
Exploring Power Management in Multi-Core Systems

Reinaldo Bergamaschi1, Guoling Han2, Alper Buyuktosunoglu1, Hiren Patel3, Indira Nair1,
Gero Dittmann1, Geert Janssen1, Nagu Dhanwada4, Zhigang Hu1, Pradip Bose1, John Darringer1

1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598; 2 University of California, Los Angeles, CA 90095;
3 Virginia Tech, Blacksburg, VA 24060; 4 IBM STG, East Fishkill, NY 12533

berga@us.ibm.com

Abstract— Power dissipation has become a critical design met-
ric in microprocessor-based system design. In a multi-core sys-
tem, running multiple applications, power and performance can
be dynamically traded off using an integrated power management
(PM) unit. This PM unit monitors the performance and power of
each core and dynamically adjusts the individual voltages and fre-
quencies in order to maximize system performance under a given
power budget (usually set by the operating system). This paper
presents a performance and power analysis methodology, featur-
ing a simulation model for multi-core systems that can be easily
reconfigured for different scenarios and a PM infrastructure for
the exploration and analysis of PM algorithms. Two algorithms
have been implemented: one for discrete and one for continuous
power modes based on non-linear programming. Extensive exper-
iments are reported, illustrating the effect of power management
both at the core and the chip level.

I. INTRODUCTION

Technology scaling has continuously driven towards higher
levels of integration, higher frequencies and lower operating
voltages. For technologies down to 90 nm it has been possi-
ble to continue increasing performance while reducing power
for the same functionality from one processor generation to the
next. However, for 65 nm and below, the effect of increased in-
terconnection length and resistance, coupled with a relatively
flatter operating voltage, has caused a significant dynamic and
static power increase in complex chips.

As the power / performance curve for microprocessor-based
systems is flattening across processor generations [1], tech-
niques for managing power and performance are needed both
at the low-end and high-end. Low-end embedded systems need
to be low power because of battery constraints. High-end sys-
tems can benefit greatly from lower power consumption, reduc-
ing packaging and cooling costs from individual processors to
complete data centers.

Several power management approaches have been devel-
oped, covering a wide spectrum of system characteristics, in-
cluding: (a) high-level operating-system-driven policies for
turning devices (e.g., disks, modems) on and off according
to predicted usage [2], (b) dynamic management of processor
resources according to activity demands [3, 4], (c) dynamic
scheduling of tasks to processors in a chip multi-processor
(CMP) environment to manage power and temperature [5, 6],
(d) hardware techniques for dynamic voltage and frequency
scaling [7, 8, 9], and (e) global dynamic power management
for multi-core chips [10].

Given the recent trend towards single-chip, multi-core sys-
tems, dynamic power management techniques that were de-
signed for single-core microprocessors must be augmented
at the chip-level to exploit the larger design space. This en-
ables a better power-performance trade-off under top-level con-

straints, e.g., a power budget. The hardware actuators avail-
able for power management include: (a) joint voltage and fre-
quency scaling, (b) frequency scaling, and (c) microarchitec-
tural switches, e.g., instruction fetch throttling [11].

In multi-core systems these actuators can be applied to the
chip as a whole (i.e., same value for all cores), or individually
per core. From a hardware implementation point of view, ap-
plying voltage and frequency scaling on a per-core basis is sig-
nificantly more expensive than chip-wide, because it requires
expensive analog voltage regulators and phase-locked loops for
each core. However, the per-core variant provides more precise
control of the performance / power curve, leading to a better
trade-off.

While substantial research has been done on power manage-
ment techniques at the hardware and architectural levels for
microprocessor-based systems, little has been done at the tools
level for power management. There are tools for power esti-
mation of processor cores [12], caches [13] and interconnects
[14], as well as simulators for performance and power [15, 16].
One of the few works on specification and analysis of power-
managed systems is [17], but it focuses on static definitions of
states / transitions and modes for each system component, as
opposed to values dynamically updated according to varying
workloads. Most of these tools focus on individual components
(e.g., core, cache), and not on complete multi-core systems, in-
cluding buses and memory hierarchy. However, it is at the sys-
tem level that power management can be the most effective.

This paper presents a performance and power analysis
methodology based on a simulation model for multi-core sys-
tems with integrated power management. The methodology
is implemented in SLATE (System-Level Analysis Tool for
Early Exploration) [18]. SLATE allows designers to assem-
ble, configure and simulate multi-core systems with L1 and
L2 caches and memory controllers interconnected by a co-
herent bus, and under the control of a global on-chip power
manager. The components are implemented in SystemC using
cycle-accurate transaction-level abstractions. To the best of the
authors’ knowledge, SLATE is the first tool that combines de-
tailed performance and power models of the core, system com-
ponents, and power management unit for CMP systems.

The power manager queries the performance and power of
all components at regular time intervals and decides how to
best control the available actuators of each component in order
to comply with a given power management policy, e.g., a fixed
power budget. The power manager currently implemented in
SLATE uses dynamic voltage and frequency scaling (DVFS)
as the power / performance actuator. Two PM algorithms have
been implemented, namely: the MaxBIPS algorithm from [10]
which uses a discrete set of possible voltage and frequency
pairs, and a continuous algorithm based on non-linear program-

8C-2

708978-1-4244-1922-7/08/$25.00 ©2008 IEEE

ming which finds the best possible voltage and frequency pair
within a continuous range of values. In addition, this paper ap-
plies both algorithms on a per-core basis (i.e., each core is al-
lowed a unique voltage / frequency setting) and chip-wide (i.e.,
all cores operate at the same voltage / frequency setting). In
this way we can quantify the performance advantage of per-
core DVFS to be traded off against the extra implementation
cost, compared with chip-wide DVFS.

This paper is organized in the following way. Section II
presents details on the SystemC modeling, including mod-
els for the core, system and power management. Section III
describes the power management algorithms, and Section IV
presents the experimental results and discussion. Section V
gives the conclusions.

II. SYSTEM MODELING

SLATE provides a library of performance models which
can be easily connected together forming complex multi-core
systems, including: processor models, cache models, mem-
ory model and a coherent bus model [22]. SystemC-based
transaction-level models (TLM) are used, and all components
communicate via a well-defined set of ports and channels,
which makes it flexible and easy to assemble different system
configurations, e.g., varying the number of cores. A wide range
of parameters on the core, cache and memory models are sup-
ported. More details of the models are described in [18].

The models are based on the POWER family of proces-
sors and systems. All models, except for the Power Manager
model, are cycle-accurate performance models. The core model
is based on the POWER4 processor [19], running instruction
traces as the input to the simulation. Through simulation over
millions of instructions we obtain results for performance, such
as cycles-per-instruction (CPI), and power for a given set of ap-
plication traces.

A. Core Model
The core model is a pipeline-accurate performance model,

based on the POWER4 processor which is a single-thread, out-
of-order execution, in-order completion microarchitecture [19].
The units inside the core (e.g., Decode, Dispatch, Issue queues)
are modeled functionally accurately, and the execution delay of
each unit is modeled by a cycle-accurate pipeline channel, as
illustrated in Figure 1. This approach implements a clear sep-
aration between computation and communication, with all the
delay (computation delay + communication delay) being accu-
rately modeled in the pipeline channel. The pipeline channel
itself is a C++ template and can transport any data type. The
delays are parameterized and multi-ports are used wherever
applicable, e.g., out of the Dispatch unit. The number of cer-
tain units and the delays between them can be changed, allow-
ing for extensive architectural exploration. For example, more
fixed-point issue queues and execution units (FXQ, FXU) can
be added just by instantiating them and connecting them to the
generic pipeline channels.

SLATE’s core model was tested and tuned using instruc-
tion traces generated from the SPEC CINT2000 benchmarks
[20]. The CPI numbers were compared against a detailed
production-quality performance simulator used in IBM [21].
On average for all 12 benchmarks SLATE results were within
16% of the production simulator results, which is acceptable
for an early analysis system.

The core model also computes the dynamic and static power
dissipated by the core as the simulation progresses. The power

Fig. 1.: Internal organization of core model.

model used is based on [12]. Briefly, each unit inside the core
has a formula for power that takes switching factors to produce
the power for the unit. These formulas are generated by detailed
logic and circuit-level simulations of the actual design or the
previous version of the design, properly scaled for technology
changes. The performance simulation provides the switching
factors for each unit, which are then fed into the formulas as
the simulation progresses, and the power is computed [12].

B. System Model

SLATE is targeted at building and simulating CMP systems,
running multiprogrammed workloads, i.e., each core runs an
independent application trace. Each core is connected to a ded-
icated level-2 cache, which is connected to a coherent bus.
The bus is also connected to a memory controller model. The
proprietary coherence protocol in the bus is modeled cycle-
accurately. An accurate bus model is important in a multi-core
system to simulate coherency and contention to memory pre-
cisely, as these factors may affect overall performance signifi-
cantly. Parameterizable performance and power models for the
caches (L1, L2), bus and memory controller were developed
in SystemC. Power models include both dynamic and static
power.

The components are interconnected using specialized Sys-
temC communication channels capable of modeling both
synchronous and asynchronous communication. The asyn-
chronous channels enable communication between compo-
nents operating at different frequencies which is a prerequi-
site for per-core DVFS. The channel delays are fully param-
eterizable and can implement a range of structures, including
pipelines, queues, FIFOs and asynchronous handshakes, facili-
tating the exploration of different communication schemes.

The basic system example which will be used in the remain-
der of this paper is shown in Figure 2. It depicts four POWER4-
like cores, four dedicated L2 caches, a bus, and a memory con-
troller, all connected by communication channels, marked CC.
The different shadings indicate that different internal imple-
mentations and different interfaces are used between each dif-

8C-2

709

Fig. 2.: System example with 4 cores.

ferent pair of components. Connecting a component to another
component is simply a matter of instantiating the communica-
tion channel that has the right pair of predefined interfaces to
the two components.

C. Power Manager Model
The power management problem addressed here is the fol-

lowing: given a total chip power budget, and input applica-
tion traces running on the cores, how to dynamically assign
power modes (i.e., Vdd-frequency pairs) to each core, such that
the overall chip performance (i.e., total number of instructions
completed on all cores per time interval) is maximized. For the
sake of simplicity, in this paper we only consider changing the
Vdd and frequency of the cores while keeping the other com-
ponents running at a nominal system Vdd and frequency. This
is acceptable in this case because for the parameters and tech-
nology used in this paper the core power dominates the system
power. However, the approach can be easily extended to han-
dle all components in the system individually, or to group them
into Vdd and clock domains.

Fig. 3.: Power manager components and interfaces.

A power management infrastructure has been implemented
in SLATE, as illustrated in Figure 3. The networks in Figure 2
and Figure 3 are both part of the same system model. The func-
tion of the PM module is to decide whether and how to apply
DVFS to the cores in the design. It does this by periodically
sampling sensor information from the cores, and running algo-
rithms which decide on the next set of Vdds and frequencies
to apply. The period, or observation window, is usually deter-
mined by a higher-level supervisor software layer and is nor-
mally in the order of a few hundred microseconds. Given the
large periodicity of the PM loop, there was no need to imple-
ment the PM module in a cycle-accurate manner. We use a Sys-
temC behavioral model triggered at every observation window.

In real hardware, the sensors are usually performance and
power measurement proxies that each core keeps track of as
it runs. This can be done either using digital counters or more
complex analog circuitry. In the core and PM models, these
sensors are implemented as function calls (APIs) over the Sys-
temC interfaces connecting them, as shown in Figure 3. The
PM component connects to a PM bus that decodes the com-
mand, sends the right Vdd and frequency to the designated
core, and sends commands to the clock generator to modify
the frequency of the clock that is connected to the designated
core.

The multiple clock generator component is parameterized on
the number of clocks. All clocks may change frequency simul-
taneously, if so requested by the PM module. The clock gener-
ator can also take into account a time penalty for changing the
frequency if necessary, although current voltage and frequency-
changing hardware techniques can perform a smooth transition
between modes, and there is no need to stall the execution dur-
ing voltage and frequency changes [8].

III. POWER MANAGEMENT ALGORITHMS

A. MaxBIPS

As a reference point, and to test our PM framework, we im-
plemented an existing algorithm, MaxBIPS, proposed in [10]
for DVFS. The algorithm assumes a set of discrete power
modes (Vdd-frequency pairs) for each core which the PM can
control individually. The goal is to maximize the overall chip
performance, as measured by the total number of completed
instructions by all cores per time period, under a given power
budget.

The MaxBIPS algorithm relies on the fact that when a given
core switches from power mode A (VddA, freqA) in observa-
tion window N to power mode B (VddB, freqB) in observation
window N+1, the future performance and power is predictable
using simple formulas, as shown below. This assumes that the
workload characteristics do not change significantly from one
window to the next.

Observation Window N N + 1

Mode (v, f) (v′, f ′)
Performance I I ∗ (f ′/f)

Dynamic Power P P ∗ (v′/v)2 ∗ (f ′/f)
Static Power L L ∗ (v′/v)3 (approx.)

Based on these formulas, the MaxBIPS algorithm computes
the estimated power and performance for all possible tuples
[corei, modej] and selects the mode that maximizes perfor-
mance while not exceeding the power budget. The worst-case
complexity of the algorithm is O(MN), with M the num-
ber of modes and N the number of cores. In practice many
[core,mode] tuples can be pruned out during the search as soon
as the total power exceeds the current budget, and both N and
M are limited for practical reasons; as a result the algorithm
can afford a simple search on all tuples for the optimal solu-
tion.

MaxBIPS uses a discrete number of power modes because it
limits complexity and it is implementable in hardware. How-
ever, the best number of power modes to use is still an open
question that depends on the silicon technology used, on the
implementation costs of voltage regulator modules (VRMs)
and phase locked-loops (PLLs), and on whether per-core or
chip-wide DVFS is used.

8C-2

710

B. Continuous Power Modes
To understand the impact of the fixed number of power

modes and to compare with the discrete MaxBIPS solution,
we used non-linear programming to model the same DVFS
problem with continuous power modes. Under this Continuous
Power Modes (CPM) algorithm, cores can run at any frequency
and voltage within predefined upper and lower bounds. To un-
derstand the formulation, a few definitions are needed:

N Number of cores in the design.

Interval Exploration interval.

vmin, fmin, vmax, fmax The minimum and maximum voltages
and frequencies.

k The slope of the frequency change function. It is assumed
that voltage and frequency bear a linear relationship given
by k = (fmax − fmin)/(vmax − vmin)

v0[1 : N], f0[1 : N], P0[1 : N], L0[1 : N], I0[1 : N] Vectors
storing the voltage, frequency, average dynamic and static
power dissipation, and performance (I for instructions
executed) in the last interval. The i-th value of these
vectors is the corresponding value for corei.

v[1 : N], f [1 : N] Vectors representing the voltages and fre-
quencies respectively, for the next interval.

The following linear constraint equation describes the rela-
tionship between the voltage change and frequency change:

f [i] = fmin + k ∗ (v[i] − vmin) ∀i ∈ {0 . . . N}

The sum of the predicted power (dynamic + static) must not
exceed the power budget, which translates into the following
non-linear constraint:

∑

1≤i≤N

P0[i] ∗ (v[i]/v0[i])2 ∗ f [i]/f0[i] + L0 ∗ (v[i]/v0[i])3

≤ PowerBudget

The objective function is to maximize the overall chip per-
formance as measured by the sum of the predicted performance
for the next interval, expressed as:

∑

1≤i≤N

I0[i] ∗ f [i]/f0[i]

Since the constraints and the objective functions have ana-
lytic gradient and Hessian information, the continuous per-core
DVFS problem can be efficiently and optimally solved using
the interior point method. We used OPT++ [22], a freely avail-
able non-linear program solver, to optimize the power modes in
every observation window. The CPM algorithm is too complex
for a hardware implementation, but it is useful in a design ex-
ploration methodology since it produces optimal results which
allow us to evaluate heuristic algorithms with practical imple-
mentations.

Both MaxBIPS and CPM can be applied to chip-wide DVFS
as well by restricting the search space to solutions in which
all cores apply the same power mode (same voltage and fre-
quency).

IV. EXPERIMENTAL RESULTS

All experimental results were obtained by running simula-
tions of the model shown in Figure 4, with the power manage-
ment infrastructure of Figure 3, and under the power manage-
ment algorithms described in Section III. Realistic values of
voltage and frequency were used. For each core, the voltage
range was [1.1 V to 0.9 V]. The frequency range was [3.5 GHz
to 2.7 GHz]. These ranges were evenly divided into 9 levels,
or power modes, resulting in voltage and frequency steps of
0.025 V and 0.1 GHz, respectively. The voltage transition rate
was 10 mV/μs, resulting in a transition time of 2.5 μs for a Vdd
step of 0.025 V.

Varying the PM observation window, when the PM algo-
rithm is run, between 100 μs and 500 μs had only little effect on
the experiments. Therefore, we show results for a fixed 500 μs
window, corresponding to approximately 1.5 million cycles.

Experiments were run for power budgets varying from
the highest power, i.e., all cores at max Vdd and frequency
(all_high mode) to the lowest power, i.e., all cores at min Vdd
and frequency (all_low mode). For each power budget the sim-
ulation was run for around 60 million cycles, covering a wide
range of workload phases. Performance was measured as the
total number of completed instructions in all cores over a fixed
time period. Chip performance is highest at the all_high mode
and lowest at the all_low mode. All performance values are
normalized with respect to the performance measured in the
all_high mode. In order to produce realistic results, we em-
ployed four SPEC CINT2000 benchmark traces with different
workload characteristics: eon, gzip, perl, and twolf.

Figure 4 shows several graphs of power and performance for
the whole range of power budgets (from all_high to all_low),
comparing the discrete algorithm (MaxBIPS) with the contin-
uous algorithm (CPM), both applied per-core as well as chip-
wide. The labels with “-c” indicate results using the CPM; ab-
sence of “-c” means that MaxBIPS was used. Detailed expla-
nations of each graph are given below.

Figure 4a—Overall Chip Performance: This chart con-
tains four lines representing the overall chip performance under
DVFS for seven different power budgets, ranging from 100%
(all_high mode) to 45% (all_low mode). The four lines cor-
respond to the discrete (using 9 power modes) and continu-
ous algorithms applied on a per-core and chip-wide basis. As
expected, the chip-wide discrete line shows the worst perfor-
mance degradation as the power budget is reduced, followed
by chip-wide continuous and, almost matching, per-core dis-
crete and per-core continuous.

The per-core discrete approach has a distinct advantage over
the chip-wide discrete of about 2.5 percentage points, using 9
levels for Vdd and frequency. We ran several experiments using
only 3 levels (a more cost-effective solution, not shown here)
and the difference grew to about 6 percentage points. This is a
valuable insight because it can help designers evaluate the cost-
benefit of comparable solutions (for example, 3-level per-core
VRMs, versus 9-level single VRM for the whole chip).

The per-core discrete and per-core continuous lines almost
match, which indicates that using 9 levels for Vdd and fre-
quency is practically optimal and there is no need to use more
levels.

Figure 4b—Individual Core Relative Performance: This
chart presents the results of applying DVFS on a per-core basis
for different power budgets, using both discrete (9 levels) and
continuous algorithms. Instead of showing the overall chip per-

8C-2

711

(a) Overall chip performance for decreasing power budgets. (b) Individual core performance under per-core DVFS.

(c) Chip-wide DVFS transitions for 73% power budget. (d) Per-core DVFS transitions for 73% power budget.

Fig. 4.: Performance and power analysis results for 4-core design under power management.

formance, this chart compares the performance of each core,
running a specific trace. The chart illustrates how the algo-
rithms choose modes for each core, thus affecting their relative
performance in different ways, in order to maximize overall
chip performance.

The performance of an application running on a core, mea-
sured in instructions per cycle (IPC), depends on how much
time the application spends doing computations versus time
spent waiting for memory accesses. The frequency of a core
directly affects its computation speed but has little influence on
the memory latency. Therefore, the performance of computa-
tionally intensive applications is more sensitive to voltage and
frequency scaling than that of memory-bound applications.

As the power budget decreases, the algorithms decrease the
voltages and frequencies of the cores with lowest IPC first—
core 3 running twolf, followed by core 1 running gzip—and
decrease less the voltages and frequencies of the cores with
higher IPC. As the power budget continues to decrease, not
enough power can be saved by only the lowest IPC cores and
the algorithms further lower the voltages and frequencies of the
higher IPC cores. No core drops below 80% of their maximum
performance.

By comparing the discrete and continuous (“-c”) lines for
each core one can see how much performance can be gained by
using a continuous solution. For twolf the difference is virtually
zero while for the other cores the difference is 1 to 2 percentage
points, indicating again that using 9 levels is almost as good as
the optimal continuous solution.

Figures 4c/4d—Chip-wide and Per-core DVFS Transi-
tions: These graphs show the evolution of both algorithms over

time, and how they triggered each core to switch, or not, to a
different voltage and frequency at every observation interval,
for a fixed power budget of 73% of all_high. As the simulation
progresses and the workload characteristics change, the algo-
rithms may have to trigger power mode changes in order to not
exceed the given power budget. Figure 4c shows the transitions
for the case of chip-wide DVFS for both discrete and contin-
uous algorithms. It can be noticed that the discrete algorithm
causes very definite step-wise transitions, whereas the contin-
uous algorithm applies more frequent and much more gradual
changes to Vdd. A similar effect can be observed when per-
core DVFS is applied, as shown in Figure 4d.

Figure 5 shows the average power overshoot and undershoot,
i.e., the average deviation from the power budget, over the en-
tire simulation for different power budgets. To keep track of
power at a finer granularity rate, we measured the chip power
every 10,000 cycles and computed the averages of all overshoot
and undershoot values. This figure plots these averages for all
four cases studied (per-core and chip-wide, using both discrete
and continuous algorithms). From this figure it can be seen that
the average overshoots and undershoots are fairly small, and
per-core DVFS overshoots and undershoots are smaller than
in chip-wide DVFS. This represents how well the algorithm is
able to adapt to workload changes and stay within the power
budget.

Execution times for these experiments were around 120 min
for 60 million instructions. The actual power management al-
gorithms were very fast and not significantly affecting the over-
all simulation time.

8C-2

712

Fig. 5.: Average power overshoots, undershoots.

V. CONCLUSIONS

This paper presented a performance and power analysis
methodology based on a simulation model for multi-core mi-
croprocessor systems with an integrated power management
module applying dynamic voltage and frequency scaling. The
novelty in this paper is three-fold. First, it presented a flexible,
componentized environment capable of simulating the perfor-
mance and power of systems, with detailed models of cores,
caches, buses and memory controllers, and a variety of in-
terconnection paradigms. Secondly, it described an integrated
power management infrastructure which, coupled with the per-
formance and power models, allows designers to explore dif-
ferent power management policies and algorithms. Thirdly, it
presented a formulation and solution to the DVFS problem us-
ing continuous voltage and frequency ranges, using non-linear
optimization methods. This algorithm, although not practical
for hardware implementation, is very useful for analyzing the
quality of other algorithms.

Extensive results were given analyzing different facets of
the multi-core power management problem, including compar-
isons of per-core and chip-wide approaches and discrete and
continuous algorithms.

As a next step we plan to investigate the effect of systems
software such as task scheduling on the integrated power man-
ager and interactions between them.

REFERENCES

[1] L.A. Barroso, “The price of performance”. ACM Queue, vol. 3, no. 7,
pp. 48–53, September 2005.

[2] G.A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli, “Policy opti-
mization for dynamic power management”. In Proceedings of the Design
Automation Conference (DAC’98), IEEE/ACM, pp. 182–187, San Fran-
cisco, June 15–19, 1998.

[3] E. Grochowski, R. Ronen, J. Shen, and H. Wang, “Best of both latency
and throughput”. In Proceedings of IEEE International Conference on
Computer Design (ICCD 2004), pp. 236–243, San Jose, October 11–13,
2004.

[4] S. Heo, K. Barr and K. Asanovic, “Reducing power density through activ-
ity migration”. In Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED), pp. 217–222, Seoul, August 25–27,
2003.

[5] M. Powell, M. Gomaa, and T.N. Vijaykumar, “Heat-and-run: leveraging
SMT and CMP to manage power density through the operating system”.
In Proceedings of 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS XI),
pp. 260–270, Boston, October 7–13, 2004.

[6] E. Kursun, C.Y. Cher, A. Buyuktosunoglu, and P. Bose, “Investigat-
ing the effects of task scheduling on thermal behavior”. 3rd Workshop
on Temperature-Aware Computer Systems (TACS’06), Boston, June 18,
2006.

[7] K. Nowka, G. Carpenter, E. MacDonald, H.C. Ngo, B. Brock, K. Ishii,
T. Nguyen, and J. Burns, “A 32-bit PowerPC system-on-a-chip with sup-
port for dynamic voltage scaling and dynamic frequency scaling”. IEEE
Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1600–1608, November
2002.

[8] G. Magklis, G. Semeraro, D.H. Albonesi, S.G. Dropsho, S. Dwarkadas,
and M.L. Scott, “Dynamic frequency and voltage scaling for a multiple-
clock-domain microprocessor”. IEEE Micro, vol. 23, no. 6, pp. 62–68,
Nov/Dec 2003.

[9] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W. Parks,
and S. Naffziger, “Power and temperature control on a 90-nm Itanium
family processor”. IEEE Journal of Solid-State Circuits, vol. 41, no. 1,
pp. 229–237, January 2006.

[10] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An
analysis of efficient multi-core global power management policies: max-
imizing performance for a given power budget”. In Proceedings of the
39th Annual International Symposium on Microarchitecure (MICRO’06),
IEEE, pp. 347–358, Orlando, December 9–13, 2006.

[11] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: specula-
tion control for energy reduction”. In Proceedings of the 25th Interna-
tional Symposium on Computer Architecture (ISCA’98), pp. 132–141,
Barcelona, June/July 1998.

[12] D. Brooks, P. Bose, V. Srinivasan, M.K. Gschwind, P. Emma, and
M. Rosenfield, “New methodology for early-stage microarchitecture-
level power-performance analysis of microprocessors”. IBM Journal
of Research & Development, vol. 47, no. 5/6, pp. 653–670, Septem-
ber/November 2003.

[13] S.J. Wilton, and N.P. Jouppi, “CACTI: an enhanced cache access and
cycle time model”. IEEE Journal of Solid-State Circuits, vol. 31, no. 5,
pp. 677–688, May 1996.

[14] N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power
dissipation in a microprocessor”. In Proceedings of the 2004 International
Workshop on System-Level Interconnect Prediction (SLIP’04), pp. 7–13,
Paris, February 14–15, 2004.

[15] T. Austin, E. Larson, D. Ernst, “SimpleScalar: an infrastructure for com-
puter system modeling”. IEEE Computer, vol. 35, no. 2, pp. 59–67, Febru-
ary 2002.

[16] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimization”. In Proceedings of
the 27th annual international symposium on Computer architecture (ISCA
2000), pp. 83–94, Vancouver, June 10–14, 2000.

[17] A. Bogliolo, L. Benini, E. Lattanzi, and G. De Micheli, “Specifica-
tion and analysis of power-managed systems”. Proceedings of the IEEE,
vol. 92, no. 8, pp. 1308–1346, August 2004.

[18] R. Bergamaschi, G. Han, A. Buyuktosunoglu, H. Patel, I. Nair,
G. Janssen, G. Dittmann, N. Dhanwada, Z. Hu, P. Bose, J. Darringer, “Per-
formance modeling for early analysis of multi-core systems.” In Proceed-
ings of the 5th International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS 2007), pp. 209–214, Salzburg,
September 30–October 5, 2007.

[19] J. Tendler, J.S. Dodson, J.S. Fields Jr., H. Le, B. Sinharoy, “POWER4
system microarchitecture”. IBM Journal of Research & Development,
vol. 46, no. 1, pp. 5–26, January 2002.

[20] SPEC Standard Performance Evaluation Corporation, www.spec.org.

[21] S.R. Kunkel, R.J. Eickemeyer, M.H. Lipasti, T.J. Mullins, B. O’Krafka,
H. Rosenberg, S.P. VanderWiel, P.L. Vitale, and L.D. Whitley, “A perfor-
mance methodology for commercial servers”. IBM Journal of Research
& Development, Vol.44, No.6, November, 2000.

[22] “OPT++: an object-oriented nonlinear optimization library”, http://
csmr.ca.sandia.gov/opt++/

8C-2

713

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

