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Abstract

We introduce CASTLE, a design environment for embedded
systems. Starting from an algorithmic specification in
Ci+/VHDL, CASTLE helps a designer to quickly find a
suitable, cost-effective implementation of his system. The
designer manually partitions the algorithmic specification
into hardware and software components and refines the
hardware architecture step by step. CASTLE provides
immediate feed-back by displaying the feasibility and
consequences of each partitioning decision. After parti-
tioning, CASTLE automatically outputs the hardware and
software components as VHDL and C++ programs. These
can then be simulated to validate the design partitioning.
Highlights of the CASTLE design environment include
support for product maintenance, arbitrary hardware
architectures and full design control by the designer.

1 Introduction

Embedded digital computers find their way more and
more into a wide variety of industrial products. Their
application ranges from automobiles to television sets,
from navigation equipment in pleasure yachts to simple
controllers in a washing machine. The production volume
of embedded processors is huge. Currently, about 2000
million microprocessors are sold yearly, of which only 2 %
find their way into a PC of some kind. The rest is for
embedded systems.

An important characteristic of embedded systems is
that they operate in a real-time environment. This
environment often imposes a limited response time on the
embedded system. On the other hand, the environment
often dictates low power consumption, a wide operating
temperature range, small sizes, etc.

Another important observation is that the commercial
success of an embedded product is much more likely when
the product idea is quickly implemented in a cost-effective
way. After its initial implementation, it must be possible to
maintain the design and adapt it to the evolving operating
environment and market demands.

Given this context, there clearly is a need for a design
environment to assist a designer with the transformation
of an algorithmic specification into a suitable implementa-

e

tion. Depending on the operating environment of the
embedded system and the algorithmic specification, im-
plementations can range from a simple single chip
microprocessor to a high-end multiprocessor configura-
tion. In both cases it may be necessary to add application
specific hardware to meet performance constraints.

In the remaining part of the paper we present CASTLE,
our codesign environment. In section 2 general require-
ments on a design environment are discussed. Section 3
describes the design flow to transform an algorithmic
specification into a cost effective implementation.
Section 4 then applies this theory to a real-world example,
the Gzip program for data compression. Finally, section 5
summarizes conclusions and indicates future directions.

2 Design environment requirements

A design environment for embedded systems should
have at least the following properties:

1 it starts with an algorithmic description in a
high-level language. This enables quick execution
and debugging of the algorithm before any attempt at
implementation is made. A high-level specification is
also crucial for successful maintenance of the
embedded system and helps documenting it.

2 it handles a wide variety of hardware architec-
tures. The designer must be given room for
experiments with various hardware configurations.
This not only includes exchanging one micropro-
cessor type with another type, but it also includes
changing the overall hardware architecture. For
instance, the designer should be able to compare an
implementation with a single powerful processor to
an implementation with three weaker Pprocessors
communicating through shared memory.

3 it is interactive and leaves control in the hand of
the designer. The task of implementing an algo-
rithmic specification is too complex and it involves
too many (non-technical) considerations than that it
can be left to a computer program, however sophisti-
cated. Of course, computer programs are extremely
useful to perform many subtasks in the design flow,
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such as analysis of the decisions made by a human
designer. A computer program may even recommend
certain components and a hardware—software
partitioning, as long as the designer has the last word
on it.

it presents the designer relevant statistical data
about his algorithm. Most of this data can be
obtained from profiling sessions, where the algorithm
is run with typical input data to identify functions and
operations that are most heavily used.

it presents the designer relevant data about the
(partial completed) implementation. Estimations of
production cost, power consumption, weight and size
and operating temperature range are important data
when the designer is deciding how to proceed. Also
data regarding the communication overhead between
hardware and software modules must be given to the
designer. Other relevant data may include an address
trace of one or more processors that the designer can
feed into a cache simulator to see if the implementa-
tion would benefit from a cache or not.

it is capable of reusing hardware and software
components  from a library. In industrial
environments there is a strong tendency to reuse
proven concepts and components. This is actually
another reason why the design environment should
accept the hardware architecture that the designer
imposes, not the other way around.

it supports maintenance of the implementation.
This means that the design environment must be able
to relate changes in the algorithmic specification to
possible changes in the implementation. It should not
be necessary for the designer to re-implement his
algorithm from scratch while the algorithm only
changes gradually.

The CASTLE design environment presented in the next
section was designed to comply with the properties listed
above. Comparing these properties to related work by
other authors [SB91,EH93,BR92,GC92] the properties 2,
5 and 7 have not been reported before and are therefore
considered the highlights of our system.

3 Design flow and methodology

Figure 1 shows the general design flow with CASTLE
(Codesign And Synthesis Tool Environment). A designer
models his system by an algorithmic description. Our
codesign environment accepts C++ and VHDL or a mix of
both languages. The algorithmic description can be a
manually written text file, or an output of a code generator
or CASE tool. The latter could provide a limited valida-
tion and rule checking in advance.
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Fig. 1: Design flow.

3.1 Design analysis

The first design step with CASTLE is to analyze the
given algorithmic description. This can be done statically
or, more accurately, dynamically, i.e. profiling the appli-
cation of the algorithm to selected input data.

Supplied with profiling results a designer can concen-
trate on the most promising design pieces where
optimization gains the highest speed up. Profiling is
especially useful if the designer did not write the original




specification but reuses one, developed by another de-
signer.

Important profiling points are functions and basic
blocks. A function is a mean of the designer to group
operations. A basic block is a straight-line single-entry
sequence of instructions with no branch except at the end.

Profiling basic blocks is important because all opera-
tions of a basic block are executed as many times as the
block itself, thus with the execution frequency of all basic
blocks known, the execution frequency of all operations of
a program is known. Sometimes it is advantageous not
only to determine how often a basic block is executed but
also from where the block is activated, i.e. to obtain traces
of branch directions taken [LB94]. We call this block
trace profiling.

CASTLE includes a modified version of GNU gcc 2.4.5 to
collect block trace profile data. Where GNU gcc is not
sufficient, ¢.g. in a mixed language description, a special
tool of CASTLE can instrument the algorithmic description
by adding profiling code into the C++ or VHDL source text.

The instrumented code is simulated/executed with data
the designer believes to be relevant for his specific
application. All parts of the design should be activated
several times to get meaningful statistics. The designer
should already have such a suitable set of test data in order
to validate his design.

Since profiling execution is already some kind of
simulation and thus potentially time consuming, we
recommend starting with an algorithmic description in
C++ because this code may be executed on any fast com-
puter. This is adequate if no absolute timing information
but only execution frequencies are needed. Gathering
profiling information quickly allows a designer to test
larger sets of input data, as compared to simulation, which
reduces the risk to miss some important program behavior.

In contrast to dynamic design behavior CASTLE also
analyses a design statically and obtains characteristics
like:

»  Dependency between operations.

. Distribution of operations in functions and basic
blocks.

. Communication statistics for calling functions e.g.
amount of data transferred between functions.

. Amount of data transferred between operations.

«  Existence of complex data addressing (pointers and
arrays).

Static and dynamic information is continuously avail-
able during the partitioning process.
3.2 Interactive partitioning

A designer implicitly writes his algorithm with a par-
ticular target structure in mind. Automatic partitioning
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algorithms would either need to detect and recover such

implicit structures, or the designer would have to provide

additional information to guide the automatic algorithm.

Therefore, it is adequate that the designer does the parti-

tioning himself, with a design system being his assistant.

From a list of architectures, the designer selects his

preferred target architecture. Known architectures for

instance are:

«  Processor and additional data path logic, e.g. multi-
ply/divide circuit.

+  Processor and intelligent coprocessor, e.g. 80386
CPU with 80387 arithmetic COprocessor.

«  Processors and application specific coprocessor.

The architectural library also contains several common
communication and synchronization mechanisms, such as
dual-port shared memory, FIFOs or single-staged 1/O
ports with hand shaking.

For the partitioning step CASTLE displays the list of
functions of the algorithmic specification and allows the
designer to interactively assign each function to hardware
or software execution, this is called component
assignment. Functions can be sorted by estimated
execution time. Additional information displayed, includes
a leaf-function tag and communication requirements, €.g.
what types of variables need to be transferred from one
calling function to the called function and back again.

A non-leaf function calls another function. If the
former is to be implemented in hardware but the latter is
to be implemented in software additional circuitry is
necessary to allow the hardware to activate the main
processor to execute the software. The leaf-function tag
informs the designer about such cases.

An alternative to component assignment is component
flattening which merges a called function into the calling
function. This modifies the topology of the algorithmic
description and allows the designer to easily choose a
more feasible function structure for his particular subpro-
gram.

During partitioning the designer refines the architec-
ture step by step, e.g. by selecting cost of operations and
restricting hardware components. After each partitioning
decision, the system estimates the consequences. A
master-slave architecture like in [EH93], for instance, is
more expensive in terms of communication than a dual-
ported shared memory, so the first architecture is efficient
if the amount of data to be passed is small. If the number
of arithmetic operations is high for a particular function, it
could be worthwhile to assign a hardware unit to it.
CASTLE then would show an estimation of the gain. There
can be also a loss in overall performance if the designer
erroneously chooses to assign complex addressing modes
like pointer accesses into hardware, because it might



require implementing the whole addressing mechanism of
a common CPU in a hardware module.

Eventually the designer has found a satisfying
structure. Then CASTLE will perform the actual
partitioning of his design into hardware and software
parts. CASTLE collects the various parts of the design that
were tagged as 'hardware' and generates a set of VHDL
modules from that. The interfacing is already determined
by the architecture template that was chosen in the begin-
ning (e.g. processor and additional data path). The
remaining parts become the software of the design. This is
actually a skeleton of the original design, reduced by the
parts that have been assigned to hardware now, but modi-
fied by the insertion of code to manage the interfacing
with the hardware modules (like O port handling and
synchronization mechanisms). The interface code is taken
from a special software library that is tailored to the
requirements of the architectural template.

For maintenance support CASTLE allows the designer to
modify a previously created implementation. It compares
the - modified algorithmic specification to the original
specification and identifies the subprograms that in any
case must be re-implemented, either because they are new
or because they are modified. CASTLE then presents the
modified list of functions to the designer who then inter-
actively proceeds with the implementation as described
above.

An embedded system often has restricted memory for
storing the software part. Therefore subprograms may be
mapped to absolute memory addresses during compilation.
For maintenance of such a system a special
compiler/linker is needed which can preserve previous
subroutine entry points when rewriting portions of code.

4 Co-design example

This section presents an example of the assistance pro-
vided by CASTLE. Here a designer reuses an existing
specification formerly unknown to him and wants to
improve its performance. With the aid of CASTLEs analysis
tools he can immediately focus on the most important
design parts and optimize them.

We choose the file compression program Gzip version
1.2.4 from Jean Gailly to demonstrate a typical design
flow using the CASTLE system. Gzip is written in C and is
freely distributed under the terms of the GNU General
Public License. It uses the Lempel-Ziv algorithm
[ZL77,We84] to compress files of arbitrary data content.

Gzip is intended to be used in a backup server
connected to a network. Data from the network to the
backup server should be transferred and compressed with
an average rate of about 100 KB / second. Data from the
server to the network is automatically decompressed which
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can be done faster than compression, hence we concen-
trate on compression only.

4.1 Gzip analysis

Gzip allows to trade compression quality for compres-
sion calculation time. We, as a designer, decide to
optimize the design for highest compression quality (Gzip
runtime option -9). First we select relevant input data to
profile Gzip. Our selection consists of the C-source files of
the Gzip program itself, which are ASCII text files, and
the Gzip executable binary file generated by gcc -pg. Tab.
1 characterizes this data.

File type File size [KB]
ASCII C program files 226
Binary executable files 192
Total 418

Tab. 1: Input data selected for profiling.

Basic block profiling is done on a SPARCStation 10
with the modified GNU C compiler. Some function call
frequencies are displayed in Tab. 2. Fig. 2 shows the ten
most frequently executed basic blocks and Fig. 3 presents
the innermost loop of Gzip.

One profiling run to obtain all function, basic block and
block trace execution frequencies requires 82 seconds, so
we could easily try some other sets of input data to profile
Gzip and see how this influences profiling results.

The global statistic output of CASTLE is useful for

Function name Call frequency

longest_match 128087
updcre 34
deflate 15
ct_tally 137009

Tab. 2: Call frequency of some selected functions.

Function, Block #

Il longest_match, 23 —

B longest_match, 42 \ \ .
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Fig. 2: Top 10 execution frequencies of basic blocks.




Exe. freq. Gzip program text Biock #
do {

8357608 ¢ match = window + cur_match; 23

8357608;: if (match[best_len] 1=scan_end W 23

1326392 ¢ match[best_len-1] 1=scan_endl !l 24

2880500  *match 1= *gcan I 25

1= scan[1] ) continue; 26

137870 #*4+match

8357541 } while((cur_match =
: prev[cur_match & WMASKY) > limit
&& --chain_length != 0);

42

8220758# 43

Fig. 3: Innermost loop of Gzip.

Cost
2

Operation

load mem

store mem

move reg

add, sub, cmp

and

shift

branch conditional
call

return

COProcessor load/store mem

N

3
1
1
1
1
1
1
1
2

Tab. 3: Basic costs selected for architecture.

judging the quality of our input data selection: Gzip
consists of 1291 basic blocks. 550 of these are activated at
least once with the given input data but only 96 blocks are
executed more than 10000 times. 727 different transitions
between basic blocks are taken but only 125 transitions are
taken more than 10000 times.

From the profiling results we se¢

The function longest_match of Gzip contains the
most frequently executed basic blocks and thus is
likely to consume the largest amount of computation
time.

Longest_match and ct_tally are functions that are
called very frequently while the functions upderc and
deflate are called very rarely. This gives us a hint on
communication needs between functions.

We can not conclude the true cost of a function in terms of
execution time solely from the execution frequencies. In
order to estimate the true function cost we have to select a
cost for every operation appearing in the function.
Assigning costs to operations is already part of the
architecture template selection of CASTLE. We choose
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Fig. 4: Cost distribution of functions of Gzip.

operation execution costs from [Cy90} which specify the
number of cycles needed on a SPARC processor (Tab. 3).
With these selected costs CASTLE presents us function
timing estimations as shown in Fig. 4 that allow to com-
pare the relative importance of each function. The
execution cost ¢s of a function fis
the costs of all basic blocks of f.

p = nsaess)
i

is the number of executions of basic block i of

calculated by summing

where ny,i
fand ¢y is its execution cost.

As the operation costs here are given in execution
cycles on a SPARC, we can estimate the absolute
execution time by multiplying the cost with the length of
one processor cycle. In our example we get an estimated
execution time of 6.6 seconds. This estimation compares
well to the measured runtime on SPARCStation 10
which is 6.5 seconds and therefore differs by only 1.5 %.
However the measured runtime is not considered to be
accurate because effects of task switching and network
access are included. Without these factors the estimation
could differ by up to 20 %.

4.2 Architecture refinement steps

Compressing 418 KB of input data in 6.5 seconds
gives a data rate of 64 KB/ second, which does not fulfill
our goal of 100 KB / second, hence we will try t0 improve
this rate by using special purpose hardware.

The functions longest_match and deflate seem to be the
most promising candidates for a hardware implementation
because 10ngest_match consumes 69 % of the total execu-
tion time while deflate consumes 8 %. For brevity we
concentrate on longest_match only.

Now we have to refine our architecture template. We
choose to implement our system as a single processor, in
our case a SPARC, with an additional application specific
coprocessor. Processor and coprocessor will communicate



IN: 28 Byte OUT: 8 Byte
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uint max_chain_length ) « match

uchar window[65536) Ongest_matc

uint strstart 1 uint match_start

uint prev_length [ int best_len
uint good_match
int nice_match

short uint tab_prefix[65536] [
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costis 1.4 % of
function cost

anononnn

Fig. 5: Communication requirements of function
longest_match.

through shared memory. The refinement enables us to
define costs for communication operations of processor
and coprocessor (load/store operations in Tab. 3) which
CASTLE uses to estimate communication overhead.

We try to move the function longest_match into the
coprocessor. Longest_match requires to transfer 36 bytes
between processor and coprocessor upon each call (Fig. 5).
The relative communication cost is calculated as:

clcr
where ¢; is the execution time cost of all data transfer
needed when applying Gzip to the sample input data. ¢; is
calculated as the product of the number of data units to
transfer times the cost to transfer one unit. Here one data
unit is 32 bit and the cost for one transfer is taken from
Tab. 3.

The next step is to design the coprocessor. The copro-
cessor will consists of several functional units which are
specially suited to execute function longest_match. First
we take a look at the distribution of operation costs for
function longest_match (Fig. 6). The cost of ALU opera-
tions (add, sub, cmp, and, shift) is 1.8 times the cost of
load-store operations. This suggests that our coprocessor
should have twice as much ALUs as load-store units.

Additionally we consider the operations of the most
demanding basic blocks (Fig. 3 and Fig. 7). Now we

sub
move reg
store mem
shift retumn

and

load mem

cmp

branch

add

Fig. 6: Cost distribution of operations in
function longest_match.

208

regl reg2 reg3 regd regs

regb

regd reg6 regl

Fig. 7: Schedule of the three most demanding basic blocks.

specify resource restrictions for functional units in the
coprocessor. This specification further refines our archi-
tecture template. We use two ALUs and a register file with
20 registers of 32 bit each. CASTLE schedules the opera-
tions of longest_match using a list scheduling algorithm
for the basic blocks. Operations of a sequence of the most
demanding blocks are merged into one block and are also
scheduled using list scheduling. This block is shown in
Fig. 7. The original dependencies between operations are
preserved using register renaming. In the last cycle shown
in Fig. 7 the renamed registers are copied to their true
destinations (move reg instructions).

With the new scheduled operations and the profiled
block transition frequencies CASTLE estimates the execu-
tion time costs for longest_match. As the list scheduling
does not move operations across block boundaries the set
of operations in a block remains the same. Execution time
saving for block i of function fis calculated by

(cpi—ci)ny;

where ny; is the number of executions of basic block i of f
and cy; is its execution cost on the processor while ¢;; is its
execution cost on the coprocessor depending on the list
scheduling. For the merged blocks, estimation is more
difficult as the execution frequency of the sequence of
blocks is not directly known from profiling. Block trace
profiling determines only single transitions but not longer
sequences. Estimation simply uses the minimum of each
single transition as the execution frequency of the
sequence. This overestimates cost savings but will be
sensible for the most important inner loops of a program.
In our example the estimated speed up of
longest_match is 2 (150,788,439 clock cycles for a
software solution compared to 75,810,539 cycles for a
hardware solution). This will improve the complete Gzip




algorithm by a factor of 1.4 but will not quite reach our
desired data rate of 100KB / second. We examine the
schedule of Fig. 7 and define that one of our ALUs can
execute the ‘shift’ and the following ‘add’ operation in
one cycle. This shortens the critical path by one cycle.
Now CASTLE estimates the speed up of longest_match to
be 2.23 and the speed up of Gzip to be 1.6, which yields
the desired data rate of 100 KB / second. We then tell
CASTLE to output this configuration in hardware and soft-
ware and simulate it to verify the estimations.

4.3 Gzip coprocessor

The generated description of the datapath of the
COprocessor Consist of 370 lines of VHDL. We used
Synopsys Design Compiler version 3.1a to synthesize the
necessary components. Statistics are shown in Tab. 4. The
coprocessor datapath is shown in Fig. 8. Synthesis of the
datapath including all components on a SPARCStation 10
took 23 hours and used 120 MB swap space and 80 MB
RAM. The datapath is controlled by a sequencer which
has 200 words of microcode, with 45 Bits each word. To
allow reconfiguration of the coprocessor, the microcode
can be stored in a fast RAM inside the coprocessor. This
RAM is taken from a component library and not
synthesised. If reconfiguration is unnecessary the
microcode is stored in ROM instead.

Components Area/NAND gate equiv. Delay/ns

ALU1 1037 13.2
ALU2 766 7.4
Mux 160 0.8
RegFile 14122 2.4
LdStore 527 2.4
tot. datapath 18147 18.2

Tab. 4: Datapath statistics.

WrtPortAdrs ~ Rd PortAdrs  Flags ALU1
il il 2Bt f—op
add, sub, cmp
and-shift

Crl
Register File

-—

20 * 32 Bit Load Store —‘Z’emory
Mux Crl
ALU2
32 Bit

Flags et add

Fig. 8: Datapath of coprocessor.
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One important factor of the selected shared memory
architecture is that the coprocessor accesses memory at the
same speed as the main processor, that is, both either use
the same cache or the processor does bus snooping to be
aware of memory changed by the coprocessor. Without
this, coprocessor memory access cost would increase too
much to gain a considerable speed up.

5 Conclusion and Future Work

The CASTLE design environment helps the user to
quickly find a suitable, cost-effective implementation for
an algorithm. Compared to other design environments,
CASTLE aims at several new goals. It handles different
hardware architectures, it provides detailed information
about the implementation at any stage during the design,
and once the design is ready it can maintain the imple-
mentation.

Currently the CASTLE environment is still under con-
struction. Future research aims include tools to suggest
hardware—software partitioning schemes to the designer.
Several algorithms to automatically find such partitioning
have already been presented, for example [EH93), [BR92],
[GC92]. Further research must show how these algorithms
compare to each other and how they can provide helpful
information to the user.
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