Hardware/Software Selected Cycle Solution

John Wilson

Viewlogic/Vantage

1. Introduction

For many system designs where hardware and
software are co-dependent , there often exists a
design bottleneck where most of the hardware
design has to be completed and fabricated before
meaningful software verification can begin.

In some sectors of electronic design where
competitive markets require that the design cycle has
to be completed quickly - mobile phone handsets
and image decoders, for instance - having the
software ready and substantially debugged as soon
as the hardware is ready can give a significant
competitive advantage.

This paper describes a methodology that allows
practical hardware/software co-simulation to achieve
meaningful software verification early in the design
cycle.

The technique allows software development and
testing to be more concurrent with the hardware
development by using simulated models of the
hardware design to interact with the software
programs.

A high level of performance is achieved by using the
simulated description on selected target processor
cycles only. Only the important bus cycles are
simulated in the hardware simulator.

0-8186-6315-4/94 $04.00 © 1994 IEEE

190

Most of the software program is executed directly
on the host computer.

The techniques described in this paper are the
subject of a patent application.

2. Previous Work

Software and hardware designers currently use some
aspects of the work described in this paper.

2.1 The Software Developers View of
Hardware

Software developers are used to dealing with
hardware in terms of abstract function calls. All
interaction with the hardware is via these function
calls instead of directly reading and writing memory
mapped addresses.

The functions take care of the sequences of low-
level reads, writes, and interrupts require for each
action.

This methodology allows software designers to test
their code without the hardware being present. The
functions that interact with the hardware are often
replaced with alternative functions that emulate
possible responses from the hardware.

The main problem is that the functions that emulate
the hardware seldom provide completely accurate or
verified responses. The modelling overhead can be
significant.

3. The Hardware Developers View
of Software

Most hardware designers who create simulation
models of a circuit that incorporate processors can
conceive of running programs on the simulated
hardware circuit.

There are a number of practical considerations
which prevent a reasonable level of verification of
the software program.

For commercial processors, an accurate simulation
model may not be available for the simulator.
Processor design houses carefully guard detailed
architecture models to make reverse engineering by
competitors as difficult as possible.

Some fully functional ‘binary” models of processors
are available for simulators[4]. To execute the
software program on the simulator requires that the
software program be compiled into a binary format
and loaded into the simulated circuit memory.
Executing the program at this binary level requires
the simulator to do many calculations during each
processor cycle. The result is that only very limited
amounts of code (usually substantially less than a
complete program) can be verified.

Another alternative is to replace the full processor
model with a bus-functional model. This can
emulate each of the processor cycles but has no
internal representation of the processor. Some bus-
functional models have a meta-language[4] which
allows sequences of bus cycles to be executed under
the control of a program - but this program has no
connections with the software developers program.

Some developers have started to use hardware
modellers to interface real-life processors to the
simulation model. The object code can execute on
the target processor. However, here the speed
bottleneck is not in executing the program, but in

191

the communications overhead require to interface
the hardware modeller to the simulator program.
This can involve significant communication across a
computer network, and can require the hardware
modeller to rerun all the previous simulation
patterns for each new processor cycle.

4, Method Description

From outside the simulation, bus cycles messages
are passed down the pipe into the processor model.
The model would then perform the appropriate bus
cycles. A 'write' cycle message would cause the
pins on the processor simulator model to perform
the sequence of a write cycle. A 'read’ cycle
message would cause the processor simulation model
to perform the sequence of a ready cycle, and report
back the results that appear on the data bus of the
model (Figure 1).

Selected Cycle Simulation (SCS) recognises that
processor based circuits can be divided into two
distinct functional parts.

The essential circuit comprises the processor and the
other parts of the circuit without which the
processor could not function. This typically
includes memory such as RAM and ROM, and other
related logic functions.

The peripheral circuit comprises the rest of the
circuitry which makes this design unique from other
designs based on the same processor. This may
include ASICs and FPGAs which assist the
processor in calculations. Or, the processor circuit
may act as a ‘'housekeeper' for a specialised
peripheral circuit - taking care of initialising
registers and general maintenance tasks while the
peripheral circuit performs it's function.

A software program written in a high level
language, and with the appropriate compiler
available, could conceivably execute on any
processor as long as its essential circuitry was in
place, and as long as it did not try to access or
utilise any peripheral circuits. In fact, such a self-
contained program would be useless because there
would be no way in which the results of the program

could be communicated to the outside world.
However, it does serve to illustrate that the bus
cycles that the processor performs in conjunctions
with the essential circuits may be irrelevant to the
verification of the program.

The software program would also contain 'drivers’
to interact with the peripheral hardware. There
drivers may contain a sequence of read, write and
interrupt cycles which the processor has to perform
in conjunction with the peripheral hardware to allow
interaction between the program and the peripheral
hardware functions.

This method proposes that, within the simulated
model of the processor circuit, a detailed model of
the processor is not required. Instead, the processor
can be modelled as a bus-functional unit, having
knowledge of the different processor cycles, but
having no internal representation of the processor.
The processor model should also implement a bi-
directional communications channel outside of the
simulation. This channel might be implemented as
‘pipes’ in the UNIX operating system, for instance.

Controlling the messages into the pipe can be the
software program. However, the software program
has been prepared in a different way to work with
the pipes. Firstly, each 'driver' has been replaced
with an equivalent function which passes messages
to the pipe and waits for an answer (if appropriate).
Secondly, the software program is cross-compiled to
run on a host computer with the simulation 'drivers’
linked in place of the ultimate 'drivers' (Figure 2).

The net effect is that most of the software program
1s executed within the host computer. Whenever the
hardware driver routines are executed, some
interaction with the hardware simulator is initiated.
The hardware simulator executes ‘only the bus cycles
required by the driver. As soon as the require
response is available, the hardware simulator can
suspend processing and the software program
resumes.

192

5. Limitations of this Methodology

This technique has some limitations which may
restrict it's application or invalidate results obtained.
However, in many cases, these limitations can be
overcome quite effectively.

5.1 Modelling Limitations

This technique relies on separating the essential
circuit from the peripheral circuit. In classical
processor circuits it is very easy to obtain the
information required to model the bus cycles. The
internal structure is not important.

However, processors with integrated peripherals are
widely used. This means that part of the peripheral
circuit may be contained with the processor model
and may have to be modelled. This is far from a
trivial task. If conventional models exist for the
processor, it is possible to replace the CPU core
whilst retaining the peripheral circuitry description.
5.2 Time Dependent Software
Functions

Sometimes programmers will use software timing
loops to pause the program for expected responses
from the peripherals. However, the time sense of
the executing software program and the simulator
'slip"' with respect to each other. The response may
not be available when expected.

One way around this problem is to use some
handshaking protocols, where the program keeps
checking a status flag to find out if a valid response
has arrived yet. Another technique is to expand the
bus cycle commands to ensure that the cycles are
executed within the simulator - and a number of
extra cycles corresponding to the timing loop.

53 Different Technique for Handling

Interrupts

The best method of handling interrupts seems to
differ for different program styles.

One method is to pass an interrupt message, via the
pipe, to the software driver function, and let the
driver function handle the interrupt. If the interrupt
is part of the handshaking protocol of the driver,
this may be acceptable (for instance if a register is
written, and an interrupt signals that the response is
ready to be read).

A second method is to utilise the software facilities
in UNIX. An extra pipe can be created to allow
interrupt messages to be passed back to the OS.
This can cause a UNIX interrupt to be created. The
software program can respond to a UNIX interrupt,
In many cases, the structure of interrupt driven
software make this second method more attractive.
5.4 Performance Management

The time slippage in the hardware simulator make
accurate timing measurements of programs
executing on the simulated hardware impossible.
However, it is quite easy to measure accurately the
amount of peripheral read and write cycles.
Combining the with 'code-coverage' statistics which
can be generated from the software program can
result in a quite accurate ‘guesstimate’ of
program/circuit performance. Complete accuracy,
however, can only be obtained from a complete
system model, with the commensurate performance
penalty in speed of program execution.

5.5 Practical Experiences

A number of test designs, including a full industrial
test installation at Siemens in Munchen have been
completed.

All the models have been built to run in the Vantage
Optium VHDL simulator using the STYX 'C
interface[3]. The STYX interface allows C models
to create and respond to events within the

193

simulation. STYX allows X library functions to be
linked into the models.

Communicatiogs between the model and the
software program have used UNIX pipes (fifos).
This allows a very simple flow control mechanism
between the software and hardware programs.

A 'software developers' kernel has been written,
This contains a set of functions to interact with the
pipes. It allows the software developer to interact
with the hardware simulator at a cycle level (e.g.
scs_read() and scs_write().

One benefit of the software developers kernel is to
make the code processor-independent; the choice of
target processor is irrelevant to the software
programmer as long as the bus cycle instructions and
the peripheral hardware interface remain constant.
Functions for some bus cycles, such as read-modify-
write, are relevant to some processors but not to
others.

For VHDL simulators, there are specific
initialisation requirements which can make it
awkward to sequence the initialisation of the UNIX
pipes[1]. For this reason a start-up script to create
the pipes, initialise the simulator, and initiate pipe
communications was implemented. This prevented
occasional dead-lock where the simulator was
waiting for pipe initialisation, and the software
program was waiting for pipe initialisation, and the
software program was waiting for the simulator to
initialise the pipes.

All the information for the simulator models was
taken from freely available data books. The same
basic structure has been adopted for each processor’s
program.

All processor cycles are coded into the number of
states required for that operation. A counter is used
to track the current state of the cycle. A test is done
at each state to establish it is valid t move to the next
state. At the end of the cycle, the processor model
moves back into an idle mode,

On each clock cycle (or appropriate trigger), a check
is done for any high priority system actions such as
reset signals or halt signals becoming active. If
none are detected, then any current cycles are
evaluated and processed. Only when the processor
is an idle mode are interrupt signals processed.

When all sources of actions have been exhausted,
the processor will check the pipe for the next
instruction from the software program.

The only customisation require for each program is
to map the high level actions onto the individual
ports values at each place in the sequence.

5.6 System Performance

Initial test programs consisted of nested loops of
read and write cycles. Subsequent test programs
have had a higher proportion of software
instructions. In all cases, the dominant performance
factor is the speed of the simulator.

The overhead in the communications channel is
relatively low. The part of the program executing
on the host computer may be executing faster than
on the ultimate target system.

Initial test programs consisted of nested loops of
read and write cycles. Subsequent test programs
have had a higher proportion of software
instructions. In all cases, the dominant performance
factor is the speed of the simulator.

The overhead in the communications channel is
relatively low. The part of the program executing
on the host computer may be executing faster than
on the ultimate target system.

Initial tests on an HP715 computer, running Vantage
vss_4.200 hp, showed speeds of over 107400
read/write cycles per hour. This figure is the
elapsed time to run the software program including
all interaction with the VHDL simulator (which was
running concurrently on the same machine). The
simulation model used was a SCS model of an
Motorola MC68302[2], some .read and write
registers, and a gate-level 64x64 multiplier where
data was written to the inputv registers, passed

194

through the multiplier, and the answer was latched
into the output register, and read back into the test
program via the SCS model and interface..

As the VHDL models of the peripheral hardware
became more complex, this speed of the read/write
cycles decreased. This was due to the VHDL
simulator taking more processor resource to execute
the more complex VHDL models. Subsequent tests
on application programs have shown that few
applications seem to access the peripheral circuitry
for more than 5% of the program.

6. Summary

This paper has shown a technique that allows
significant software verification to happen
concurrently with the hardware design phase of a
project. This technique is practical because it builds
on established techniques in both software and
hardware design.

The software developer is used to testing programs
by replacing missing or incomplete parts with
emulations. In this case the emulation comes from
the interaction with the hardware model simulator.

The hardware developer can test his models under
more rigorous conditions by using the software
program to apply test patterns in a realistic way.
Through VHDL and other hardware description
languages, hardware designers are becoming
accustomed to the idea of more abstract simulations.

This technique allows for a larger amounts of code
to be tested and verified than before - because only
essential cycles are executed in the hardware
simulator. Most of the program execution is taking
place in the host computer processor at a rate
comparable (sometimes faster!) than the final target
system. Model implementation is relatively simple,
and require information in the public domain only.

	Main Page
	CODES94
	Front Matter
	Table of Contents
	Author Index

