
MBARC: A Scalable Memory Based Reconfigurable Computing
Framework for Nanoscale Devices

Somnath Paul and Swarup Bhunia.
Department of EECS, Case Western Reserve University.

{sxp190, skb21}@case.edu

Abstract— While the emerging nanoscale devices show
promises in terms of integration density and computing power,
system design with these devices involve some major challenges,
such as bottom-up design approach, effective integration with
CMOS and defect tolerance. To address some of these
challenges, we propose MBARC, a reconfigurable framework
using memory as the primary computing element. The
proposed framework leverages on the reported advantages of
memory array design with nanodevices, which are compatible
to fabrication into dense and regular structures. The main idea
is to partition a logic circuit, implement the partitions as multi-
input multi-output lookup tables in a memory array, and then
use a simple CMOS-based scheduler to evaluate the partitions
in topological time-multiplexed manner. Compared to existing
reconfigurable nanocomputing models, the proposed memory
based computing has three major advantages: 1) it minimizes
the requirement of programmable interconnects, thus, saving
design cost; 2) it minimizes the number of CMOS interfacing
elements (required for level restoration and cascading logic
blocks); 3) existing techniques for defect tolerance in memory
array can be easily extended to this framework. Simulation
results for a set of ISCAS benchmarks show average
improvement of 32% in area, 21% in delay and 34% in energy
per vector compared to nanoscale FPGA implementation.
Index Terms: Nanoscale Crossbar, Reconfigurable architecture,
FPGA, Memory based computing

I. INTRODUCTION
In the quest of a potential alternative to CMOS at the end of

its roadmap [1], multitude of research efforts have been directed
towards investigating novel devices with interesting and unique
switching characteristics. Examples of such emerging array of
devices include single-electron transistors (SET) [22], carbon
nanotube field effect transistor (CNTFET) [23], semiconductor
nano-wires, quantum-dot cellular automata (QCA) [19] and
chemically assembled electronic nanocomputers (CAEN) [7].
Although most of these emerging nanodevices are still in their
infancy, they hold tremendous potential in terms of integration
density (~1010 devices/cm2), low power operation and higher
switching speed. Molecular electronics is one such promising
alternative that has drawn significant attention of the researchers in
recent years [8]. These nanoscale circuits comprise of a molecular
monolayer of rotaxanes sandwiched between metal nanowires [9].
Researchers at HP and at UCLA have met with experimental
success in their efforts to realize crossbar structures using these
nanoscale circuits either by self-assembly process or by nano-
imprinting method [9, 10]. Such experimental success has been
complemented with development of architecture [7, 11], circuit
[12, 13] and CAD tools [14] to support computation using these
molecular crossbars. Substantial research has also been done to
develop efficient testing [15] and application mapping procedures
[16] that are able to tolerate high defect rate in these self-
assembled structures.

The molecular crossbars under consideration provide an
attractive solution to configurable computing. The reason is that

rotaxane molecules sandwiched between the Ti/Pt nanowires at
each crossbar junction can be switched from a state of high
resistance to a state of low resistance and vice versa on the
application of proper voltages to these nanowires [9]. Thus, each
crossbar junction can be thought of as a 1-bit storage element and
the entire crossbar can be used for storing the responses of logic
functions. The molecular crossbar circuits are highly favorable for
the production of dense and regular fabric, which allows the
realization of large and complex functionalities within a small area
either in the form of Programmable Logic Array (PLA) or as
Lookup Table (LUT) [12].

 These molecular electronic systems, however, present several
design challenges [11]. They are as follows: a) the bistable
rotaxane molecules can be considered as two-terminal diode-like
devices, which do not provide signal restoration and need to be
interfaced with signal restoring circuits before they can be
cascaded. It has been proposed [7, 12] that one can use
conventional CMOS devices for the purpose of signal restoration.
This requires that the nanowires of the crossbar are interfaced with
interconnects whose dimensions are of the order of μm. Therefore,
it is extremely important to choose a crossbar interface architecture
that preserves the high device density offered by the crossbar
circuits [12]. b) Since the fabrication process involves patterning at
molecular dimensions, variations in the electrical behavior are
observed across the crossbar junctions. Some junctions which
become permanently irreversible during fabrication are referred to
as defective. Design methodologies attempting to use the nanoscale
crossbar as a computational fabric should take into account the
high defect rate in such devices. Although methods for LUT and
PLA-based logic realization in nano-crossbars are well established
[7, 11, 12], sufficient investigations have not been reported on how
these structures may be cascaded to realize larger functions. One
solution as proposed in [12] is to cascade individual LUTs using
signal restoration hardware. Such a solution will only benefit if the
size of the individual crossbar is much large so as to offset the area
and power requirement of the signal restoration circuitry. This is
difficult to achieve considering the mismatch in size between the
nano-crossbars and CMOS interfacing logic.

The dense and periodic structures of most emerging
nanodevices (including the aforementioned molecular switches) as
well as bi-stable nature of these switches make them amenable to
large memory array design [9, 19, 22-23]. In this paper, we
propose a novel computational framework referred as Memory
BAsed Reconfigurable Computing (MBARC) that exploits the fact
that nanodevices can be effectively configured into a memory
array. The main idea is to decompose a logic circuit into a set of
partitions, implement the partitions as lookup tables in a nanoscale
memory array, and then use a CMOS-based controller to evaluate
the partitions in topological and time-multiplexed manner. The
partitioning and the mapping of the partitions to memory are
performed during the application mapping process. The proposed
approach separates the nanoscale memory and CMOS logic,
therefore minimizing the requirement of interface hardware (a
single set of signal restoring circuitry can be used for all the
cycles). Further, contrary to existing implementations, where
interfacing logic is distributed between any two connected nano-

1C-2

77978-1-4244-1922-7/08/$25.00 ©2008 IEEE

structures (e.g. crossbar), CMOS interfacing logic in MBARC is
localized and separate, potentially facilitating CMOS-nano
hybridization process. Moreover, the wide array of existing
techniques to test, diagnose and achieve defect tolerance in
memory [2] can be used for the proposed framework that utilizes a
memory array as the primary computing element.

In particular, the paper makes the following major
contributions:

1. It proposes a scalable reconfigurable memory-based
computing model for nanodevices, which are suitable for
memory array design. Compared to existing FPGA-like
reconfigurable framework for nanodevices (which we refer as
NanoFPGA), the proposed model can achieve considerable
improvement in area, performance and energy per vector.

2. It presents a complete design flow with efficient partitioning
and scheduling algorithms for mapping an application to the
proposed computational framework.

3. The proposed method minimizes requirements for
programmable interconnects and CMOS interfacing hardware.

II. MEMORY BASED COMPUTING
METHODOLOGY

Configurable computing systems capitalize on the strengths
of both hardware and software by using software algorithms to set
the configuration for the programmable hardware. In the proposed
computational framework, depicted in Figure 1a, the partitioning
of the target application into smaller multi input-output logic
functions, subsequent mapping of those functions to memory
modules and finally scheduling them is achieved through software
intervention. Information regarding the address, schedule and
connectivity among the partitions is stored in a smaller memory
array (denoted as schedule table in Figure 1a) during the phase of
application mapping. The smaller logic functions obtained from the
partitioning of the target application are mapped to different
memory modules, which we collectively refer to as the function
table. The memory modules are realized using nanoscale devices.
Following are the steps for evaluation of a function using MBARC.

In MBARC, the behavioral description of the function that is
to be realized is first synthesized to obtain an optimized multi-
input, single-output LUT representation. A partitioning algorithm
is then used for partitioning the representation into a number of

multi-input multi-output logic partitions. The number of inputs and
outputs to each partition is dictated by the design constraints such
as memory requirement and delay. Before evaluation of a function,
the functional behavior (the output values corresponding to all
input combinations) of each partition is stored in the function table.
We define this as the memory configuration or the memory write
phase. Since the functional behavior is loaded into the memory
during the write phase, the addresses for the different partitions are
known before the actual evaluation of the function.

After the configuration phase, the partitions are accessed in a
sequence so that the topological dependence among the partitions
is satisfied. In other words, a partition is evaluated only when all
its input values are available. When the evaluation of all the
partitions corresponding to a given function is completed, it can
proceed to evaluate the function for the next input vector. Thus,
MBARC can substantially reduce the requirement of expensive
programmable switching matrices as required in an FPGA fabric
[17] while still achieving easy dynamic reconfigurability. As seen
in Figure 1a, in an evaluation cycle, the controller communicates
with the memory array, providing inputs to and receiving outputs
from the partition(s) that is/are being evaluated. The address for the
mapping of a particular partition is provided by the schedule table.
Figure 1b explains major steps in the proposed memory based
computation flow.

2.1) Circuit Partitioning
As described in Figure 1b, an important step towards

realizing a complex function with large number of inputs/outputs
in memory is to partition the function appropriately to satisfy one
or two of the following objectives: 1) to reduce total memory
requirement for storing the partitions in the memory in the form of
lookup table and 2) to minimize the evaluation time. Thus the
problem of partitioning a circuit into multi-input multi-output
representation can be formulated as an optimization problem
considering evaluation time as optimization objective and memory
requirement as a constraint. The constraint on memory is specified
as the number of inputs and outputs of a partition. We have
developed a heuristic-based solution for the partitioning problem
that ensures no cyclic dependency among the partitions.
Conventional hypergraph partitioning techniques [18] widely used
in VLSI design typically target minimizing the cut-edges between
partitions and do not ensure topological order or minimization of

(a) (b)

Figure 1: a) Overall memory based computation scheme. A multi input/output logic function to be evaluated is
partitioned and the partitions are stored into memory arrays (realized with nanoscale devices using a set of small
memory modules). A controller performs the tasks of partition evaluation in topological order and handling of
intermediate partition outputs; b) Design flow for MBARC.

1C-2

78

evaluation time. The pseudo code for the proposed partitioning
algorithm is given in Figure 2. It starts with creating a hypergraph
from the circuit description and then sorts the vertices in
topological order. The sorted vertices are traversed from the
primary inputs and considered for inclusion in a partition. A vertex
v is included in a partition if it satisfies the topological order
(among partitions), size limit in terms of number of inputs and
outputs of the partitions and Partition Level Parallelism (PLP),
which represents the number of independent partitions (i.e. the
partitions that can be evaluated in parallel). Since this partitioning
algorithm tries to maximize PLP (for improving performance), we
refer this as PLP-aware partitioning. The fanout cone of vertex v
included in a partition is traversed to maximize the number of
vertices per partition (thus minimizing total number of partitions).
If no more vertices can be added to a partition without violating its
input/output bounds, the partition is added to the partition pool and
vertices in the partition are marked as traversed. Once all the
partitions are created, an annealing step is performed to reduce the
number of partitions. In this step, the partitions are levelized and
vertices are shuffled among the partitions of the same level as well
as across levels (while maintaining topological dependence). This
allows vertices from some partitions to be subsumed inside another
partition, thus, resulting in reduced number of partitions. A variant
of the above partitioning algorithm was implemented to achieve
optimization of memory requirement instead of cycle time. We
refer this as memory-aware partitioning approach. In the latter
approach, during the annealing step, the bigger partitions are
broken down to smaller ones to reduce the memory requirement.

To minimize the impact on evaluation time, we break only those
partitions which have little PLP.

2.2) Scheduling the Partitions
For the proposed computational framework, scheduling refers

to the order in which the partitions are being evaluated. Since the
dependency and the connectivity among the different partitions is
predefined during the compilation phase, we refer to the
scheduling algorithm as static scheduling. Partition Pi+1 is
dependent on partition Pi if it receives any input from partition Pi.
During computation, the controller evaluates the partitions one
after another according to the scheduled sequence using the
address and connectivity of the partitions stored in the schedule
table. Figure 3 shows a schematic of the controller module
implementation. The controller interfaces with a memory that has 4
memory banks, each with one read port. As seen in Figure 3, the
outputs from the partitions are stored in an intermediate register
bank. The register bank stores the partition responses. Depending
on the partitions to be evaluated, the select signals for the
multiplexer network coming from the schedule table selects the
inputs of the partitions from the intermediate register bank. The
counter is used to select the schedule table outputs in each clock
cycle. Similar to the configurable logic block (CLB) in FPGA, the
computational building block for the proposed framework
consisting of the schedule table, the function table, intermediate
registers and the multiplexer network is, hereafter, referred as
Memory-based Computational Block or MCB.

III. TEST SETUP AND RESULTS
We have validated the proposed computational framework

with ISCAS benchmark circuits. Each of the benchmark circuits
was first synthesized and technology-mapped using ‘RASP’ (A
FPGA/CPLD Technology mapping and Synthesis Package

Figure 3: Schematic of the controller hardware that
evaluates the partitions in topological order based on
static scheduling.

Figure 2: Procedure: PLP-Aware Partitioning
INPUT: Circuit netlist, partition size (M X N)
OUTPUT: Set of partitions

Create hypergraph (G);
Sort vertices topologically;
while vertex v in G not traversed

o Create a new partition P; Include v in P;
o For vertex u in the fanout cone of v
o Include u in P if it satisfies

topological order
Size (MXN) limit
PLP

o Backtrack to include topologically related
vertices;

o Complete partition P;
o Mark vertices in P as traversed;

endwhile
Anneal partitions to reduce partition count.

Table I: Results for partitioning and scheduling algorithms
Memory Aware Partitioning PLP Aware Partitioning

12 X 12 X 4 12 X 12 X 8 12 X 12 X 4 12 X 12 X 8 ISCAS85
Ckt Mem Req

(KB)
Delay
(cyc)

Mem Req
(KB)

Delay
(cyc)

Mem Req
(kB)

Delay
(cyc)

Mem Req
(kB)

Delay
(cyc) Run time

(sec)

C432 3.2 9 3.2 7 19.8 7 19.0 5 0.36
C880 19.2 9 11.9 9 33.6 7 33.6 7 1.23
C499 15.5 9 15.4 5 19.8 5 19.8 3 1.24
C1908 18.4 8 14.4 5 32.6 5 32.6 4 3.01
C1355 19.8 7 17.3 5 19.8 5 19.8 3 1.62
C2670 72.9 12 68.8 8 83.1 10 83.1 7 3.19
C3540 61.8 19 52.3 13 79.8 17 79.4 10 8.85
C5315 89.4 19 85.7 10 124.8 18 125.5 11 9.58
C7552 108.2 28 106.2 14 164.1 23 164.1 13 54.05
C6288 78.4 19 62.1 14 78.4 19 78.4 13 18.67

1C-2

79

developed at UCLA [20]). The gate-level netlist obtained from the
synthesis tool contains multiple single output LUTs, which are
then grouped into multi-input multi-output partitions according to
the partitioning algorithms explained in Section II. The total
memory requirement is calculated during the partitioning step on
the basis of the number of inputs and outputs to each partition. For
example, to evaluate an N×M partition a total of (2N*2N +2N*M)
data points are required in nano-crossbar. The rationale is, 2N*2N
data points are required for implementing the decoder and 2N*M
data points are needed for storing the function responses. The total
number of memory accesses required to complete the evaluation of
the entire function is obtained from static scheduling.

We have simulated the performance of the proposed
computational framework for both Memory and PLP-Aware
partitioning algorithms. In each case, the number of inputs and
outputs to each partition was restricted to 12. Increasing the
number of partitions that may be evaluated in parallel improves the
execution time. However, this requires either increasing the
number of read ports from a single memory or increasing the
number of memory banks, each with one read port that may be
accessed in parallel. However, since the partitions communicate
among each other only through the intermediate registers, we can
distribute the partitions in 4 different memory banks each having a
single port (for 4 parallel evaluations). Note that the later
configuration is better in terms of design effort and memory access
time. Thus hereafter, an ‘m’ port configuration refers to ‘m’
different memory banks each having a single read port. In order to
observe the effect of parallel memory accesses on the proposed
framework, results were obtained for both 4 and 8 memory read
ports respectively.

Design overhead for MBARC was estimated at 70nm
technology node. A behavioral description of the controller was
written in Verilog HDL and synthesized using Synopsys Design
Compiler. Area, delay and energy per computation for the nano
crossbar based FPGA implementation have been estimated using
representative values [12]. The number of LUT and Programmable
Interconnect Blocks required for a NanoFPGA implementation was
estimated by mapping the benchmark circuits to Stratix III FPGA
platform using Altera Quartus Version 7.0.

3.1) Partitioning and Scheduling Results
Table I lists the simulation results for the proposed

computational framework for ISCAS’85 benchmarks. From Table
I, it is evident that the memory-aware partitioning algorithm
requires less memory compared to the PLP-aware partitioning at

the cost of higher number of execution cycles (denoted as delay).
Table I also includes the required runtimes for the partitioning
procedures on a SunBlade 1500 machine with 2GB RAM.

3.2) Hardware implementation Results
In this section, we present the hardware overhead results

incurred for MBARC and compare it against a traditional FPGA
design scaled to the nano regime [12]. For hardware estimation, we
consider two memory configurations with 4 and 8 read ports
allowing parallel evaluation of 4 and 8 different partitions, each
with 12 inputs and outputs.
i) Area Estimation: The area for the controller module after
synthesis using Synopsys Design Compiler at 70nm technology
node was obtained as 18917μm2 and 61893μm2 for 4 and 8
memory ports, respectively. Since each partition has 12
inputs/outputs, the number of I/O ports and hence the number of
interface logic blocks (sense amplifiers and level shifters) required
for 4 and 8 port designs are 48 and 96 respectively. An estimate of
the area for the level shifter and sense amplifier at 70nm
technology as well as the area for nano crossbar with a 70nm
nanowire pitch was taken from [12]. The total area was estimated
as, Total Area = Controller Area + Area for Sense Amps + Area
for Level Shifters + Area for each crossbar junction*Total Memory
Requirement (as given for PLP-aware partitioning in Table I).

As suggested in [12], the area for the NanoFPGA
implementation can be estimated by taking into consideration the
area overhead for i) the configurable logic blocks (CLB) and the
configurable interconnect blocks (CIB) (implemented using nano
crossbars) and ii) CMOS interface logic. Table II shows the
number of CLBs and CIBs required for implementing the
benchmark circuits. Each CLB is realized using an 8 input 1 output

Table II: Design overheads for MBARC and NanoFPGA architectures

MBARC Architecture
MBARC (12X12X4) MBARC (12X12X8)

NanoFPGA Architecture

ISCAS85
Ckt Total

Area
(μm2)

Delay
(Cfg2)

(ns)

Energy
/Vector

(pJ)

Total
Area
(μm2)

Delay
(Cfg2)

(ns)

Energy
/Vector

(pJ)

of LUTs
in critical

path

Total
of
CLB
used

Total #
of CIB
used

Total
Area
(μm2)

Delay
(ns)

Energy/
Vector

(pJ)

C432 21168 4.55 39.7 65551 3.4 51.5 13 41 108 35277 13.23 57.16
C880 21733 4.55 45.4 66149 4.76 78.2 7 45 170 45780 7.35 74.31
C499 21168 3.25 28.3 65584 2.04 31.1 5 33 149 53134 5.39 86.2
C1908 21692 3.25 32.1 66108 2.72 44.4 8 33 117 46621 8.33 75.68
C1355 21168 3.25 28.3 65584 2.04 31.1 4 33 152 36817 4.41 59.72
C2670 23760 6.5 94.1 68177 4.76 98.7 4 61 283 867461 4.41 140.82
C3540 23625 11.05 156.6 68025 6.8 138.8 10 116 337 108615 10.29 176.1
C5315 25468 11.7 213.8 69913 7.48 182.7 7 133 551 170640 7.35 276.9
C7552 27078 14.95 326.6 71494 8.84 245.6 7 184 629 213259 7.35 345.4
C6288 23568 12.35 173.5 67984 8.84 179.7 26 275 641 198741 25.97 322.3

-100

-75

-50

-25

0

25

50

75

100

c4
32

c8
80

c4
99

c1
90

8

c1
35

5

c2
67

0

c3
54

0

c5
31

5

c7
55

2

c6
28

8

Benchmark Circuits

%
 Im

pr
ov

em
en

t

Delay
Area
Energy/Vector

Figure 4: Percentage improvement in design overhead
for 8 ports compared to FPGA-based implementation.

1C-2

80

LUT and each CIB is realized using an 8 input 8 output LUT.
Thus, the total area for the NanoFPGA can be estimated as: Total
area = (Crossbar area for 8 input LUT + sense amp + level shifter
area)*(no of CLB used) + (crossbar area for CIB + sense amp +
level shifter area)*(no of CIB used). Table II presents the design
overhead results for the different benchmarks for both MBARC and
the NanoFPGA implementations.
ii) Delay Estimation: We estimate the cycle time for each
computation and the Total execution time is estimated as: one cycle
time* number of cycles required for the benchmark (considering
the PLP-aware partitioning). The time required for each cycle can
be estimated as: memory access and read time + controller delay.
We have used the memory access and read time of 490ps
according to the value reported in [12]. It can be noted that the
total memory access time is dominated by the interface logic delay
[12]. Therefore, we assume that the total delay for the crossbar
memory access remains almost constant even for larger crossbar
array. The time required for the controller operation at 70nm
technology node is obtained to be 156.8ps using Synopsys Design
Compiler. Thus the total cycle time is estimated to be 650ps for 4-
port configuration. For an 8-port configuration, a rise in the
controller delay (due to more complex multiplexers in address
generation logic) increases the cycle time to 680ps. The total delay
for NanoFPGA can be estimated as: Delay for nanocrossbar*(# of
CIB in critical path) + Delay for nanocrossbar*(# of CLB in
critical path). The total number of configurable logic blocks and
programmable block interconnects in the critical path is obtained
from Quartus v7.0 by Altera.
iii) Energy/Vector Estimation: Since for each input vector, the
proposed framework involves multi-cycle operation, the total
energy/vector for MBARC can be estimated as: {(Controller
power/Cycle time) + Energy/cycle for all sense amps and level
shifters + Energy/cycle for memory access}*(No of cycles required
to evaluate the vector). The power contributed by controller circuit
is estimated with Design Compiler. Estimates for energy/cycle for
the memory and interface logic were obtained from [12]. The same
parameters can be calculated for NanoFPGA as: (Energy/Cycle for
CIB)*No of CIB + (Energy/Cycle for CLB)*No of CLB +
Energy/Cycle for all sense amps and level shifters associated with
CLB and CIB. The energy/vector results for the ISCAS’85
benchmark circuits are presented in Table II.

 Figure 4 compares the percentage improvement in area, power
and delay for the different benchmark circuits for both MBARC
and NanoFPGA based design. From the results presented, for
different benchmarks we note that on an average MBARC allows
60% and 5% savings in area for 4 and 8 port configurations,
respectively compared to a NanoFPGA design. Comparing the
percentage improvement in delays; we observe that for a given
vector the proposed framework allows 6.6% and 36.3% average
savings in the total evaluation time. Finally, in terms of
energy/vector, MBARC requires 36.5% and 31.6% less
energy/vector on an average compared to NanoFPGA.

IV. DESIGN CONSIDERATIONS
In this section, we will discuss some important design issues
associated with MBARC.

4.1) Scalability
Since an MCB evaluates logic blocks in time-multiplexed

manner (unlike spatial computing), theoretically applications of
arbitrary complexity can be mapped to a single MCB if we allow
sufficient memory to store the partition responses and enough
evaluation cycles. However, in order to improve performance
(number of cycles required per vector), the proposed MBARC
framework can be extended to exploit parallelism among
partitions. Further, multiple MCBs can also be connected in
pipelined fashion to improve the throughput in multi-vector
scenarios.
i) Exploiting Thread Level Parallelism: An investigation in
standard circuits reveals that each output of the circuit is not
dependent on all the inputs. In other words, the logic for most of
the applications is bit-sliced, so that the computations for the
different output bits may be performed in parallel to one another. A
partitioning algorithm that considers such thread level parallelism
in the circuit behavior will therefore be able to reduce the number
of partitions in the critical path for each output and thus reduce the
total evaluation time. Such a benefit will be more visible for
sequential circuits where i) a set of flip flops share the same input
cone and ii) the intersection of the input cone among different such
sets is quite small so that the logic that accounts for the intersection
can be duplicated. A software routine, given in Figure 5 was
written that would analyze the circuit to be implemented and

Figure 5: Procedure: Threading
INPUT: i) Hypergraph representation of the circuit,
 ii) Maximum number of Primary Inputs (PI) per thread (P)
OUTPUT: Independent threads of execution

1. Find the Logic Cone (LC) for each Primary Output (PO);
2. Order the LCs in the ascending order of PI counts;
3. IF, for a primary output, the number of PIs is more than P,

then consider the LC for the output as a single thread;
4. ELSE, group the primary outputs with maximum correlation

in terms of LC in a single thread such that the number of PIs
for the group is less than P;

5. For the threads which have overlapping logic cones,
duplicate the shared logic in both threads.

Table III: Design overhead for thread level parallelism
MBARC (12X12X4) NanoFPGA

Benchmark
Ckts # of

threads
Delay
(ns)

Area
(μm2)

Energy
/Vector

(pJ)

Delay
(ns)

Area
(μm2)

Energy
/Vector

(pJ)
C5315 7 6.5 149615 320.8 7.35 170640 276.9
S13207 8 10.4 178329 752.6 17.9 265678 432.6
S15850 8 9.1 182421 741.0 13.1 389274 630.6

Figure 6: Architectural framework for realization of
thread level parallelism and pipelining.

1C-2

81

identify the parallel threads in the design prior to the partitioning
procedure so that the PLP or memory-aware partitioning
algorithms can operate on these individual threads and generate the
revised set of partitions. The hardware implementation of parallel
thread evaluation is envisioned in Figure 6, where the partitions to
be evaluated is scheduled in parallel MCBs operating independent
of each other. The concept was validated for c5315 (ISCAS’85),
s13207 and s15850 (ISCAS’89) benchmark circuits for a 4 port
memory configuration. Table III lists the design overhead and the
performance improvement for parallel thread execution. From the
results we note that thread level parallel evaluation on the proposed
computational framework allows a 27.9% improvement in the total
execution time and 32.7% improvement in area at the cost of
25.3% increase in the total energy/vector. The improvement in
performance is particularly noteworthy for c5315 which requires
7.48 ns even for an 8 port memory configuration.
ii) Pipelining: Since the proposed framework inherently supports
multi-cycle evaluation, each MCB can be pipelined with another to
allow pipelined design for improved throughput. The concept is
illustrated in Figure 6. Thus the proposed framework allows the
following different granularities of computation: a) A design can
be evaluated in a single MCB b) A design can be evaluated in a
single pipelined thread or c) A design may be decomposed into
several parallel threads that may or may not involve pipelining.
Hence, by allowing both time and space multiplexing of its
resources, the proposed hybrid reconfigurable platform provides
significant improvement in the evaluation time for both irregular
control as well as regular datapath functions [17].

4.2) Memory Array Implementations with Nanodevices
For the proposed computational framework, it is essential

that we have a large memory array to store the LUTs for partitions.
A general feature of the emerging nanodevices (such as SET,
QCA, CAEN etc.) is that their typical dense and periodic structures
are amenable to large memory design. However, since these
nanodevices are inherently susceptible to high defect rates and
parameter variations, a monolithic large defect-free memory block
design may be challenging for these devices. Besides, a large
memory block typically requires large access time. Thus, it is
desirable to distribute the partitions into smaller memory modules.

In particular, let us consider the case of large memory design
with nanoscale crossbar using molecular switches. Figure 7
illustrates the organization of a larger memory array from several
smaller nano-crossbars.

Figure 7 realizes a memory of 4N words (with word-size =
N) from four N×N memory modules., where N=2M. This implies

that the LUT that is realized using this N×N crossbar can
accommodate a total of N minterms corresponding to M
(M=log2N) number of inputs. Since both a signal and its
complement are required to access the LUT values [12], 2M
number of vertical lines will be used as inputs to the LUT (Figure
7). Therefore, the maximum number of outputs of a partition that
the LUT can support is N-2M or N-2log2N. Note that the level
shifters (LS) and the sense amplifiers (SA) are required for
interfacing with the crossbar.

V. CONCLUSIONS
We have presented MBARC, a reconfigurable memory-based

computing model for emerging nanoscale devices, which are
amenable for memory design. The proposed model provides
dynamic reconfigurability and minimizes the requirement for
programmable interconnects as well as interfacing hardware.
Though the fundamental computational block for MBARC (referred
as MCB) evaluates a logic function in a time-multiplexed fashion,
the framework can be easily scaled to exploit parallel execution of
multiple partitions and threads (for higher throughput) using
multiple memory banks or multiple MCBs. Our investigation
shows that compared to purely spatial computing framework such
as FPGA, the proposed reconfigurable model can render significant
saving in area, performance and power. Finally, unlike the
previous approaches, the proposed model can potentially make the
CMOS-nano integration easier by separating the CMOS interface
logic from the memory blocks realized with nanodevices.

REFERENCES
[1] ITRS 2005: Process Integration, Devices and Structures, Available
online at: http://www.itrs.net/Links/2005ITRS/PIDS2005.pdf.
[2] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits”, Springer, 2000.
[3] L. Carloni et al., “Theory of latency-insensitive design”, IEEE TCAD,
2001.
[4] M. Tehranipoor, “Defect tolerance for molecular electronics-based
nanofabrics using built-in self-test procedure”, DFT, 2005.
[5] A. Dehon et al., “Seven strategies for tolerating highly defective
fabrication”, IEEE Design & Test of Computers, 2005, pp: 306-315.
[6] M. Mishra and S.C. Goldstein, “Defect Tolerance at the End of the
Roadmap”, ITC, 2003, pp: 1201-1211.
[7] S.C. Goldstein et al., “NanoFabrics: Spatial Computing Using
Molecular Electronics”, ISCA, 2001.
[8] R. F. Service, “Molecules get wired”, Science, vol. 294, 2001.
[9] Yong Chen et al., “Nanoscale molecular-switch crossbar circuits”,
Nanotechnology 14, pp. 462-468, 2003.
[10] C. P. Collier et al., “Electronically configurable molecular-based logic
gates”, Science, vol. 285, pp 391-394, 1999.
[11] A. Dehon et al., “Hybrid CMOS/nanoelectronic digital circuits:
devices, architectures, and design automation”, ICCAD, 2005.
[12] M. M. Ziegler and M. R. Stan, “CMOS/Nano Co-Design for Crossbar-
Based Molecular Electronic System”, IEEE Trans. on Nanotech. 2003.
[13] M. M. Ziegler and M. R. Stan, “Design and Analysis of crossbar
circuits for molecular nanoelectronics”, IEEE Nano, pp. 323-327, 2002.
[14] P. Farm et al., “Nanoeda: architecture and design methodology for
nano-scale electronic systems”, Swedish SoC Conf., 2003.
[15] J. G. Brown et al., “CAEN-BIST: testing the nanofabric”, Proceedings
of ITC, 2004, pp: 462-471.
[16] M. B. Tahoori, “A mapping algorithm for defect-tolerance of
reconfigurable nano-architectures”, ICCAD 2005, pp: 668-672.
[17] S. Hauck, “The roles of FPGAs in reprogrammable systems”,
Proceedings of the IEEE, 1998, pp. 615– 638.
[18] G. Karypis et al., “Multilevel hypergraph partitioning: applications in
VLSI domain”, IEEE TVLSI, 1999, pp: 69-79.
[19] M. Ottavi et al., “Design of a QCA Memory with Parallel Read/Serial
Write”, Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, 2005.
[20] http://cadlab.cs.ucla.edu/~xfpga/software/raspsyn.htm.0324
[21] G. Snider et al., “CMOS-like logic in defective, nanoscale crossbars”,
Nanotechnology 15, pp. 881-891, 2004.

Figure 7: Organization of a large memory module from 4
individual NXN memory blocks.

1C-2

82

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

