
VEBoC: Variation and Error-Aware Design for Billions of Devices on a Chip 

Abstract – Billions of devices on a chip is around the 
corner and the trend of deep submicron (DSM) technology 
scaling will continue for at least another decade. 
Meanwhile, designers also face severe on-chip parameter 
variations, soft/hard errors, and high leakage power. How 
to use these billions of devices to deliver power-efficient, 
high-performance, and yet error-resilient computation is a 
challenging task. In this paper, we attempt to demonstrate 
some of our perspectives to address these critical issues. 
We elaborate on variation-aware synthesis, holistic error 
modeling, reliable multicore, and synthesis for 
application-specific multicore. We also present some of our 
insights for future reliable computing. 

I. Introduction 

The continuing progression of transistor-integrating 
technologies into the DSM scale is offering great 
opportunities for designing big and increasingly smart 
System-on-Chips (SoC) and multicore chips. At the same time 
it is posing enormous challenges to the engineers in IC design 
and manufacturing, as well as CAD. It is critical that the 
challenges be understood and addressed at both levels to 
enable acceptable performance, reliability, yield, and cost in 
next generation chips. These challenges can be summarized in 
the following paragraphs. 

Process variation. Figure 1 shows the significant 
variability trends in a number of process parameters [1]. 
Transistor parameters such as channel length, gate-oxide 
thickness, and threshold voltage vary due to limitations in 
lithographic techniques, dopant variation, variations in 
chemical polishing due to non-uniform layout density, and 
layout dependent stress variation [2]. The results of these 
variations on the final product can include lower yield, lower 
reliability, high power usage, and lower than expected 
performance.  

Design reliability. Besides process variation, a host of other 
issues, such as manufacturing defects, cosmic event upsets 
(soft error) and transistor aging, are becoming increasingly 
alarming. Especially, soft errors are becoming a serious 
problem in circuit design due to shrinking process dimensions.  
The smaller dimensions create a situation where the 
capacitance at each node in the circuit is lower, consequently 
requiring a smaller amount of charge to cause a glitch.  

Design productivity. The gap between chip integration 
capacity and design productivity is growing wider. When 
taking into consideration the short time-to-market constraints 
that design teams have to deal with, the problem becomes 
even more acute. Meanwhile, the development of efficient 
techniques for extracting computational parallelism and 

binding it optimally in the available resources is difficult.
With the great promise of billions of devices on a chip to 

integrate more functionality and computing power, uncertainty 
of system performance and reliability also comes along. A 
more complete approach is to make the design of SoCs and 
multicore systems variation-aware and error-aware. We call 
this approach VEBoC  Variation and Error-aware design for 
Billions of devices on a Chip. This paper provides a high-level 
view of some of our design efforts to make VEBoC a reality. 

The rest of the paper is organized as follows. In Section II, 
we present our view on variation-aware high-level synthesis. 
In Section III, we introduce a holistic error model and its 
potential usage on reliable circuit design. In Section IV, we 
present some of our insights on general-purpose multicore 
design. In Section V, we show our idea of application-specific 
multicore design. We then conclude this paper in Section VI. 

Figure 1: Variability trends in key process parameters with scaling 
process technology. The x-axis is year and the y-axis represents the 

variability in process parameters (courtesy of [1]). 

II. Variation-Aware High-Level Synthesis 

Behavioral synthesis (or high-level synthesis, HLS) 
transforms a behavioral description of a digital system into a 
register-transfer level hardware implementation consisting of a 
datapath and a control unit. The datapath consists of four types 
of components or resources, including functional units (FUs), 
storage units (such as registers), multiplexers, and 
interconnects. HLS usually consists of three subtasks: 
scheduling, resource allocation, and binding. The design 
specification is first compiled into an internal representation 
(such as a control-data flow graph), which is then mapped to 
the resources, selected from the resource library, to optimize 
design goals (such as delay, power, and area). Synthesis at the 
behavioral level is desirable because, compared to synthesis at 
RTL, code density can be reduced by ten times, and 
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simulation time can be reduced by one hundred times. Such a 
design productivity boost is much needed for next-generation 
chips with billions of devices. 
 The traditional approach has utilized the worst-case delay 
and power for each FU for design-space exploration during 
HLS. Unfortunately, the significant variations in device 
parameters in new process generations cause large variations 
in delay and power for FUs, multiplexers, and other resources, 
resulting in inadequate and less than optimal solutions. To 
overcome this, HLS must consider process variation. This is 
facilitated by the statistical characterization of power usage, 
delay, and area for each of the resources in the resource library. 
By accurately modeling and characterizing the random and 
systematic variations inherent in each resource, statistical 
information can be incorporated into the design. 
 Accurate test structures for characterization and modeling of 
the different sources of variation are critical in making 
statistical HLS successful. The resource models used must 
accurately reflect the actual fabricated behavior. This means 
that data concerning the types of variations (whether they be 
systematic or random), their scope (within-die, die-to-die, 
wafer-to-wafer, etc.), and how they correlate with one another, 
must be accurately gathered from real wafers and then 
processed. Complicating the resource characterization is the 
fact that device parameters and variations for a given process 
(and a given wafer fabrication facility) drift over time. To 
compensate for this, test structures designed for capturing 
variation data (such as those proposed in [3]) must be run 
frequently, and then resource libraries must be updated. 
 Once resources have been characterized for statistical delay 
and power variations, they can be used in new statistical HLS 
scheduling, allocation, and binding routines. As power, delay, 
and area are all interrelated, the variation-aware synthesis 
engine must address all of these factors simultaneously. The 
incorporation of multiplexer and interconnect variation is 
particularly important due to their dominant contribution to 
overall power and delay in modern technologies. Additionally, 
to accurately capture physical design information, the 
synthesis engine must connect to the actual layout of the 
design.  
 Probability distributions of power and delay for each of the 
resources will need to be considered during the synthesis steps. 
For example, for a scheduling and binding solution consisting 
of a multiplexer (mux) followed by an adder, the total delay is 
given by: addwiremux d+d+d=delay , where dmux, dwire, and dadd

are delay values for the mux, wires between the mux and the 
adder, and the adder. With statistical modeling, each of these 
delay values will become a delay distribution. In general, if 
there are k components in a path p, the delay distribution of 
the path with random variable x is 

iii
k

1=ip ,PDFConv=xPDF , where i and i are the 
mean and standard deviation of the delay distribution of 
component i, and Conv is the convolution operation. The 
timing yield will be evaluated probabilistically, which will be 
used in evaluating the effectiveness of the solution at meeting 
design goals. Similar statistical methods can be used for 
power calculations. 

Another key to the effectiveness of the statistical HLS will 
be the consideration of physical design information, such as 
circuit floorplanning information. To optimize for power, area, 
and delay, the relative placement of FUs must be optimized, 

which largely determines layout area and interconnect usage. 
This is important because layout area and interconnect have a 
major effect on overall power consumption and delay. 
Exploration of the design space in the presence of these 
variables can be accomplished by an iterative solver using 
Pareto point pruning, while the cost of each solution under 
variation can be evaluated through a novel statistical cost 
function. A statistical resource library in behavioral synthesis 
enables early and accurate design space exploration. This 
allows for the mitigation of the anticipated negative effects of 
variation, and increased delay in interconnects, at design time. 

Future work in variation aware synthesis will further 
integrate variation information to enable more robust and 
reliable circuits. This will be accomplished through the 
synthesis of circuits that are dynamically aware of variations 
in circuit parameters due to events such as device failure and 
temperature variations. High-level design and synthesis tools 
will need to be developed that can automatically anticipate 
these types of variability, and build in circuits to compensate. 
As stated in [4], this will mean moving “away from the 
concept of building margins (whether worst case or statistical) 
and focus on adaptive techniques for addressing variability 
and building robust circuits.” These developments will be 
critical in the future to enable higher performance and lower 
power chips at ever higher levels of integration.  

III. Error Modeling and Fault Tolerance 

In addition to manufacturing defects and process variation, 
problems involving soft errors and transistor aging also need 
to be addressed in new DSM technologies. In order to 
counteract these issues, fault tolerance techniques need to be 
integrated into designs. There have been a number of fault 
tolerance techniques proposed in the literature. They span the 
hierarchy from gate level techniques to architectural level 
techniques, but they can all be classified into three categories: 
1) time-redundant techniques, where results are recomputed 
after errors are detected (e.g., Razor [5]); 2) 
resource-redundant techniques, where multiple copies of same 
logic are used to compute results for comparison (e.g., TMR – 
triple modular redundancy [6]); and 3) information-redundant 
techniques, where check bits are added to form code words 
and checkers are used to check whether the outputs belong to 
the code space (e.g., [7]).  

Selecting and applying the best fault tolerance technique or 
techniques to a design is a problem that will need to be 
addressed. Currently, the majority of error types are modeled, 
and fault tolerance techniques are applied, independently of 
each other. As devices continue to scale, it will no longer be 
possible to maintain this independence. By modeling each 
error type independently, a worst case condition is assumed.  
As has been shown with the current paradigm shift towards 
statistical static timing analysis (SSTA), worst case design in 
nanometer processes is not feasible. Therefore, accurate 
statistical error models will need to be created that take a 
holistic approach by incorporating many different types of 
errors into a single model. Probability transfer matrices 
(PTMs) are proposed by [8] to model the susceptibility of a 
circuit to defects and soft error. This method can be extended 
to arrive at a holistic model if timing errors due to process 
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variation and aging can be considered also. The computational 
complexity of the method might limit its ability to efficiently 
model large circuits. This problem can be partially addressed 
by compression of the matrices similar to that shown in [9]. 

With a holistic error model of the circuit, fault tolerance 
techniques can then be applied. Currently, the majority of fault 
tolerance techniques are targeted towards a specific type of 
circuit error. The interactions between different techniques, as 
well as the effect a fault tolerance technique has on other types 
of errors will need to be considered due to the potential to 
both improve and decrease the performance of the circuit.  
The following situation is given as a motivating example. 

An error model for a circuit has been constructed through 
the methods described above. It shows that the probability of 
the circuit working correctly is 0.75 when considering the 
effects of process variations, manufacturing defects, NBTI 
(negative bias temperature instability) transistor aging, and 
soft errors. This probability for correct operation does not 
meet the design specification and requires the addition of fault 
tolerance techniques in order to boost the reliability of the 
design.

Since the types of errors are varied there might not be a 
single fault tolerance technique that can efficiently solve the 
problem. Multiple techniques will be needed in order to 
sufficiently boost the reliability of the chip. By using the error 
model, the overhead due to the fault tolerance techniques can 
be minimized. For example, if the designer were to look at 
each fault independently, (s)he might try to boost the soft error 
resilience through selective node engineering, and (s)he might 
add TMR to protect against manufacturing defects, as well as 
other techniques for the remaining error types. The end result 
is an over-designed chip dissipating a large amount of power 
while delivering low performance.   

However, if the designer were to use a holistic error model, 
the overhead due to fault tolerance would be minimized. For 
example, the error model would show that through adding 
some local TMR logic for manufacturing defects, the 
susceptibility of the design to soft errors and process 
variations has been lowered, reducing or eliminating the 
number of places where selective node engineering is 
required.   

The above example demonstrates the need for a holistic 
approach when selecting proper fault tolerance techniques. It 
shows the importance of the holistic error model and the need 
to understand how a fault tolerance technique affects all types 
of errors. It also shows one of the many opportunities to lower 
the overhead caused by fault tolerance techniques. The 
example also exposes the need for improved fault tolerance 
techniques. As mentioned, the majority of fault tolerance 
techniques are meant for a specific type of error. They are 
tested against the assumption that the only type of error in the 
circuit is the one they are correcting. This assumption will not 
be valid as processes continue to shrink. New techniques will 
be needed that can operate in the face of different fault types 
and numerous faults of the same type. 

One promising technique that can be used to meet these 
requirements is pair modular redundancy (PMR), as shown in 
Figure 2. The idea behind this design is to reduce the number 
of duplications compared to TMR, but augment the circuit 
with a coding scheme. Therefore, it is a combination of 
resource-redundancy and information-redundancy. The code is 

then used in the multiplexers to determine which output is 
correct. By interconnecting the modules at the output, it is 
possible to route around hard or soft errors in different stages 
of the structure.     

Figure 2: Pair modular redundancy (PMR) 

Holistic error modeling in conjunction with fault tolerance 
techniques will become a requirement in future processes.  
Minimizing the power, timing, and area overhead due to fault 
tolerance techniques will be the key to continue increasing 
performance at current rates. 

IV. General Purpose Multicore 

While superscaler processors are efficient for applications 
that can exploit high Instruction Level Parallelism, chip 
multiprocessors are practical for applications that can spawn 
concurrent threads to be run on multiple cores. As a 
commercial example, the system-level diagram of the IBM 
Power4 is shown in Figure 3. 
  The multiple cores in current chip multiprocessors (CMPs) 
are connected via a shared bus. However, as many cores will 
be integrated in future, microarchitecture changes may be 
needed to scale the shared bus fabric without performance 
degradation. One alternative to the shared bus fabric is 
Network-on-Chip (NoC) communication infrastructure used in 
many recent designs. A generic NoC is shown in Figure 4. 

The shared bus mechanism to connect multiple cores is 
well-understood and works well for current microarchitectures. 
The concept of sharing resources among cores can be taken 
from conventional multiple computer systems and applied to 
chip multiprocessors. Also, for moderate increase in the 
number of cores, hierarchical bus architectures and segmented 
or pipelined wires can be used instead of a simple shared bus 
fabric. However, for large number of cores, the shared bus 
fabric will become a bottleneck as more components are 
connected to the same set of wires. With NoC fabric, a generic 
network router and associated protocols can be used for chip 
multiprocessors of any number of cores, and scaling issues 
may be removed. However, system designers will need to 
learn the details of new on-chip communication design and 
rewrite software code to control synchronization among 
network components. A detailed study of related concepts can 
be found in [11]. 

Chip multiprocessors present new challenges to both the 
application software developers and the microarchitects. Some 
of the issues involved in the design of efficient chip 
multiprocessors addressed in previous research are discussed 
below. 

The design of interconnection network, cache hierarchy, 
memory consistency model, bandwidth requirements, and 
power management are interrelated in the design of chip 
multiprocessors as shown in [12].  Fair caching is also an 
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Figure. 3: High-level diagram of IBM Power4 [10] 

Figure 4: A general NoC structure illustrating the routing 
infrastructure to connect multiple cores [11] 

important issue as number of cores is increased [13]. The 
number of cores that share a cache resource and the level of 
private cache hierarchy for a single core have a high impact on 
the overall throughput of a chip multiprocessor. The level in a 
cache hierarchy at which memory consistency must be 
maintained is also an important issue. In [14], the authors 
provide coherence protocols considering the impact on 
interconnect latency. In order to exploit maximum parallelism, 
thread management is an important task and can be done 
either at the operating system layer or in hardware. In [15], a 
hardware approach is provided that dynamically maps threads 
to cores on a run-time basis.  
 As more cores are integrated on a chip, the scaling of 
current microarchitecture techniques is a growing concern. 
For instance, the overhead for snooping based cache 
coherence protocols will increase linearly as more cores are 
added on a chip. Similarly, some threads may benefit from 
more execution units while other may work as efficient with 
lesser execution units. Dynamic system configuration based 
on workload characteristics can be a good performance 
booster. Techniques may include turning off snooping if it is 
not beneficial, or allocating communication-intensive threads 
to cores connected through short buses dynamically.  
 Heterogeneous chip multiprocessor is promising to reduce 
power consumption while maintaining high performance by 
allowing the processor to better match execution resources to 
each application’s needs [16]. To build reliable multicore 
systems, different architecture-level techniques can be applied. 
For example, the ALU may be replaced by a PMR module. 
Other standard techniques include pipeline-level redundancy 
techniques and core-level redundancy techniques, where one 
core checks another core. 

V. Application-Specific Multicores 

We aim to address the DSM challenges by automating the 
design of efficient and high-performance systems that are 
customized for a particular application. Following the same 
design trend in general-purpose multicore architecture, we use 
application-specific multicores for high throughput with low 
power, where each core does not need to run in high frequency. 
The key optimization step is system-level synthesis (SLS). 
Our target is to automate application-specific multicore design 
for any size and type of HLL (high-level language) 
application.

Our system level synthesis flow (Figure 5) is based on three 
key constituent elements: 

- An advanced software compiler for extracting both the 
fine-grain and coarse-grain parallelism available in the 
application.

- A custom instruction-less processor which is built to fit 
the tasks it is assigned to. 

- A hardware compiler which combines the parallelism 
information extracted by the software compiler and the 
customization flexibility of the instruction-less processor 
to build an efficient multicore system for the application. 

Figure 5: Multicore system level synthesis flow 

A. Software Compilation  

Our software compiler is based on the IMPACT compiler 
[17][18]. IMPACT has been traditionally focused towards 
instruction-level parallelism (ILP) extraction for EPIC 
(Explicitly Parallel Instruction Computers) architectures [19]. 
This type of parallelism is extracted through: 

- traditional compiler optimizations, such as function 
inlining, loop distribution and unrolling, etc. 

- statistical techniques based on application profiling and 
the formation of superblocks and hyperblocks.  

We refer to this type of parallelism as fine-grain parallelism, 
and our system processing cores are designed specifically to 
take advantage of the fine-grain parallelism exposed by the 
IMPACT compiler. More information on the instruction-less 
processor cores is available in the following subsection. 

Apart from the fine-grain parallelism, many media, 
scientific and other modern application have a great deal of 
coarse-grain parallelism which may be hidden in the 
sequential HLL description [20]. Extracting and mapping 
these coarse level tasks in different cores of the system can 
lead to remarkable improvements in performance and 
efficiency of the application execution. During recent and 
ongoing work, the IMPACT compiler is enhanced with a 
strong synergistic portfolio of different analysis techniques 
that can help expose the coarse-grain parallelism [21] inherent 
in many of the popular applications used in embedded systems 
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today. In particular, a combination of different analysis 
techniques focusing on 1) pointers, 2) arrays and structures 
and 3) variable constraints and relationships, are effectively 
applied to discover different forms of coarse-grain parallelism. 
The different types of coarse-grain parallelism are 
distinguished in: 

- intra-loop parallelism (iterations within loop are 
independent). 

- cross-loop parallelism (iterations of a loop are only 
dependent on specific iterations of a second loop but not 
on the entire second loop). 

- region parallelism (independent static code regions). 

Our SLS flow expands the IMPACT coarse-grain 
parallelism extraction scheme by explicitly exposing the 
extracted parallelism on the compiled code. In particular, we 
are designing an efficient parallelism-annotation which will be 
applied on the IMPACT compiled application code exposing 
the different opportunities for parallel execution. This 
annotation will be read by the backend hardware compiler and 
will be used to build an efficient multicore system as 
described in a later subsection. 

B. Processor Core  

Our synthesized system is based on the utilization of 
multiple cores, each one of which is an appropriately 
parameterized version of the instruction-less custom processor. 
This processor is based on a VLIW-like array of Functional 
Units (FUs) which are controlled by a microcode (MC) 
memory (Figure 7) which stores microcode words. Each 
microcode word controls the data processing and data flow in 
the custom processor for one cycle. A program-counter 
register stores the address of the microcode word that will be 
executed in the next clock cycle, while an address generation 
circuit generates the next microcode memory address and 
stores it in the program counter.  

In order to take advantage of the ILP extracted by the 
IMPACT compiler, our instruction-less processors are 
extended with extra architectural features. These features 
include: 

- a predicate-register-file for storing the predicate values 
used in hyperblocks. 

- a shifting-register-file at the tail of each functional unit 
for storing predicated results until the predicate value is 
determined. 

- a memory-conflict-buffer for handling data-speculated 
loads.

- extra control circuitry for cancelling speculated 
operations and ensuring correct execution. 

We refer to our custom instruction-less processor as 
Explicitly Parallel Operations System (EPOS) and preliminary 
results show that it can offer a great performance speed-up 
compared with the No-Instruction-Set-Computer (NISC) [22] 
for a variety of applications (Figure 6). 

C. Hardware Compilation  

The backend compilation of our SLS flow takes as input the 
compiled code and the coarse-grain parallelism annotation  

Figure 6: EPOS to NISC performance comparison results 

produced in the front end compilation, as well as the user 
constraints on performance, area and/or power.  Its output is 
a multicore system based on EPOS cores, which satisfies the 
user constraints. The coarse-grain parallelism extracted and 
annotated in the front-end compilation is used to determine the 
number of EPOS cores and the type of inter-core 
communications. Depending on the user constraints, the type 
of annotated parallelism and the amount of data sharing, 
different types of inter-core communication schemes are 
considered, including: 

- Global Asynchronous Local Synchronous (GALS) 
- Data Memory shared 
- Interrupt Driven 
- Register shared 

During the system level compilation phase, a preliminary 
estimation of each core schedule and latency is obtained by a 
first round of scheduling using infinite resources. The 
preliminary scheduling results from each core determine the 
minimum latency (critical path) of the task assigned to each 
core. These critical paths are used in the system level 
scheduling and interconnection scheme. When this phase of 
the hardware compilation is over, a complete system 
incorporating multiple EPOS cores and blocks of shared 
and/or distributed data memories with appropriate 
interconnection signals/buses is produced (Figure 7). Next, 
core-specific optimizations are performed such as register 
allocation and forwarding network minimization. Process 
variation modeling and error resilient design issues can be 
considered as well.   

VI. Summary and Conclusions 

In this paper, we presented the emerging issues faced by 
designers when billions of devices are going to be available in 
the coming technology generations. We discussed the viability 
of variation-aware high-level synthesis, holistic error 
modeling and its usage for reliable circuit design, future 
multicore design issues, and the synthesis for 
application-specific multicores. Our goal is to achieve the 
potential for high chip integration, and high performance, 
available through technology scaling in a power-efficient and 
error-resilient way. 
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