes unnecessary. Case B
represents logic X1 that was modified and thus cannot use
the gates of x0. In Case B, replacing x0 with X1 makes
it likely that as the algorithm proceeds it will encounter
Case A further on.

In our example, we first apply Case B to <D1, d0> with
negative polarity (see -- Figure id 'afterB' unknown --).
This step effectively replaces a NAND gate from
Implementation0 by the XOR gate from Specification1;
the XOR gate is connected through an inverter because the
correspondence between D1 and d0 is negative. Then we
apply Case A to <E1, e0> (see -- Figure id 'afterA'
unknown --). -- Figure id 'afterA' unknown -- shows the
network after Phase II is finished.

a0

b0

c0 f0

e0

D1

E1

Figure 7. After Case B applied to <D1, d0>

a0

b0

c0
f0

e0

D1

Figure 8. After Case A applied to <E1, e0>

It should be clear that after Case A, the functionality
of Specification1 is preserved. After Case B, it is certainly
possible for the functionality of Implementation0 to
change, which is all right. However, the way we described
it above, it is also possible for the functionality of
Specification1 to change, which is not all right. The
reason is that several nets in Specification1 may
correspond to one net in Implementation0 and more
generally, proceeding in topological order in
Specification1 does not imply topological order in
Implementation0. Case B replacing some x0 by X1 may
be preceded by Case A replacing some Y1 with x0. More
generally, it may be preceded by Case A replacing some
Y1 with y0, where y0 is in the transitive fanout of x0.

To guarantee that Case B will never change the
functionality of Specification1, the net X1 may not replace
connections of x0 to new gates. More generally, after
performing Case A on some Y1 and y0 we "commit" the
whole transitive fanin of y0. That means, all the input
pins in the transitive fanin of y0 are marked as committed
and may not be changed. Then in Case B net X1 replaces
the connections of x0 only at those pins that are not
committed. The net x0 remains connected to the
committed pins.

This mechanism of committing a cone of logic is also
used to ensure that the new implementation of unmodified
primary outputs is identical to the old one. In Phase I we
commit the whole transitive fanin of any primary output
whose cone is isomorphic in the two specifications
(identified by structural correspondence).

At the end of Phase II we are still left with two sets of
primary outputs. Each pair of corresponding primary
outputs ends up connected to the same net (e0 in
Figure 8). To guarantee this property, the correspondence
calculation makes sure that primary IOs correspond to
each other and no other nets. Phase III simply deletes all
the primary outputs of Specification1. The result is a
network with the functionality of Specification1 and with
as many gates of Implementation0 as introduced by Case
A. As explained in Section 2 the network of Figure 8 has
to be run through regular synthesis, where all the shaded
gates are protected from any transformations. Figure 4
shows the result of simplifying away one unused gate; the
shaded unused gate will be also deleted, but is left in
Figure 4 for purposes of exposition only.

5. Experimental results

In TABLE 1 we show results for several experiments.
All of the circuits were taken from production parts, with
the exception of C6288, which was taken from [3] and
random change was introduced. (We included C6288 so
that the reader can relate the other pieces of logic to
something that has been discussed in the literature.)

The column SOURCE LINES shows the difference
between new and old version before synthesis: number
of lines in old source \ number of lines reused in new
source \ number of new or different lines. These numbers
are as seen by the designer, rather than synthesis. For
example, the first two circuits have the same source data,
but the first one had different preprocessing applied to the
old and new versions, which presents different looking
pieces of logic to incremental synthesis.
The column IMPLEMENTATION GATES indicates the
amount of reuse in the implementation: number of gates
in Implementation0 \ number of gates reused in
Implementation1 \ number of new gates in
Implementation1. The last number refers to new gates
introduced by incremental synthesis and then processed
by regular synthesis and the post-processing step.

Under the column WITH \ WITHOUT
INCREMENTAL SYNTHESIS we are comparing two
implementations of Specification1 -- incremental synthesis
followed by regular synthesis for new gates (including
post-processing), versus regular synthesis for all the gates
of Specification1. The columns AREA and SLACK show
how much area and delay we are sacrificing by wanting
the new Implementation1 to be as similar to the old as
possible. Under CPU TIMES we are reporting the time
to calculate functional correspondence, and separately the
time to do the incremental synthesis together with
structural correspondence. We are singling out the

computation of functional correspondence because it can
be done off line before the new version exists, and thus
need not impact the design cycle. All CPU times are
scaled to a 100 MHz machine cycle.

From the experimental results we see that the amount of
gate reuse is related to the amount change in the
specification, which is designers' expectation. Except in
two circuits, we get an area penalty, which is caused by
preventing any simplification between old and new gates.
Sometimes we also get a delay penalty; this is again
caused by no simplification between old and new gates.

Contrary to designers' expectations no significant saving
in CPU time occurs; in fact by using incremental synthesis
CPU time may increase. There are several reasons for
this. First of all, substantial amount of CPU time is spent
in calculating the functional correspondence, as well as the
incremental synthesis step itself. Secondly, regular
synthesis spends a lot of CPU time even if it needs to
synthesize only very few new gates. (It spends this time
on calculating information (e.g. timing) about all the old
gates.) In order to reduce the turn-around time for
incremental synthesis it is important to calculate the
functional correspondence immediately after synthesizing
the old version, without waiting for the new version.

6. Conclusions

We have presented an automated way of performing
incremental synthesis. Its main benefit lies in reducing the
design cycle, which happens in several ways. First, it
automates the implementation of specification changes late
in the design cycle. Secondly, it allows a designer to
make modifications (e.g. speed up) in one area without
changing the implementation of areas he is already happy
with. And thirdly, it preserves the information from the
old version (e.g. net names), which helps in analyzing the
new implementation.

Acknowledgements

L. Stok, L. Trevillyan, R. Damiano, M. Berkelaar, R.
Bergamashi, I. Spillinger, W. Kunz read the manuscript
and made many helpful suggestions. We are especially
grateful to Andreas Kuehlmann for valuable discussions.
Lakshmi Reddy made an important contribution to the test
generator, on which this approach is based.

References

[1] D. Brand, "The Taming of Synthesis",International
Workshop on Logic Synthesis, RTP, May 1991.

[2] D. Brand, "Verification of Large Synthesized Designs",Proc.
of ICCAD, November 1993, pp. 534-537.

[3] F. Brglez, P.Pownall, R. Humm, "Accelerated ATPG and
Fault Grading via Testability Analysis",IEEE International
Symposium on Systems and Circuits, June 1985, pp. 695-698.

[4] P.Y. Chung, I.N. Hajj, "ACCORD Automatic Catching and
CORrection of Logic Design Errors in Combinational
Circuits", International Test Conference, September 1992.

[5] M. Fujita, T. Kakuda, Y. Matsunaga, "Redesign and
Automatic Error Correction of Combinational Circuits",
Logic and Architecture Synthesis, ed. G. Saucier,
North-Holland: Elsvier Science Publishers B.V., pp.
253-262.

[6] M. Fujita, Y. Matsunaga, K.C. Chen, "On Application of
Boolean Unification to Combinational Logic Synthesis",
Proc. of ICCAD, November 1991, pp. 510-513.

[7] J.C. Madre, O. Coudert, J.P. Billon, "Automating the
Diagnosis and the Rectification of Design Errors with
PRIAM", Proc. of ICCAD, November 1989, pp. 30-33.

[8] I. Pomeranz, S.M. Reddy, "On Diagnosis and Correction of
Design Errors", Proc. of ICCAD, November 1993, pp.
500-507.

[9] T.Shinsha, T. Kubo, Y. Sakataya, J. Koshishita, K. Ishihara,
"Incremental Logic Synthesis Through Gate Logic Structure
Identification", Proc. of DAC, June 1986, pp. 391-397.

[10] Y. Watanabe, R.K. Brayton, "Incremental Synthesis for
Engineering Changes", Proc. of ICCAD, November 1991, pp.
40-43.

 NAME AMOUNT OF CHANGE WITH \ WITHOUT INCREMENTAL SYNTHESIS

OLD \ REUSED \ NEW QUALITY CPU TIMES (SEC)

 SOURCE IMPLEMENTATION AREA SLACK FUNCT. INCREM. REGULAR TOTAL
 LINES GATES (CELLS) (NS) CORRESP. SYNTHESIS SYNTHESIS

 A1 7315 \ 7314 \ 1 973 \ 800 \ 251 11498 \ 10245 -0.8 \ -0.8 232 \ 0 124 \ 0 698 \ 1110 1054 \ 1110
 A2 7315 \ 7314 \ 1 973 \ 952 \ 3 9806 \ 9949 -0.8 \ -0.9 232 \ 0 403 \ 0 234 \ 855 869 \ 855
 B 1440 \ 1439 \ 1 2676 \ 2675 \ 2 6622 \ 6621 -1.7 \ -1.7 128 \ 0 244 \ 0 315 \ 806 687 \ 806
 C 2514 \ 2492 \51 940 \ 895 \ 134 3238 \ 3092 -0.9 \ -0.8 26 \ 0 40 \ 0 207 \ 561 273 \ 561
 D1 12792 \12785 \19 4199 \ 4137 \ 107 40116 \ 39491 -1.0 \ -1.0 3718 \ 0 1168 \ 0 1275 \ 4485 6161 \ 4485
 D2 12804 \12795 \23 4124 \ 4077 \ 93 39938 \ 38937 -1.2 \ -0.9 3588 \ 0 1449 \ 0 1244 \ 4381 6281 \ 4381
 D3 12792 \12779 \41 4199 \ 4152 \ 64 39715 \ 38937 -1.0 \ -0.9 3718 \ 0 1283 \ 0 1192 \ 4381 6193 \ 4381
 C6822 6735 \ 6734 \ 1 2210 \ 2210 \ 0 7018 \ 7018 -5.9 \ -5.9 51 \ 0 108 \ 0 209 \ 1458 368 \ 1458

TABLE 1: Results of incremental synthesis

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

