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Abstract— A dynamic monitoring of thermal behavior of hard-
ware resources using thermal sensors is very important to
maintain the operation of systems safe and reliable. This work
proposes an effective solution to the problem of thermal sensor
allocation and placement for reconfigurable systems at the post-
manufacturing stage. Specifically, we define the sensor allocation
and placement problem (SAPP), and propose a solution which
formulates SAPP into the unate-covering problem (UCP) and
solves it optimally. We then provide an extended solution to
handle a practical design issue where the hardware resources
for the sensor implementation on specific array locations have
already been used up by the application logic. Experimental re-
sults using MCNC benchmarks show that our proposed technique
uses 19.7% less number of sensors to monitor hotspots on the
average than that used by the bisection based [1] approaches.

I. INTRODUCTION

Aggressive scaling of process technologies has enabled very
high logic densities on integrated circuits, which in turn lead
to a sharp increase of power density, and thus the increase
of die temperature. Recently, it was reported that the die
temperature for commercial grade FPGAs typically reaches
80°C in a normal operation speed and reaches beyond 125°C
in a high operation speed with excessively parallel execution
[1]. Since high temperature on a chip causes serious effects
on timing, power, reliability, and chip lifetime, it is highly
desirable to maintain a low and even temperature distribution
on the chip. However, due to the die size constraint, the
physical cooling factors alone, such as heat sinks and fans,
surrounding the die could not afford a complete solution. On
the other side, controlling temperature through the control of
operation executions (e.g., clock throttling [2]) is becoming an
essential cooling factor. This run-time control of chip operation
invariably requires thermal sensors to monitor the thermal
behavior of the chip during the chip operation.

FPGAs are now one of the most suitable devices for creating
high-density and high-speed reconfigurable systems, which
can modify or adapt their functionalities to perform different
tasks. Thus, monitoring and controlling the thermal status
of the FPGA device during dynamic reconfiguration is very
important. In this respect, this work focuses on the thermal
sensor allocation and placement problem for reconfigurable
systems on FPGAs. Note that for programmable logic arrays,
the degree of the use of the programmable logic resources will
be determined after when the target reconfigurable application
is mapped. Thus, creating and placing thermal sensors at the
manufacturing stage are inadequate. Instead, to minimize the
waste of resource usage for thermal sensors as well as to
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effectively monitor the thermal behavior, the task of sensor
allocation and placement should be considered at the post-
manufacturing stage (precisely, after target logic mapping), at
which the hotspot! locations of the reconfigurable logic were
known.

It is well known that microelectronic delay increases as
temperature increases. As a result, a way to estimate chip
temperature is to construct an oscillator and calibrate its output
drift in MHz per °C or °E2 Lopez-Buedo, et al. [4] used
the oscillator-based (called ring-oscillator) sensors, combined
with their auxiliary blocks (e.g., counting and control stages),
for thermal monitoring in FPGA-based systems. The pro-
grammability in FPGAs gives a unique feature for embedding
thermal sensors into target application. It allows the ring-
oscillators to be dynamically inserted, moved, or eliminated
by a system designer [5]. As another thermal sensor, the
embedded thermal diodes on FPGA devices can be used.
However, it is not possible to find, at the manufacturing
stage, the best locations on the device at which thermal
diodes are inserted since the same type of device can be used
very differently according to the target applications. On the
other hand, ring-oscillator has many advantages over thermal
diode, except the high sensitivity to power supply variation,
such as fully programmability and digital signals, and linear
characteristics [4], [5].

In addition to the problem of finding best locations of
sensor placement with minimum number of sensors, another
issue to be solved is the ‘practical’ use of ring-oscillator
in the reconfigurable systems. This issue arises due to the
programmability of ring-oscillator. Even though the size of
ring-oscillator is relatively very small (a sensor occupying
around 0.3% of the Xilinx Virtex XCV800 model, including its
auxiliary circuitry), placing a large number of sensors to mon-
itor entire thermal behavior can cause a significant resource
overhead, or may not be feasible due to the limited space
for sensor implementation, especially when the reconfigurable
logic is tightly fitted into the target device. For this reason,
given a reconfigurable design exhibiting a certain thermal
profile, it is quite important to minimize the number of sensors
to be allocated and also find the best locations to monitor all
hotspots.

In this work, we proposes a solution to the problem of
thermal sensor allocation and placement for reconfigurable

'A hotspot refers to the location of chip at which the temperature exceeds
a given temperature threshold Tj;.
2This idea was originally proposed by [3].
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FPGA systems at the post-manufacture stage. Specifically, we
define the sensor allocation and placement problem, and pro-
pose a solution which formulates the problem into the unate-
covering problem and solves it efficiently and optimally. We
then provide an extended solution to handle the practical issue
where the hardware resource for the sensor implementation
is limited. To the best of our knowledge, only the works
in [6], [1] considered the problem of a ‘systematic’ sensor
allocation and placement. Mondal, Mukherjee, and Memik
[6] allocated and placed sensors one by one at a time in a
greedy manner by finding a sensor position that covers the
maximum number of hotspots. On the other hand, Mukherjee,
Mondal, and Memik [1] enhanced the work in [6] by proposing
a method called recursive bisection algorithm. Note that the
bisection algorithm is another greedy method, and may lead
to a sub-optimal results. Furthermore, the methodology used
in [6], [1] shall not be applied in practice or insufficient in
the sense that they assumed a sensor can be implemented
in ‘any’ location on the fabric. In practice, some location
may be occupied by the application logic. This implies that
implementing sensor to a specific location at which a piece of
application logic has already been mapped requires a (partial
or entire) remapping of the application logic. However, this
remapping will change the thermal profile of the target design,
thus the hotspot distribution.

II. THERMAL SENSOR ALLOCATION AND PLACEMENT
A. Thermal Sensor

A direct technique for programming thermal sensors on
FPGAs is based on ring oscillators. A ring-oscillator is a
feedback loop that includes an odd number of inverters con-
nected in a chain to generate the phase shifting at its output.
Since temperature is one key parameter that is sensitive to
the switching speed of transistors, the captured speed will
be changed when the temperature of the circuit surrounding
the oscillator is changed.> The two counters for the speed
capture and the time allocation are included in the sensor.
The speed capture counter is used to measure the ring-
oscillator frequency and the time allocation counter is used to
periodically enable the ring-oscillator when thermal sensing is
needed.

We can fix a region on which a sensor can monitor tempera-
ture. The region will be a circle ¢; (with radius a) or rectangle
r (with size [ x [). A sensor s; will be placed on the center of
¢; or ri. (Note that the value of a and / can be determined by
using the formula in [7].) We call the circle ¢; and rectangle r;
the covered region of sensor s;. For simplifying our discussion,
we use rectangles as covered region, as the works in [8], [1].
We call the value of / in the size specification of covered region
ri the covering range* of r;. If the covering range [ is large,
the number of sensors to cover all hotspots will be reduced,
but it loses the accuracy of approximating the covered region,
and conversely if the covering range is small, it can accurately

3For example, in [4] a frequency output of 45.5 MHz at 25°C was obtained
using XCV50PQ240-4 FPGA in the experiments.
4In this work, we set [ to 12, in terms of CLB blocks as [1] did.

measure the thermal behavior on the covered region, but may
need more sensors to cover all hotspots.

For implementing n sensors, n ring-oscillators are required,
but the time allocation and speed capture can be shared.
Nevertheless, even though mapping each ring-oscillator to
FPGA requires at most 4 CLBs [5], as the value of n
becomes large, the area, power, and thermal control overheads
will be nontrivial. For example, Lopez-Buedo and Boemo
[8] allocated 32 sensors to uniformly cover the fabric of
XCV800HQ240-4C Virtex FPGA whose CLB array size is
56 x84. Thus, the total number of CLBs occupied by sensors
is at least 128, even not including the auxiliary logic overhead,
such as time allocation, speed capture counters and mux and
demux logic. Even if a grid-based uniform sensor placement is
simple and is reasonably good to monitor the overall thermal
behavior of the entire fabric, the number of sensors required
increases as the CLB array size increases. Consequently, it is
important to allocate and place sensors in a way to minimize
the number of sensors allocated while every hotspot on the
fabric is covered by at least one sensor.

B. An Optimal Sensor Allocation and Placement

Problem 1 Sensor Allocation and Placement Problem (SAPP):
Given a set H of hotspots on FPGA and a covering range /,
the problem is to find a set S of sensors and their locations
on the FPGA such that it satisfies (i) for each h; € H, there
is s; € S that covers h; by its covered region, and (ii) |S| is
minimum.

Our proposed sensor optimization algorithm, called SEN-
opt, solves SAPP optimally by transforming it into the unate
covering problem (UCP).

The UCP [10] is, given a matrix M of m rows and n
columns, for which M; ; is either O or 1, is the problem of
finding a minimum cardinality column subset C, such that for
all C',

JjeeM;j=1Yie {1,---,n} =|C| <|C (1)

That is, the columns in the set C cover M in the sense that
every row of M contains a l-entry in at least one of the
columns of C, and there is no smaller set C’ which also covers
M. The matrix M is called constraint matrix of UCP.

Thus, the transformation of SAPP into UCP is to construct
a constraint matrix, as follows: Suppose we are given a p X g
CLB logic array F of a configured FPGA with a set of hotspots
(i.e., H={hi,ha, -+ ,ht}). SEN-opt then creates a matrix M
of k rows and pg columns such that M;; is set to 1 when
the block that contains hotspot h; is in the covered region
of the (potential) sensor located at F,,, where v = Lé] and
w = j—v, and set to 0, otherwise. For example, Fig. 1(a) shows
six hotspots (h; through hg) and possible sensor locations
(s1,82,- - ,s104)5 Fig. 1(b) shows the constraint matrix M
corresponding to F in Fig. 1(a) where each of the blank entries
is assigned with value 0. For example, we can see that hotspot
hy can be physically monitored by any of the four sensor
candidates s;5, 526, $27, and ssg.

SFor brevity, some parts of sensor locations in F are specified in the figure.
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Fig. 1. An example showing the transformation of a problem of SAPP to
an instance of UCP with the construction of constraint matrix of UCP.

Once the constraint matrix is constructed, SEN-opt applies
UCP. The well-known procedure we adopt is the one in
[11], which essentially solves the binate-covering problem
(BCP) and is based on the branch-and-bound algorithm. The
procedure employs a set of clever specialized strategies (e.g.,
row-dominance, column-dominance, computation of lower
bound), which have been proven to be extremely useful, to
systematically explore the search space. In the example in
Fig. 1(b), SEN-opt produces C = {s1,s27,5s5,5104} and thus
four (= |C|) sensors are the minimum to cover all hotspots. The
covered regions of hotspots are shown in Fig. 1(a) as dotted
boxes.

C. Practical Considerations

As mentioned in section II.A, the sensor creation requires
a programmable resource. If there is a resource available in
the location at which the sensor is to be inserted, there will be
no problem. However, if there is no resource available or the
resources are not enough, we need to move some of existing
logic around the location to other locations. This means that
remapping of the application logic is required. Since the
space for sensors is very little in most of FPGA devices,
the replacement will not cause a drastic change of placement
of the application logic. However, even the small change of
placement could affect a change of hotspot distribution, thus
(partially) nullifying the feasibility of the prior result of sensor
allocation and placement.

Let S={s1, -+ ,sr} and L(s;) be the sensors and the sensor
locations produced by SEN-opt, respectively. Furthermore,
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suppose covering range / and hotspot set H, which are inputs
to SEN-opt, are given. Then, our proposed design flow, called
SEN-FLOW copes with the resource limitation for sensors by
performing the following three steps:

o Step 1 (Replacement and identification of new hotspot set):
First, the sensors in § are programmed in their locations
L(s;), and then the application logic is remapped. Then, the
logic is run and a new hotspot set H' are identified. For
example, Fig. 2(a) and (b) show the hotspot distribution before
and after remapping of design alu4+apex4+ex5p+misex4 in
Table II, respectively. As shown in Fig. 2(a), SEN-opt uses
seven sensors to cover all the hotspots in H. However, when
we assume 28 logic blocks (4 for one sensor) have been all
used up, remapping of the application logic leads to slightly
different hotspot distribution H' as shown in Fig. 2(b). (For
mapping and remapping, we used VPR [13].)

e Step 2 (Extract uncovered hotspots): We find a subset H,,,
of hotspots in H’ that is not covered by any sensor in S with
covering range of /. Then, for each hotspot 4; in H},,., we find
the sensor in S whose corresponding covered region covers
the hotspot. Let d(h;) be the minimum covering range of such
covered region. Then we compute I’ = max{d(h,),d(h2), - }.
For example, the computation of d; and I’ is specified in Fig. 2.

& -
i ik
-
EpH.iH ®
o,
.-l.é..l 3

(a) Optimal sensor location by SEN-opt

I'=max{dl,d2}=dl

(b) Logic remapping after sensor insertion

Fig. 2. A change of hotspot distributions before and after the sensor insertion
for design alu4+apex4+ex5p+misex4 in Table II. (a) Finding the best sensor
locations by SEN-opt, (b) remapping result by VPR [13] after the sensor
insertion using the sensor locations in (a).

e Step 3 (Find minimum sensors covering the uncovered
hotspots with the covering range 1'): We apply SEN-opt with
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new covering range ', new hotspot set H', and the constraint
of the candidate sensors being only those in S. Since / > [ and
each hotspot in H' will be covered at least one sensor in S, the
solution obtained from SEN-opt will cover all the hotspots in
H' by using a minimum number of sensors in S. For example,
the nodes marked with blue circle on in Fig. 3(a) indicates
the candidate sensors, and the table in Fig. 3(b) shows the
corresponding constraint matrix. Then, by applying the unate-
covering algorithm to the matrix we obtain the covering region,
as indicated by the boxes with I in Fig. 3(a).

=12 i Pr—
1 (iomE mmmeey
w m l.
"o " -.. \/ \/
st i s1 | s2
] I'=18 iy -
14
L ) b h1i| 1] o0
" m 52
| |
-'11 2|0 | 1
llu I

(b) Constraint matrix of
uncovered hotspots
hl,h2

(a) Covering hl, h2 using bigger
covered regions

Fig. 3. Minimally updating the covered regions of sensors to cover uncovered
hotspots &1 and hy by logic remapping in Fig. 2(b).

Note that the three-step procedure takes into account two
important factors: (1) minimizing the number of sensors with
I' directly reduces the error approximating the temperature,
and (2) using only one more type of covering range (ie., I
only) rather than using multiple covering ranges is intended
to simplify the auxiliary logic.

III. EXPERIMENTAL RESULTS

We have implemented our proposed approaches SEN-opt
and SEN-FLOW in C++ and a script, ran on a PC equipped
with 2GHz AMD Athlon processor, and tested them on a set
of benchmarks to assess how much they are effective. We
have also implemented the existing approach Bisection with
the “’longest edge neighbor detect (Ik-ng-det) heuristic in [1].
([1] showed that Ik-ng-det outperformed any other heuristics in
terms of quality.) We evaluate our techniques in two-fold: (i)
checking the effectiveness of SEN-opt on a set of benchmarks,
in comparison with the results by existing techniques, and
(ii) checking the effectiveness of SEN-FLOW on resolving
the practical issue of the mapping conflict by the sensors and
application logic.

o Assessing the effectiveness of SEN-opt over existing
techniques: We tested SEN-opt and the best known existing
methods Bisection [1] on the MCNC benchmarks in [12].
We used VPR [13] to map the netlists of the benchmarks
into CLBs and route them. (Each CLB block used by VPR
was set to contain four 4-input LUTs.) Then, the power
model in [14] was used to calculate the amount of power
consumption of the CLBs and nets based on the switching

activities on the nodes. Then, the power numbers obtained
were used to perform thermal simulation using the thermal
simulator HotSpot [15]. We then extracted the hotspots from
the simulation results by setting the temperature threshold
T;,=85°C. The hotspot distribution for each benchmark was
used as input to Bisection and SEN-opt. In addition, For all
tested designs, we used a CLB array size of 50x50 because
we found that the size was enough to map and route any of
the designs. In the experiment, we set covering range [ to
12 CLB-distance. Table I shows a comparison of results in
terms of the number of sensors used by Bisection [1] and our
optimal SEN-opt. #hspot represents the number of hotspots
generated by HotSpot for each design. In short, Bisection is
19.7%away from our optimum.

TABLE I
COMPARISONS OF THE NUMBERS OF SENSORS ALLOCATED AND PLACED
BY Bisection [1] AND SEN-opt FOR THE HOTSPOTS OBTAINED USING
[13], [15] oN CLB ARRAY SIZE 50x50.

# of sensors red. over

Benchmark | #hspot || Bisec[1] [ SEN-opt Bisect
APEX2 20 4 3 25%
DIFFEQ 6 3 2 33%
CLMA 30 8 6 25%
$38417 46 12 9 25%
$38584.1 12 7 6 14%
ELLIPTIC 12 3 3 0%
EX1010 8 3 2 33%
FRISC 38 8 6 25%
PDC 17 4 4 0%
SPLA 29 6 5 17%
Avg. 19.7%

o Assessing the effectiveness of our design flow SEN-
FLOW: We assumed that the application logic has been
mapped to entire CLBs, thus there is no room for sensors even
though the best locations to insert sensors are found. In fact,
VPR [13]was very smart, so that maps logic very compactly,
not generating any ‘partially’ used CLBs. Moreover, after a
part of CLBs was remapped to sensor logic, the result of
subsequent remapping of the target logic is very different even
though the sensor logic maps to a small portion of the entire
resources. One remedy we invented is to intentionally make
the size of target logic almost close to the logic capacity of the
CLB array. In that case, VPR responded with a little change
in remapping. The designs listed in Table II are the ones that
are close to the logic capacity of 50x50 CLB array.® where
some netlists were obtained by combining multiple designs
as indicated by ‘+  in the design names shown in the first
column of the table. Since it is quite hard to compare our
results with any other results fairly, we simply summarize the
results produced by SEN-FLOW for reference. For example,
for design compact, seven sensors are allocated. However,
after remapping application logic due to sensor insertion,
two hotspots among 43 are in the outside of the covered
regions unless some sensors’ covering length / is not set to a
value greater than the initial value of 12. SEN-FLOW in fact

©Practically, we may exploit the feature: ‘Commercial FPGA mapping tools
have options and attributes to untouch some parts of mapping and routing
result even when an additional remapping is performed.’
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selected the minimum number of sensors from the existing
sensors to cover the two uncovered hotspots /; and h,. Here,
two sensors among seven use [’ = 18.

TABLE II
RESULTS OF SEN-FLOW FOR BENCHMARKS USING CLB ARRAY SIZE
50x50.

After After remapping After SEN-FLOW
SEN-opt | #hspot | #hspot #sensor | #sensor
Benchmark #sensor (cov.) (uncov.) | (I=12) (1>12)
CLMA 6 10 7 3 3 (1:20)
$38584.1 6 11 7 3 3(:22)
$38417 9 17 8 7 2 (1:20)
EX1010+SPLA 7 9 1 6 1(:18)
FRISC+SPLA 8 43 8 5 3(1:28)
FRISC+EX1010 8 41 15 4 4 (1:20)
COMPACT 7 43 2 5 2(1:18)

compact = ALU4+APEX4+EX5P+MISEX4

IV. CONCLUSIONS

This work presented an effective solution to the sensor
allocation and placement problem for reconfigurable systems
when a ring-oscillator based sensor implementation at the
post-fabrication stage was applied. The contributions of this
work were (1) proposing a solution, called SEN-opt, to the
sensor allocation and placement where SEN-opt formulates
the problem into the unate-covering problem and solves it
optimally, and (2) proposing a solution, called SEN-FLOW, to
the practical issue caused by target logic remapping to make a
programmable space for sensor insertion where SEN-FLOW
fully utilizes the results by SEN-opt with the consideration
of minimizing of the overhead of additional sensor monitoring
circuitry while retaining the accuracy of temperature approx-
imation as high as possible. From experimental results using
benchmarks, we confirmed that our proposed approach could
be used usefully to determine best sensor locations with min-
imal sensor allocation for practical design of reconfigurable
systems.

ACKNOWLEDGEMENTS

This research work has been supported by Nano IP/SoC
Promotion Group of Seoul R&BD Program, IT-SoC Program,
ETRI project and System IC2010 project of Korea Ministry of
Commerce, Industry and Energy. This work was also partially
supported by the Ministry of Science and Technology/Korea
Science and Engineering Foundation through the Advanced
Information Technology Research Center.

REFERENCES

[11 R. Mukherjee, S. Mondal, and S. O. Memik, “Thermal sensor allocation
and placement for reconfigurable systems,” IEEE/ACM International
Confernece on Computer-Aided Design, pp. 437-442, 2006.

[2] S. Gunther, et al., “Managing the impact of increasing microprocessor
power consumption,” Intel Technology Journal, Vol. 5, February 2001.

[3]1 G. Quenot, N. Paris, and B. Zavidovique, “A temperature and voltage
measurement cell for VLSI circuits,” European ASIC Conference, pp.
334-338, 1991.

[4] S. Lopez-Buedo, J. Garrido, and E. Boemo, “Thermal testing on recon-
figurable computers,” IEEE Design & Test of Computers, Vol. 17, No.
1, pp. 84-91, 2000.

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

707

8C-1

S. Lopez-Buedo, J. Garrido, and E. Boemo, “Dynamically inserting,
operating, and eliminating thermal sensors of FPGA-based systems,”
IEEE Transactions on components and packaging technologies, Vol. 25,
No. 4, pp 561-566, 2000.

S. Mondal, R. Mukherjee, and S. O. Memik, “Fine-grain thermal pro-
filing and sensor insertion for FPGAs,” IEEE International Symposium
on Circuits and Systems, 2006.

K. J. Lee, K. Skadron, and W. Huang, “Analytical model for sensor
placement on microprocessors,” IEEE International Conference on Com-
puter Design, pp. 24-27, 2005.

S. Lopez-Buedo, E. Boemo, “Making visible the thermal behavior
of embedded microprocessors on FPGAs: a progress report,” Proc.

International Symposium on Field Programmable Gate Arrays, pp. 79-
86, 2004.

N. A. Sherwani, Algorithms for VLSI physical design automation,
Kluwer Academic Publisher, Norwell, 1995.

G. D. Hachtel and F. Somenzi, Logic synthesis and verification algo-
rithm, Kluwer Academic Publisher, Norwell, 1996.

V. Manquinho and J. P. Marques-Silva, “On using satisfiability-based
pruning techniques in covering algorithms,” Design, Automation and
Test in Europe Conference and Exhibition, pp 356-363, 2000.

S. Yang, Logic synthesis and optimization benchmarks, Microelectronics
Center of North Carolina, 1991.

V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs, Kluwer Academic Publishers, 1999.

K. K. Poon, Power estimation for field programmable gate arrays, Dept.
of Electrical and Computer Engineering, University of British Columbia,
1999.

K. Skadron, et al., “Temperature-aware microarchitecture,” International
Symposium on Computer Architecture, pp. 2-13, 2003.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


