
VEBoC: Variation and Error-Aware Design for Billions of Devices on a Chip

Abstract – Billions of devices on a chip is around the
corner and the trend of deep submicron (DSM) technology
scaling will continue for at least another decade.
Meanwhile, designers also face severe on-chip parameter
variations, soft/hard errors, and high leakage power. How
to use these billions of devices to deliver power-efficient,
high-performance, and yet error-resilient computation is a
challenging task. In this paper, we attempt to demonstrate
some of our perspectives to address these critical issues.
We elaborate on variation-aware synthesis, holistic error
modeling, reliable multicore, and synthesis for
application-specific multicore. We also present some of our
insights for future reliable computing.

I. Introduction

The continuing progression of transistor-integrating
technologies into the DSM scale is offering great
opportunities for designing big and increasingly smart
System-on-Chips (SoC) and multicore chips. At the same time
it is posing enormous challenges to the engineers in IC design
and manufacturing, as well as CAD. It is critical that the
challenges be understood and addressed at both levels to
enable acceptable performance, reliability, yield, and cost in
next generation chips. These challenges can be summarized in
the following paragraphs.

Process variation. Figure 1 shows the significant
variability trends in a number of process parameters [1].
Transistor parameters such as channel length, gate-oxide
thickness, and threshold voltage vary due to limitations in
lithographic techniques, dopant variation, variations in
chemical polishing due to non-uniform layout density, and
layout dependent stress variation [2]. The results of these
variations on the final product can include lower yield, lower
reliability, high power usage, and lower than expected
performance.

Design reliability. Besides process variation, a host of other
issues, such as manufacturing defects, cosmic event upsets
(soft error) and transistor aging, are becoming increasingly
alarming. Especially, soft errors are becoming a serious
problem in circuit design due to shrinking process dimensions.
The smaller dimensions create a situation where the
capacitance at each node in the circuit is lower, consequently
requiring a smaller amount of charge to cause a glitch.

Design productivity. The gap between chip integration
capacity and design productivity is growing wider. When
taking into consideration the short time-to-market constraints
that design teams have to deal with, the problem becomes
even more acute. Meanwhile, the development of efficient
techniques for extracting computational parallelism and

binding it optimally in the available resources is difficult.
With the great promise of billions of devices on a chip to

integrate more functionality and computing power, uncertainty
of system performance and reliability also comes along. A
more complete approach is to make the design of SoCs and
multicore systems variation-aware and error-aware. We call
this approach VEBoC Variation and Error-aware design for
Billions of devices on a Chip. This paper provides a high-level
view of some of our design efforts to make VEBoC a reality.

The rest of the paper is organized as follows. In Section II,
we present our view on variation-aware high-level synthesis.
In Section III, we introduce a holistic error model and its
potential usage on reliable circuit design. In Section IV, we
present some of our insights on general-purpose multicore
design. In Section V, we show our idea of application-specific
multicore design. We then conclude this paper in Section VI.

Figure 1: Variability trends in key process parameters with scaling
process technology. The x-axis is year and the y-axis represents the

variability in process parameters (courtesy of [1]).

II. Variation-Aware High-Level Synthesis

Behavioral synthesis (or high-level synthesis, HLS)
transforms a behavioral description of a digital system into a
register-transfer level hardware implementation consisting of a
datapath and a control unit. The datapath consists of four types
of components or resources, including functional units (FUs),
storage units (such as registers), multiplexers, and
interconnects. HLS usually consists of three subtasks:
scheduling, resource allocation, and binding. The design
specification is first compiled into an internal representation
(such as a control-data flow graph), which is then mapped to
the resources, selected from the resource library, to optimize
design goals (such as delay, power, and area). Synthesis at the
behavioral level is desirable because, compared to synthesis at
RTL, code density can be reduced by ten times, and

Shoaib Akram, Scott Cromar, Gregory Lucas, Alexandros Papakonstantinou, Deming Chen

Electrical and Computer Engineering Department
University of Illinois, Urbana-Champaign

e-mail: {sakram3, scromar2, gmlucas2, apapako2, dchen}@uiuc.edu

9D-2

803978-1-4244-1922-7/08/$25.00 ©2008 IEEE

simulation time can be reduced by one hundred times. Such a
design productivity boost is much needed for next-generation
chips with billions of devices.
 The traditional approach has utilized the worst-case delay
and power for each FU for design-space exploration during
HLS. Unfortunately, the significant variations in device
parameters in new process generations cause large variations
in delay and power for FUs, multiplexers, and other resources,
resulting in inadequate and less than optimal solutions. To
overcome this, HLS must consider process variation. This is
facilitated by the statistical characterization of power usage,
delay, and area for each of the resources in the resource library.
By accurately modeling and characterizing the random and
systematic variations inherent in each resource, statistical
information can be incorporated into the design.
 Accurate test structures for characterization and modeling of
the different sources of variation are critical in making
statistical HLS successful. The resource models used must
accurately reflect the actual fabricated behavior. This means
that data concerning the types of variations (whether they be
systematic or random), their scope (within-die, die-to-die,
wafer-to-wafer, etc.), and how they correlate with one another,
must be accurately gathered from real wafers and then
processed. Complicating the resource characterization is the
fact that device parameters and variations for a given process
(and a given wafer fabrication facility) drift over time. To
compensate for this, test structures designed for capturing
variation data (such as those proposed in [3]) must be run
frequently, and then resource libraries must be updated.
 Once resources have been characterized for statistical delay
and power variations, they can be used in new statistical HLS
scheduling, allocation, and binding routines. As power, delay,
and area are all interrelated, the variation-aware synthesis
engine must address all of these factors simultaneously. The
incorporation of multiplexer and interconnect variation is
particularly important due to their dominant contribution to
overall power and delay in modern technologies. Additionally,
to accurately capture physical design information, the
synthesis engine must connect to the actual layout of the
design.
 Probability distributions of power and delay for each of the
resources will need to be considered during the synthesis steps.
For example, for a scheduling and binding solution consisting
of a multiplexer (mux) followed by an adder, the total delay is
given by: addwiremux d+d+d=delay , where dmux, dwire, and dadd

are delay values for the mux, wires between the mux and the
adder, and the adder. With statistical modeling, each of these
delay values will become a delay distribution. In general, if
there are k components in a path p, the delay distribution of
the path with random variable x is

iii
k

1=ip ,PDFConv=xPDF , where i and i are the
mean and standard deviation of the delay distribution of
component i, and Conv is the convolution operation. The
timing yield will be evaluated probabilistically, which will be
used in evaluating the effectiveness of the solution at meeting
design goals. Similar statistical methods can be used for
power calculations.

Another key to the effectiveness of the statistical HLS will
be the consideration of physical design information, such as
circuit floorplanning information. To optimize for power, area,
and delay, the relative placement of FUs must be optimized,

which largely determines layout area and interconnect usage.
This is important because layout area and interconnect have a
major effect on overall power consumption and delay.
Exploration of the design space in the presence of these
variables can be accomplished by an iterative solver using
Pareto point pruning, while the cost of each solution under
variation can be evaluated through a novel statistical cost
function. A statistical resource library in behavioral synthesis
enables early and accurate design space exploration. This
allows for the mitigation of the anticipated negative effects of
variation, and increased delay in interconnects, at design time.

Future work in variation aware synthesis will further
integrate variation information to enable more robust and
reliable circuits. This will be accomplished through the
synthesis of circuits that are dynamically aware of variations
in circuit parameters due to events such as device failure and
temperature variations. High-level design and synthesis tools
will need to be developed that can automatically anticipate
these types of variability, and build in circuits to compensate.
As stated in [4], this will mean moving “away from the
concept of building margins (whether worst case or statistical)
and focus on adaptive techniques for addressing variability
and building robust circuits.” These developments will be
critical in the future to enable higher performance and lower
power chips at ever higher levels of integration.

III. Error Modeling and Fault Tolerance

In addition to manufacturing defects and process variation,
problems involving soft errors and transistor aging also need
to be addressed in new DSM technologies. In order to
counteract these issues, fault tolerance techniques need to be
integrated into designs. There have been a number of fault
tolerance techniques proposed in the literature. They span the
hierarchy from gate level techniques to architectural level
techniques, but they can all be classified into three categories:
1) time-redundant techniques, where results are recomputed
after errors are detected (e.g., Razor [5]); 2)
resource-redundant techniques, where multiple copies of same
logic are used to compute results for comparison (e.g., TMR –
triple modular redundancy [6]); and 3) information-redundant
techniques, where check bits are added to form code words
and checkers are used to check whether the outputs belong to
the code space (e.g., [7]).

Selecting and applying the best fault tolerance technique or
techniques to a design is a problem that will need to be
addressed. Currently, the majority of error types are modeled,
and fault tolerance techniques are applied, independently of
each other. As devices continue to scale, it will no longer be
possible to maintain this independence. By modeling each
error type independently, a worst case condition is assumed.
As has been shown with the current paradigm shift towards
statistical static timing analysis (SSTA), worst case design in
nanometer processes is not feasible. Therefore, accurate
statistical error models will need to be created that take a
holistic approach by incorporating many different types of
errors into a single model. Probability transfer matrices
(PTMs) are proposed by [8] to model the susceptibility of a
circuit to defects and soft error. This method can be extended
to arrive at a holistic model if timing errors due to process

9D-2

804

variation and aging can be considered also. The computational
complexity of the method might limit its ability to efficiently
model large circuits. This problem can be partially addressed
by compression of the matrices similar to that shown in [9].

With a holistic error model of the circuit, fault tolerance
techniques can then be applied. Currently, the majority of fault
tolerance techniques are targeted towards a specific type of
circuit error. The interactions between different techniques, as
well as the effect a fault tolerance technique has on other types
of errors will need to be considered due to the potential to
both improve and decrease the performance of the circuit.
The following situation is given as a motivating example.

An error model for a circuit has been constructed through
the methods described above. It shows that the probability of
the circuit working correctly is 0.75 when considering the
effects of process variations, manufacturing defects, NBTI
(negative bias temperature instability) transistor aging, and
soft errors. This probability for correct operation does not
meet the design specification and requires the addition of fault
tolerance techniques in order to boost the reliability of the
design.

Since the types of errors are varied there might not be a
single fault tolerance technique that can efficiently solve the
problem. Multiple techniques will be needed in order to
sufficiently boost the reliability of the chip. By using the error
model, the overhead due to the fault tolerance techniques can
be minimized. For example, if the designer were to look at
each fault independently, (s)he might try to boost the soft error
resilience through selective node engineering, and (s)he might
add TMR to protect against manufacturing defects, as well as
other techniques for the remaining error types. The end result
is an over-designed chip dissipating a large amount of power
while delivering low performance.

However, if the designer were to use a holistic error model,
the overhead due to fault tolerance would be minimized. For
example, the error model would show that through adding
some local TMR logic for manufacturing defects, the
susceptibility of the design to soft errors and process
variations has been lowered, reducing or eliminating the
number of places where selective node engineering is
required.

The above example demonstrates the need for a holistic
approach when selecting proper fault tolerance techniques. It
shows the importance of the holistic error model and the need
to understand how a fault tolerance technique affects all types
of errors. It also shows one of the many opportunities to lower
the overhead caused by fault tolerance techniques. The
example also exposes the need for improved fault tolerance
techniques. As mentioned, the majority of fault tolerance
techniques are meant for a specific type of error. They are
tested against the assumption that the only type of error in the
circuit is the one they are correcting. This assumption will not
be valid as processes continue to shrink. New techniques will
be needed that can operate in the face of different fault types
and numerous faults of the same type.

One promising technique that can be used to meet these
requirements is pair modular redundancy (PMR), as shown in
Figure 2. The idea behind this design is to reduce the number
of duplications compared to TMR, but augment the circuit
with a coding scheme. Therefore, it is a combination of
resource-redundancy and information-redundancy. The code is

then used in the multiplexers to determine which output is
correct. By interconnecting the modules at the output, it is
possible to route around hard or soft errors in different stages
of the structure.

Figure 2: Pair modular redundancy (PMR)

Holistic error modeling in conjunction with fault tolerance
techniques will become a requirement in future processes.
Minimizing the power, timing, and area overhead due to fault
tolerance techniques will be the key to continue increasing
performance at current rates.

IV. General Purpose Multicore

While superscaler processors are efficient for applications
that can exploit high Instruction Level Parallelism, chip
multiprocessors are practical for applications that can spawn
concurrent threads to be run on multiple cores. As a
commercial example, the system-level diagram of the IBM
Power4 is shown in Figure 3.
 The multiple cores in current chip multiprocessors (CMPs)
are connected via a shared bus. However, as many cores will
be integrated in future, microarchitecture changes may be
needed to scale the shared bus fabric without performance
degradation. One alternative to the shared bus fabric is
Network-on-Chip (NoC) communication infrastructure used in
many recent designs. A generic NoC is shown in Figure 4.

The shared bus mechanism to connect multiple cores is
well-understood and works well for current microarchitectures.
The concept of sharing resources among cores can be taken
from conventional multiple computer systems and applied to
chip multiprocessors. Also, for moderate increase in the
number of cores, hierarchical bus architectures and segmented
or pipelined wires can be used instead of a simple shared bus
fabric. However, for large number of cores, the shared bus
fabric will become a bottleneck as more components are
connected to the same set of wires. With NoC fabric, a generic
network router and associated protocols can be used for chip
multiprocessors of any number of cores, and scaling issues
may be removed. However, system designers will need to
learn the details of new on-chip communication design and
rewrite software code to control synchronization among
network components. A detailed study of related concepts can
be found in [11].

Chip multiprocessors present new challenges to both the
application software developers and the microarchitects. Some
of the issues involved in the design of efficient chip
multiprocessors addressed in previous research are discussed
below.

The design of interconnection network, cache hierarchy,
memory consistency model, bandwidth requirements, and
power management are interrelated in the design of chip
multiprocessors as shown in [12]. Fair caching is also an

9D-2

805

Figure. 3: High-level diagram of IBM Power4 [10]

Figure 4: A general NoC structure illustrating the routing
infrastructure to connect multiple cores [11]

important issue as number of cores is increased [13]. The
number of cores that share a cache resource and the level of
private cache hierarchy for a single core have a high impact on
the overall throughput of a chip multiprocessor. The level in a
cache hierarchy at which memory consistency must be
maintained is also an important issue. In [14], the authors
provide coherence protocols considering the impact on
interconnect latency. In order to exploit maximum parallelism,
thread management is an important task and can be done
either at the operating system layer or in hardware. In [15], a
hardware approach is provided that dynamically maps threads
to cores on a run-time basis.
 As more cores are integrated on a chip, the scaling of
current microarchitecture techniques is a growing concern.
For instance, the overhead for snooping based cache
coherence protocols will increase linearly as more cores are
added on a chip. Similarly, some threads may benefit from
more execution units while other may work as efficient with
lesser execution units. Dynamic system configuration based
on workload characteristics can be a good performance
booster. Techniques may include turning off snooping if it is
not beneficial, or allocating communication-intensive threads
to cores connected through short buses dynamically.
 Heterogeneous chip multiprocessor is promising to reduce
power consumption while maintaining high performance by
allowing the processor to better match execution resources to
each application’s needs [16]. To build reliable multicore
systems, different architecture-level techniques can be applied.
For example, the ALU may be replaced by a PMR module.
Other standard techniques include pipeline-level redundancy
techniques and core-level redundancy techniques, where one
core checks another core.

V. Application-Specific Multicores

We aim to address the DSM challenges by automating the
design of efficient and high-performance systems that are
customized for a particular application. Following the same
design trend in general-purpose multicore architecture, we use
application-specific multicores for high throughput with low
power, where each core does not need to run in high frequency.
The key optimization step is system-level synthesis (SLS).
Our target is to automate application-specific multicore design
for any size and type of HLL (high-level language)
application.

Our system level synthesis flow (Figure 5) is based on three
key constituent elements:

- An advanced software compiler for extracting both the
fine-grain and coarse-grain parallelism available in the
application.

- A custom instruction-less processor which is built to fit
the tasks it is assigned to.

- A hardware compiler which combines the parallelism
information extracted by the software compiler and the
customization flexibility of the instruction-less processor
to build an efficient multicore system for the application.

Figure 5: Multicore system level synthesis flow

A. Software Compilation

Our software compiler is based on the IMPACT compiler
[17][18]. IMPACT has been traditionally focused towards
instruction-level parallelism (ILP) extraction for EPIC
(Explicitly Parallel Instruction Computers) architectures [19].
This type of parallelism is extracted through:

- traditional compiler optimizations, such as function
inlining, loop distribution and unrolling, etc.

- statistical techniques based on application profiling and
the formation of superblocks and hyperblocks.

We refer to this type of parallelism as fine-grain parallelism,
and our system processing cores are designed specifically to
take advantage of the fine-grain parallelism exposed by the
IMPACT compiler. More information on the instruction-less
processor cores is available in the following subsection.

Apart from the fine-grain parallelism, many media,
scientific and other modern application have a great deal of
coarse-grain parallelism which may be hidden in the
sequential HLL description [20]. Extracting and mapping
these coarse level tasks in different cores of the system can
lead to remarkable improvements in performance and
efficiency of the application execution. During recent and
ongoing work, the IMPACT compiler is enhanced with a
strong synergistic portfolio of different analysis techniques
that can help expose the coarse-grain parallelism [21] inherent
in many of the popular applications used in embedded systems

A
pp

lic
at

io
n

co
de

Software
Compilation &

Annotation C
om

pi
le

d
co

de
w

ith
 p

ar
al

le
lis

m

an
no

ta
tio

n Hardware
Compilation

(System-level
& Core-level) A

pp
lic

at
io

n
Sp

ec
ifi

c
Sy

ste
m

9D-2

806

today. In particular, a combination of different analysis
techniques focusing on 1) pointers, 2) arrays and structures
and 3) variable constraints and relationships, are effectively
applied to discover different forms of coarse-grain parallelism.
The different types of coarse-grain parallelism are
distinguished in:

- intra-loop parallelism (iterations within loop are
independent).

- cross-loop parallelism (iterations of a loop are only
dependent on specific iterations of a second loop but not
on the entire second loop).

- region parallelism (independent static code regions).

Our SLS flow expands the IMPACT coarse-grain
parallelism extraction scheme by explicitly exposing the
extracted parallelism on the compiled code. In particular, we
are designing an efficient parallelism-annotation which will be
applied on the IMPACT compiled application code exposing
the different opportunities for parallel execution. This
annotation will be read by the backend hardware compiler and
will be used to build an efficient multicore system as
described in a later subsection.

B. Processor Core

Our synthesized system is based on the utilization of
multiple cores, each one of which is an appropriately
parameterized version of the instruction-less custom processor.
This processor is based on a VLIW-like array of Functional
Units (FUs) which are controlled by a microcode (MC)
memory (Figure 7) which stores microcode words. Each
microcode word controls the data processing and data flow in
the custom processor for one cycle. A program-counter
register stores the address of the microcode word that will be
executed in the next clock cycle, while an address generation
circuit generates the next microcode memory address and
stores it in the program counter.

In order to take advantage of the ILP extracted by the
IMPACT compiler, our instruction-less processors are
extended with extra architectural features. These features
include:

- a predicate-register-file for storing the predicate values
used in hyperblocks.

- a shifting-register-file at the tail of each functional unit
for storing predicated results until the predicate value is
determined.

- a memory-conflict-buffer for handling data-speculated
loads.

- extra control circuitry for cancelling speculated
operations and ensuring correct execution.

We refer to our custom instruction-less processor as
Explicitly Parallel Operations System (EPOS) and preliminary
results show that it can offer a great performance speed-up
compared with the No-Instruction-Set-Computer (NISC) [22]
for a variety of applications (Figure 6).

C. Hardware Compilation

The backend compilation of our SLS flow takes as input the
compiled code and the coarse-grain parallelism annotation

Figure 6: EPOS to NISC performance comparison results

produced in the front end compilation, as well as the user
constraints on performance, area and/or power. Its output is
a multicore system based on EPOS cores, which satisfies the
user constraints. The coarse-grain parallelism extracted and
annotated in the front-end compilation is used to determine the
number of EPOS cores and the type of inter-core
communications. Depending on the user constraints, the type
of annotated parallelism and the amount of data sharing,
different types of inter-core communication schemes are
considered, including:

- Global Asynchronous Local Synchronous (GALS)
- Data Memory shared
- Interrupt Driven
- Register shared

During the system level compilation phase, a preliminary
estimation of each core schedule and latency is obtained by a
first round of scheduling using infinite resources. The
preliminary scheduling results from each core determine the
minimum latency (critical path) of the task assigned to each
core. These critical paths are used in the system level
scheduling and interconnection scheme. When this phase of
the hardware compilation is over, a complete system
incorporating multiple EPOS cores and blocks of shared
and/or distributed data memories with appropriate
interconnection signals/buses is produced (Figure 7). Next,
core-specific optimizations are performed such as register
allocation and forwarding network minimization. Process
variation modeling and error resilient design issues can be
considered as well.

VI. Summary and Conclusions

In this paper, we presented the emerging issues faced by
designers when billions of devices are going to be available in
the coming technology generations. We discussed the viability
of variation-aware high-level synthesis, holistic error
modeling and its usage for reliable circuit design, future
multicore design issues, and the synthesis for
application-specific multicores. Our goal is to achieve the
potential for high chip integration, and high performance,
available through technology scaling in a power-efficient and
error-resilient way.

Perform ance Speed-up

0
0.5

1
1.5

2
2.5

3
3.5

s tartup dijkstra bubble -sort

NISC
EPOS

9D-2

807

EPOS 2
(ASC)

MCM

EPOS 1
(IO)

MCM

EPOS 3
(DMA)

MCM

EPOS 4
(ASC)

MCM

EPOS 5
(ASC)

MCM

System Bus

Shared
Data Memory

Shared
Data Memory

PC

Register
File

Data
Memory

1

MC
Bank1

MC
Bank2

FU1 FU2 FU3

MC
Bank3

Figure 7: Multicore system and EPOS core detail

References
[1] A. Srivastava, D. Sylvester, D. Blaauw, Statistical Analysis and

Optimization for VLSI: Timing and Power, Springer, 2005.

[2] V. Moroz, L. Smith, X.-W. Lin, D. Pramanik and G. Rollins,
“Stress-Aware Design Methodology”, Intl. Symp. Quality Elec.
Design, 2006.

[3] K. Agarwal, S. Nassif, “Characterizing Process Variation in
Nanometer CMOS”, Design Automation Conference, 2007.

[4] D.J. Frank, “Design and CAD Challenges in 45nm CMOS and
Beyond”, International Conference of Computer-Aided Design,
2006.

[5] D. Ernst, et. al., “Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation,” MICRO, Dec. 2001.

[6] J. Von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” Automata
Studies, Ann. Of Math Studies, no. 34, C. E. Shannon and J.
McCarthy, Eds, Princeton University Press, pp 43-98, 1956.

[7] M. Favalli and C. Metra, “Optimization of error detecting codes
for the detection of crosstalk originated errors,” Conference on
Design, Automation and Test in Europe, 2001.

[8] S. Krishnaswamy, I. Markov, J. Hayes, “Tracking Uncertainty
with Probabilistic Logic Circuit Testing,” IEEE Design & Test
of Computers, Jul-Aug 2007.

[9] S. Krishnaswamy, G. Viamontes, I. Markov, J. Hayes,
“Accurate Reliability Evaluation and Enhancement via
Probabilistic Transfer Matrices,” Design, Automation, and Test
in Europe Conference, 2005.

[10] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 Chip: A
Dual-Core Multi-threaded Processor,” IEEE Micro, 24(2):40-47,
2004.

[11] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys,
Vol.38, March 2006.

[12] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in
multi-core architectures: Understanding mechanisms,
overheads and scaling,” 32nd International Symposium on
Computer Architecture, June 2005.

[13] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and
partitioning in a chip multiprocessor architecture,” 13th
International Conference on Parallel Architecture and
Compilation Techniques (PACT04), 2004.

[14] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian,
and J. B. Carter, “Interconnect aware coherence protocols for
chip multiprocessors,” 33rd International Symposium on
Computer Architecture, 2006.

[15] S. Kim, D. Chandra, and Y. Solihin, “Hardware-modulated
parallelism in chip multiprocessors,” Workshop on Design,
Architecture and Simulation of Chip Multi-Processors
Conference (dasCMP), 2005.

[16] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan,
“Heterogeneous Chip Multiprocessors,” IEEE Computer,
November 2005.

[17] Wen-mei W. Hwu, et. al., “The Superblock: An Effective
Technique for VLIW and Superscalar Compilation,” Journal of
Supercomputing, 1993.

[18] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E.
Hank, Roger A. Bringmann, “Effective compiler support for
predicated execution using the hyperblock,” MICRO, 1992

[19] Michael S. Schlansker, B. Ramakrishna Rau, “EPIC:
Explicititly Parallel Instruction Computing,” IEEE Computer
33(2): 37-45, 2000.

[20] Matthew I. Frank, “System Support for Implicitly Parallel
Programming,” Center for Reliable and High-Performance
Computing Technical Report CRHC-07-06, Oct. 2007.

[21] Shane Ryoo, et. al., “Automatic Discovery of Coarse-Grained
Parallelism in Media Applications,” Trans. High-Perf.
Embedded Arch. Compilers, 2006.

[22] Mehrdad Reshadi, Bita Gorjiara, Daniel D. Gajski, “Utilizing
Horizontal and Vertical Parallelism with a No-Instruction-Set
Compiler for Custom Datapaths,” International Conference of
Computer Design, 2005.

9D-2

808

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

