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Abstract— While the emerging nanoscale devices show 
promises in terms of integration density and computing power, 
system design with these devices involve some major challenges, 
such as bottom-up design approach, effective integration with 
CMOS and defect tolerance. To address some of these 
challenges, we propose MBARC, a reconfigurable framework 
using memory as the primary computing element. The 
proposed framework leverages on the reported advantages of 
memory array design with nanodevices, which are compatible 
to fabrication into dense and regular structures. The main idea 
is to partition a logic circuit, implement the partitions as multi-
input multi-output lookup tables in a memory array, and then 
use a simple CMOS-based scheduler to evaluate the partitions 
in topological time-multiplexed manner. Compared to existing 
reconfigurable nanocomputing models, the proposed memory 
based computing has three major advantages: 1) it minimizes 
the requirement of programmable interconnects, thus, saving 
design cost; 2) it minimizes the number of CMOS interfacing 
elements (required for level restoration and cascading logic 
blocks); 3) existing techniques for defect tolerance in memory 
array can be easily extended to this framework. Simulation 
results for a set of ISCAS benchmarks show average 
improvement of 32% in area, 21% in delay and 34% in energy 
per vector compared to nanoscale FPGA implementation. 
Index Terms: Nanoscale Crossbar, Reconfigurable architecture, 
FPGA, Memory based computing 

I. INTRODUCTION 
In the quest of a potential alternative to CMOS at the end of 

its roadmap [1], multitude of research efforts have been directed 
towards investigating novel devices with interesting and unique 
switching characteristics. Examples of such emerging array of 
devices include single-electron transistors (SET) [22], carbon 
nanotube field effect transistor (CNTFET) [23], semiconductor 
nano-wires, quantum-dot cellular automata (QCA) [19] and 
chemically assembled electronic nanocomputers (CAEN) [7]. 
Although most of these emerging nanodevices are still in their 
infancy, they hold tremendous potential in terms of integration 
density (~1010 devices/cm2), low power operation and higher 
switching speed. Molecular electronics is one such promising 
alternative that has drawn significant attention of the researchers in 
recent years [8]. These nanoscale circuits comprise of a molecular 
monolayer of rotaxanes sandwiched between metal nanowires [9]. 
Researchers at HP and at UCLA have met with experimental 
success in their efforts to realize crossbar structures using these 
nanoscale circuits either by self-assembly process or by nano-
imprinting method [9, 10]. Such experimental success has been 
complemented with development of architecture [7, 11], circuit 
[12, 13] and CAD tools [14] to support computation using these 
molecular crossbars. Substantial research has also been done to 
develop efficient testing [15] and application mapping procedures 
[16] that are able to tolerate high defect rate in these self-
assembled structures.  

The molecular crossbars under consideration provide an 
attractive solution to configurable computing. The reason is that 

rotaxane molecules sandwiched between the Ti/Pt nanowires at 
each crossbar junction can be switched from a state of high 
resistance to a state of low resistance and vice versa on the 
application of proper voltages to these nanowires [9]. Thus, each 
crossbar junction can be thought of as a 1-bit storage element and 
the entire crossbar can be used for storing the responses of logic 
functions. The molecular crossbar circuits are highly favorable for 
the production of dense and regular fabric, which allows the 
realization of large and complex functionalities within a small area 
either in the form of Programmable Logic Array (PLA) or as 
Lookup Table (LUT) [12]. 

 These molecular electronic systems, however, present several 
design challenges [11]. They are as follows: a) the bistable 
rotaxane molecules can be considered as two-terminal diode-like 
devices, which do not provide signal restoration and need to be 
interfaced with signal restoring circuits before they can be 
cascaded. It has been proposed [7, 12] that one can use 
conventional CMOS devices for the purpose of signal restoration. 
This requires that the nanowires of the crossbar are interfaced with 
interconnects whose dimensions are of the order of μm. Therefore, 
it is extremely important to choose a crossbar interface architecture 
that preserves the high device density offered by the crossbar 
circuits [12]. b) Since the fabrication process involves patterning at 
molecular dimensions, variations in the electrical behavior are 
observed across the crossbar junctions. Some junctions which 
become permanently irreversible during fabrication are referred to 
as defective. Design methodologies attempting to use the nanoscale 
crossbar as a computational fabric should take into account the 
high defect rate in such devices. Although methods for LUT and 
PLA-based logic realization in nano-crossbars are well established 
[7, 11, 12], sufficient investigations have not been reported on how 
these structures may be cascaded to realize larger functions. One 
solution as proposed in [12] is to cascade individual LUTs using 
signal restoration hardware. Such a solution will only benefit if the 
size of the individual crossbar is much large so as to offset the area 
and power requirement of the signal restoration circuitry. This is 
difficult to achieve considering the mismatch in size between the 
nano-crossbars and CMOS interfacing logic.  

The dense and periodic structures of most emerging 
nanodevices (including the aforementioned molecular switches) as 
well as bi-stable   nature of these switches make them amenable to 
large memory array design [9, 19, 22-23]. In this paper, we 
propose a novel computational framework referred as Memory 
BAsed Reconfigurable Computing (MBARC) that exploits the fact 
that nanodevices can be effectively configured into a memory 
array. The main idea is to decompose a logic circuit into a set of 
partitions, implement the partitions as lookup tables in a nanoscale 
memory array, and then use a CMOS-based controller to evaluate 
the partitions in topological and time-multiplexed manner. The 
partitioning and the mapping of the partitions to memory are 
performed during the application mapping process. The proposed 
approach separates the nanoscale memory and CMOS logic, 
therefore minimizing the requirement of interface hardware (a 
single set of signal restoring circuitry can be used for all the 
cycles). Further, contrary to existing implementations, where 
interfacing logic is distributed between any two connected nano-
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structures (e.g. crossbar), CMOS interfacing logic in MBARC is 
localized and separate, potentially facilitating CMOS-nano 
hybridization process. Moreover, the wide array of existing 
techniques to test, diagnose and achieve defect tolerance in 
memory [2] can be used for the proposed framework that utilizes a 
memory array as the primary computing element.  

In particular, the paper makes the following major 
contributions: 

1. It proposes a scalable reconfigurable memory-based 
computing model for nanodevices, which are suitable for 
memory array design. Compared to existing FPGA-like 
reconfigurable framework for nanodevices (which we refer as 
NanoFPGA), the proposed model can achieve considerable 
improvement in area, performance and energy per vector. 

2. It presents a complete design flow with efficient partitioning 
and scheduling algorithms for mapping an application to the 
proposed computational framework.  

3. The proposed method minimizes requirements for 
programmable interconnects and CMOS interfacing hardware.  

II. MEMORY BASED COMPUTING 
METHODOLOGY 

Configurable computing systems capitalize on the strengths 
of both hardware and software by using software algorithms to set 
the configuration for the programmable hardware. In the proposed 
computational framework, depicted in Figure 1a, the partitioning 
of the target application into smaller multi input-output logic 
functions, subsequent mapping of those functions to memory 
modules and finally scheduling them is achieved through software 
intervention. Information regarding the address, schedule and 
connectivity among the partitions is stored in a smaller memory 
array (denoted as schedule table in Figure 1a) during the phase of 
application mapping. The smaller logic functions obtained from the 
partitioning of the target application are mapped to different 
memory modules, which we collectively refer to as the function 
table. The memory modules are realized using nanoscale devices. 
Following are the steps for evaluation of a function using MBARC.

In MBARC, the behavioral description of the function that is 
to be realized is first synthesized to obtain an optimized multi-
input, single-output LUT representation. A partitioning algorithm 
is then used for partitioning the representation into a number of 

multi-input multi-output logic partitions. The number of inputs and 
outputs to each partition is dictated by the design constraints such 
as memory requirement and delay. Before evaluation of a function, 
the functional behavior (the output values corresponding to all 
input combinations) of each partition is stored in the function table. 
We define this as the memory configuration or the memory write
phase. Since the functional behavior is loaded into the memory 
during the write phase, the addresses for the different partitions are 
known before the actual evaluation of the function.  

After the configuration phase, the partitions are accessed in a 
sequence so that the topological dependence among the partitions 
is satisfied. In other words, a partition is evaluated only when all 
its input values are available. When the evaluation of all the 
partitions corresponding to a given function is completed, it can 
proceed to evaluate the function for the next input vector. Thus, 
MBARC can substantially reduce the requirement of expensive 
programmable switching matrices as required in an FPGA fabric 
[17] while still achieving easy dynamic reconfigurability. As seen 
in Figure 1a, in an evaluation cycle, the controller communicates 
with the memory array, providing inputs to and receiving outputs 
from the partition(s) that is/are being evaluated. The address for the 
mapping of a particular partition is provided by the schedule table. 
Figure 1b explains major steps in the proposed memory based 
computation flow.   

2.1) Circuit Partitioning  
As described in Figure 1b, an important step towards 

realizing a complex function with large number of inputs/outputs 
in memory is to partition the function appropriately to satisfy one 
or two of the following objectives: 1) to reduce total memory 
requirement for storing the partitions in the memory in the form of 
lookup table and 2) to minimize the evaluation time. Thus the 
problem of partitioning a circuit into multi-input multi-output 
representation can be formulated as an optimization problem 
considering evaluation time as optimization objective and memory 
requirement as a constraint. The constraint on memory is specified 
as the number of inputs and outputs of a partition. We have 
developed a heuristic-based solution for the partitioning problem 
that ensures no cyclic dependency among the partitions. 
Conventional hypergraph partitioning techniques [18] widely used 
in VLSI design typically target minimizing the cut-edges between 
partitions and do not ensure topological order or minimization of 

               
(a)                       (b) 

Figure 1: a) Overall memory based computation scheme. A multi input/output logic function to be evaluated is 
partitioned and the partitions are stored into memory arrays (realized with nanoscale devices using a set of small 
memory modules). A controller performs the tasks of partition evaluation in topological order and handling of 
intermediate partition outputs; b) Design flow for MBARC.
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evaluation time. The pseudo code for the proposed partitioning 
algorithm is given in Figure 2. It starts with creating a hypergraph 
from the circuit description and then sorts the vertices in 
topological order. The sorted vertices are traversed from the 
primary inputs and considered for inclusion in a partition. A vertex 
v is included in a partition if it satisfies the topological order 
(among partitions), size limit in terms of number of inputs and 
outputs of the partitions and Partition Level Parallelism (PLP),
which represents the number of independent partitions (i.e. the 
partitions that can be evaluated in parallel). Since this partitioning 
algorithm tries to maximize PLP (for improving performance), we 
refer this as PLP-aware partitioning. The fanout cone of vertex v
included in a partition is traversed to maximize the number of 
vertices per partition (thus minimizing total number of partitions).  
If no more vertices can be added to a partition without violating its 
input/output bounds, the partition is added to the partition pool and 
vertices in the partition are marked as traversed. Once all the 
partitions are created, an annealing step is performed to reduce the 
number of partitions. In this step, the partitions are levelized and 
vertices are shuffled among the partitions of the same level as well 
as across levels (while maintaining topological dependence). This 
allows vertices from some partitions to be subsumed inside another 
partition, thus, resulting in reduced number of partitions. A variant 
of the above partitioning algorithm was implemented to achieve 
optimization of memory requirement instead of cycle time. We 
refer this as memory-aware partitioning approach. In the latter 
approach, during the annealing step, the bigger partitions are 
broken down to smaller ones to reduce the memory requirement. 

To minimize the impact on evaluation time, we break only those 
partitions which have little PLP.  

2.2) Scheduling the Partitions 
For the proposed computational framework, scheduling refers 

to the order in which the partitions are being evaluated. Since the 
dependency and the connectivity among the different partitions is 
predefined during the compilation phase, we refer to the 
scheduling algorithm as static scheduling. Partition Pi+1 is 
dependent on partition Pi if it receives any input from partition Pi.
During computation, the controller evaluates the partitions one 
after another according to the scheduled sequence using the 
address and connectivity of the partitions stored in the schedule 
table. Figure 3 shows a schematic of the controller module 
implementation. The controller interfaces with a memory that has 4 
memory banks, each with one read port. As seen in Figure 3, the 
outputs from the partitions are stored in an intermediate register 
bank. The register bank stores the partition responses. Depending 
on the partitions to be evaluated, the select signals for the 
multiplexer network coming from the schedule table selects the 
inputs of the partitions from the intermediate register bank. The 
counter is used to select the schedule table outputs in each clock 
cycle. Similar to the configurable logic block (CLB) in FPGA, the 
computational building block for the proposed framework 
consisting of the schedule table, the function table, intermediate 
registers and the multiplexer network is, hereafter, referred as 
Memory-based Computational Block or MCB.

III. TEST SETUP AND RESULTS 
We have validated the proposed computational framework 

with ISCAS benchmark circuits. Each of the benchmark circuits 
was first synthesized and technology-mapped using ‘RASP’ (A 
FPGA/CPLD Technology mapping and Synthesis Package 

Figure 3:  Schematic of the controller hardware that 
evaluates the partitions in topological order based on 
static scheduling. 

Figure 2: Procedure: PLP-Aware Partitioning 
INPUT:       Circuit netlist, partition size (M X N)
OUTPUT:   Set of partitions 

Create hypergraph (G); 
Sort vertices topologically; 
while vertex v in G not traversed 

o Create a new partition P; Include v in P; 
o For vertex u in the fanout cone of v 
o Include u in P if it satisfies  

topological order 
Size (MXN) limit 
PLP 

o Backtrack to include topologically related 
vertices; 

o Complete partition P;  
o Mark vertices in P as traversed; 

endwhile 
Anneal partitions to reduce partition count.

Table I:  Results for partitioning and scheduling algorithms 
Memory Aware Partitioning PLP Aware Partitioning 

12 X 12 X 4 12 X 12 X 8 12 X 12 X 4 12 X 12 X 8 ISCAS85 
Ckt Mem Req 

(KB) 
Delay 
(cyc) 

Mem Req 
(KB) 

Delay  
(cyc) 

Mem Req 
(kB) 

Delay 
(cyc) 

Mem Req 
(kB) 

Delay 
(cyc) Run time 

(sec) 

C432 3.2 9 3.2 7 19.8 7 19.0 5 0.36 
C880 19.2 9 11.9 9 33.6 7 33.6 7 1.23 
C499 15.5 9 15.4 5 19.8 5 19.8 3 1.24 
C1908 18.4 8 14.4 5 32.6 5     32.6 4 3.01 
C1355 19.8 7 17.3 5 19.8 5     19.8 3 1.62 
C2670 72.9 12 68.8 8 83.1 10     83.1 7 3.19 
C3540 61.8 19 52.3 13 79.8 17    79.4 10 8.85 
C5315 89.4 19 85.7 10 124.8 18    125.5 11 9.58 
C7552 108.2 28 106.2 14 164.1 23   164.1 13 54.05 
C6288 78.4 19 62.1 14 78.4 19   78.4 13 18.67 
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developed at UCLA [20]). The gate-level netlist obtained from the 
synthesis tool contains multiple single output LUTs, which are 
then grouped into multi-input multi-output partitions according to 
the partitioning algorithms explained in Section II. The total 
memory requirement is calculated during the partitioning step on 
the basis of the number of inputs and outputs to each partition. For 
example, to evaluate an N×M partition a total of (2N*2N +2N*M)
data points are required in nano-crossbar. The rationale is, 2N*2N
data points are required for implementing the decoder and 2N*M
data points are needed for storing the function responses. The total 
number of memory accesses required to complete the evaluation of 
the entire function is obtained from static scheduling.  

We have simulated the performance of the proposed 
computational framework for both Memory and PLP-Aware 
partitioning algorithms. In each case, the number of inputs and 
outputs to each partition was restricted to 12. Increasing the 
number of partitions that may be evaluated in parallel improves the 
execution time. However, this requires either increasing the 
number of read ports from a single memory or increasing the 
number of memory banks, each with one read port that may be 
accessed in parallel. However, since the partitions communicate 
among each other only through the intermediate registers, we can 
distribute the partitions in 4 different memory banks each having a 
single port (for 4 parallel evaluations). Note that the later 
configuration is better in terms of design effort and memory access 
time. Thus hereafter, an ‘m’ port configuration refers to ‘m’
different memory banks each having a single read port. In order to 
observe the effect of parallel memory accesses on the proposed 
framework, results were obtained for both 4 and 8 memory read 
ports respectively.  

Design overhead for MBARC was estimated at 70nm 
technology node. A behavioral description of the controller was 
written in Verilog HDL and synthesized using Synopsys Design 
Compiler. Area, delay and energy per computation for the nano 
crossbar based FPGA implementation have been estimated using 
representative values [12]. The number of LUT and Programmable 
Interconnect Blocks required for a NanoFPGA implementation was 
estimated by mapping the benchmark circuits to Stratix III FPGA 
platform using Altera Quartus Version 7.0.

3.1) Partitioning and Scheduling Results 
Table I lists the simulation results for the proposed 

computational framework for ISCAS’85 benchmarks. From Table 
I, it is evident that the memory-aware partitioning algorithm 
requires less memory compared to the PLP-aware partitioning at 

the cost of higher number of execution cycles (denoted as delay). 
Table I also includes the required runtimes for the partitioning 
procedures on a SunBlade 1500 machine with 2GB RAM. 

3.2) Hardware implementation Results 
In this section, we present the hardware overhead results 

incurred for MBARC and compare it against a traditional FPGA 
design scaled to the nano regime [12]. For hardware estimation, we 
consider two memory configurations with 4 and 8 read ports 
allowing parallel evaluation of 4 and 8 different partitions, each 
with 12 inputs and outputs.  
i) Area Estimation: The area for the controller module after 
synthesis using Synopsys Design Compiler at 70nm technology 
node was obtained as 18917μm2 and 61893μm2 for 4 and 8 
memory ports, respectively. Since each partition has 12 
inputs/outputs, the number of I/O ports and hence the number of 
interface logic blocks (sense amplifiers and level shifters) required 
for 4 and 8 port designs are 48 and 96 respectively. An estimate of 
the area for the level shifter and sense amplifier at 70nm 
technology as well as the area for nano crossbar with a 70nm 
nanowire pitch was taken from [12]. The total area was estimated 
as, Total Area = Controller Area + Area for Sense Amps + Area 
for Level Shifters + Area for each crossbar junction*Total Memory 
Requirement (as given for PLP-aware partitioning in Table I).

As suggested in [12], the area for the NanoFPGA 
implementation can be estimated by taking into consideration the 
area overhead for i) the configurable logic blocks (CLB) and the 
configurable interconnect blocks (CIB) (implemented using nano 
crossbars) and ii) CMOS interface logic. Table II shows the 
number of CLBs and CIBs required for implementing the 
benchmark circuits. Each CLB is realized using an 8 input 1 output 

Table II: Design overheads for MBARC and NanoFPGA architectures 

MBARC Architecture 
MBARC (12X12X4) MBARC (12X12X8)

NanoFPGA Architecture 

ISCAS85 
Ckt Total 

Area 
(μm2)

Delay 
(Cfg2) 

(ns) 

Energy 
/Vector 

(pJ) 

Total 
Area 
(μm2)

Delay 
(Cfg2) 

(ns) 

Energy 
/Vector 

(pJ) 

# of LUTs 
in critical 

path 

Total 
# of 
CLB
used 

Total # 
of CIB 
used 

Total 
Area 
(μm2)

Delay 
(ns) 

Energy/ 
Vector 

(pJ) 

C432 21168 4.55 39.7 65551 3.4 51.5 13 41 108 35277 13.23 57.16 
C880 21733 4.55 45.4 66149 4.76 78.2 7 45 170 45780 7.35 74.31 
C499 21168 3.25 28.3 65584 2.04 31.1 5 33 149 53134 5.39 86.2 
C1908 21692 3.25 32.1 66108 2.72 44.4 8 33 117 46621 8.33 75.68 
C1355 21168 3.25 28.3 65584 2.04 31.1 4 33 152 36817 4.41 59.72 
C2670 23760 6.5 94.1 68177 4.76 98.7 4 61 283 867461 4.41 140.82 
C3540 23625 11.05 156.6 68025 6.8 138.8 10 116 337 108615 10.29 176.1 
C5315 25468 11.7 213.8 69913 7.48 182.7 7 133 551 170640 7.35 276.9 
C7552 27078 14.95 326.6 71494 8.84 245.6 7 184 629 213259 7.35 345.4 
C6288 23568 12.35 173.5 67984 8.84 179.7 26 275 641 198741 25.97 322.3 
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for 8 ports compared to FPGA-based implementation. 
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LUT and each CIB is realized using an 8 input 8 output LUT. 
Thus, the total area for the NanoFPGA can be estimated as: Total 
area = (Crossbar area for 8 input LUT + sense amp + level shifter 
area)*(no of CLB used) + (crossbar area for CIB + sense amp + 
level shifter area)*(no of CIB used). Table II presents the design 
overhead results for the different benchmarks for both MBARC and 
the NanoFPGA implementations.
ii) Delay Estimation: We estimate the cycle time for each 
computation and the Total execution time is estimated as: one cycle 
time* number of cycles required for the benchmark (considering 
the PLP-aware partitioning). The time required for each cycle can 
be estimated as: memory access and read time + controller delay. 
We have used the memory access and read time of 490ps 
according to the value reported in [12]. It can be noted that the 
total memory access time is dominated by the interface logic delay 
[12]. Therefore, we assume that the total delay for the crossbar 
memory access remains almost constant even for larger crossbar 
array. The time required for the controller operation at 70nm 
technology node is obtained to be 156.8ps using Synopsys Design 
Compiler. Thus the total cycle time is estimated to be 650ps for 4-
port configuration. For an 8-port configuration, a rise in the 
controller delay (due to more complex multiplexers in address 
generation logic) increases the cycle time to 680ps. The total delay 
for NanoFPGA can be estimated as: Delay for nanocrossbar*(# of 
CIB in critical path) + Delay for nanocrossbar*(# of CLB in 
critical path). The total number of configurable logic blocks and 
programmable block interconnects in the critical path is obtained 
from Quartus v7.0 by Altera. 
iii) Energy/Vector Estimation: Since for each input vector, the 
proposed framework involves multi-cycle operation, the total 
energy/vector for MBARC can be estimated as: {(Controller 
power/Cycle time) + Energy/cycle for all sense amps and level 
shifters + Energy/cycle for memory access}*(No of cycles required 
to evaluate the vector). The power contributed by controller circuit 
is estimated with Design Compiler. Estimates for energy/cycle for 
the memory and interface logic were obtained from [12]. The same 
parameters can be calculated for NanoFPGA as: (Energy/Cycle for 
CIB)*No of CIB + (Energy/Cycle for CLB)*No of CLB + 
Energy/Cycle for all sense amps and level shifters associated with 
CLB and CIB. The energy/vector results for the ISCAS’85 
benchmark circuits are presented in Table II.  

    Figure 4 compares the percentage improvement in area, power 
and delay for the different benchmark circuits for both MBARC
and NanoFPGA based design. From the results presented, for 
different benchmarks we note that on an average MBARC allows 
60% and 5% savings in area for 4 and 8 port configurations, 
respectively compared to a NanoFPGA design. Comparing the 
percentage improvement in delays; we observe that for a given 
vector the proposed framework allows 6.6% and 36.3% average 
savings in the total evaluation time. Finally, in terms of 
energy/vector, MBARC requires 36.5% and 31.6% less 
energy/vector on an average compared to NanoFPGA.  

IV. DESIGN CONSIDERATIONS 
In this section, we will discuss some important design issues 
associated with MBARC.

4.1) Scalability 
Since an MCB evaluates logic blocks in time-multiplexed 

manner (unlike spatial computing), theoretically applications of 
arbitrary complexity can be mapped to a single MCB if we allow 
sufficient memory to store the partition responses and enough 
evaluation cycles. However, in order to improve performance 
(number of cycles required per vector), the proposed MBARC
framework can be extended to exploit parallelism among 
partitions. Further, multiple MCBs can also be connected in 
pipelined fashion to improve the throughput in multi-vector 
scenarios.   
i) Exploiting Thread Level Parallelism: An investigation in 
standard circuits reveals that each output of the circuit is not 
dependent on all the inputs. In other words, the logic for most of 
the applications is bit-sliced, so that the computations for the 
different output bits may be performed in parallel to one another. A 
partitioning algorithm that considers such thread level parallelism 
in the circuit behavior will therefore be able to reduce the number 
of partitions in the critical path for each output and thus reduce the 
total evaluation time. Such a benefit will be more visible for 
sequential circuits where i) a set of flip flops share the same input 
cone and ii) the intersection of the input cone among different such 
sets is quite small so that the logic that accounts for the intersection 
can be duplicated. A software routine, given in Figure 5 was 
written that would analyze the circuit to be implemented and 

Figure 5: Procedure: Threading
INPUT: i) Hypergraph representation of the circuit, 
            ii) Maximum number of Primary Inputs (PI) per thread (P) 
OUTPUT:     Independent threads of execution 

1. Find the Logic Cone (LC) for each Primary Output (PO); 
2. Order the LCs in the ascending order of PI counts; 
3. IF, for a primary output, the number of PIs is more than P, 

then consider the LC for the output as a single thread; 
4. ELSE, group the primary outputs with maximum correlation 

in terms of LC in a single thread such that the number of PIs 
for the group is less than P;  

5. For the threads which have overlapping logic cones, 
duplicate the shared logic in both threads. 

Table III: Design overhead for thread level parallelism
MBARC (12X12X4) NanoFPGA 

Benchmark 
Ckts # of 

threads 
Delay 
(ns) 

Area 
(μm2)

Energy 
/Vector 

(pJ) 

Delay 
(ns) 

Area 
(μm2)

Energy 
/Vector 

(pJ) 
C5315 7 6.5 149615 320.8 7.35 170640 276.9 
S13207 8 10.4 178329 752.6 17.9 265678 432.6 
S15850 8 9.1 182421 741.0 13.1 389274 630.6 

Figure 6: Architectural framework for realization of 
thread level parallelism and pipelining.
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identify the parallel threads in the design prior to the partitioning 
procedure so that the PLP or memory-aware partitioning 
algorithms can operate on these individual threads and generate the 
revised set of partitions. The hardware implementation of parallel 
thread evaluation is envisioned in Figure 6, where the partitions to 
be evaluated is scheduled in parallel MCBs operating independent 
of each other. The concept was validated for c5315 (ISCAS’85), 
s13207 and s15850 (ISCAS’89) benchmark circuits for a 4 port 
memory configuration. Table III lists the design overhead and the 
performance improvement for parallel thread execution. From the 
results we note that thread level parallel evaluation on the proposed 
computational framework allows a 27.9% improvement in the total 
execution time and 32.7% improvement in area at the cost of 
25.3% increase in the total energy/vector. The improvement in 
performance is particularly noteworthy for c5315 which requires 
7.48 ns even for an 8 port memory configuration.  
ii) Pipelining: Since the proposed framework inherently supports 
multi-cycle evaluation, each MCB can be pipelined with another to 
allow pipelined design for improved throughput. The concept is 
illustrated in Figure 6. Thus the proposed framework allows the 
following different granularities of computation: a) A design can 
be evaluated in a single MCB b) A design can be evaluated in a 
single pipelined thread or c) A design may be decomposed into 
several parallel threads that may or may not involve pipelining. 
Hence, by allowing both time and space multiplexing of its 
resources, the proposed hybrid reconfigurable platform provides 
significant improvement in the evaluation time for both irregular 
control as well as regular datapath functions [17]. 

4.2) Memory Array Implementations with Nanodevices 
For the proposed computational framework, it is essential 

that we have a large memory array to store the LUTs for partitions. 
A general feature of the emerging nanodevices (such as SET, 
QCA, CAEN etc.) is that their typical dense and periodic structures 
are amenable to large memory design. However, since these 
nanodevices are inherently susceptible to high defect rates and 
parameter variations, a monolithic large defect-free memory block 
design may be challenging for these devices. Besides, a large 
memory block typically requires large access time. Thus, it is 
desirable to distribute the partitions into smaller memory modules. 

In particular, let us consider the case of large memory design 
with nanoscale crossbar using molecular switches. Figure 7 
illustrates the organization of a larger memory array from several 
smaller nano-crossbars.  

Figure 7 realizes a memory of 4N words (with word-size = 
N) from four N×N memory modules., where N=2M. This implies 

that the LUT that is realized using this N×N crossbar can 
accommodate a total of N minterms corresponding to M 
(M=log2N) number of inputs. Since both a signal and its 
complement are required to access the LUT values [12], 2M 
number of vertical lines will be used as inputs to the LUT (Figure 
7). Therefore, the maximum number of outputs of a partition that 
the LUT can support is N-2M or N-2log2N. Note that the level 
shifters (LS) and the sense amplifiers (SA) are required for 
interfacing with the crossbar.  

V. CONCLUSIONS 
We have presented MBARC, a reconfigurable memory-based 

computing model for emerging nanoscale devices, which are 
amenable for memory design. The proposed model provides 
dynamic reconfigurability and minimizes the requirement for 
programmable interconnects as well as interfacing hardware. 
Though the fundamental computational block for MBARC (referred 
as MCB) evaluates a logic function in a time-multiplexed fashion, 
the framework can be easily scaled to exploit parallel execution of 
multiple partitions and threads (for higher throughput) using 
multiple memory banks or multiple MCBs. Our investigation 
shows that compared to purely spatial computing framework such 
as FPGA, the proposed reconfigurable model can render significant 
saving in area, performance and power. Finally, unlike the 
previous approaches, the proposed model can potentially make the 
CMOS-nano integration easier by separating the CMOS interface 
logic from the memory blocks realized with nanodevices. 
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