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Verifying Full-Custom Multipliers by Boolean Equivalence
Checking and an Arithmetic Bit Level Proof

Udo Krautz, Markus Wedler, Wolfgang Kunz, Kai Weber, Christian Jacobi, Matthias Pflanz

Abstract—In this paper we describe a practical methodology
to formally verify highly optimized, industrial multipliers. We
define a multiplier description language which abstracts from
low-level optimizations and which can model a wide range of
common implementations at a structural and arithmetic level.
The correctness of the created model is established by bit level
transformations matching the model against a standard multi-
plication specification. The model is also translated into a gate
netlist to be compared with the full-custom implementation of
the multiplier by standard equivalence checking. The advantage
of this approach is that we use a high level language to provide
the correlation between structure and bit level arithmetic. This
compares favorably with other approaches that have to spend
considerable effort on extracting this information from highly

optimized implementations. Our approach is easily portable and
proved applicable to a wide variety of state-of-the-art industrial
designs.

Index Terms—formal verification, algorithm

I. INTRODUCTION

F
ORMAL property checking has gained significant im-

portance in System-on-Chip (SoC) verification and has

become part of many industrial design flows.Unfortunately,

arithmetic circuits with multiplication have always been -

and to some extent still are - the show stopper for formal

property checking in industrial practice. Neither satisfiability

(SAT) solving nor decision diagrams of any sort provide robust

and universal frameworks to deal with arithmetics. Specialized

"engineering" solutions are available that adapt to specific

scenarios in equivalence checking or property checking. Most

of these methods depend on exploiting specific high-level

arithmetic information. This can be useful for highly regular

designs as they may result from automatic module generation.

However, for full-custom logic design the problem, so far, has

remained unsolved.

When designing arithmetic units for high-performance ap-

plications a designer will usually start implementing a basic

version of the algorithm. At this point, word-level abstractions

are still available in the design. However, as aggressive timing

requirements have to be met, the initial algorithm will be be

modified and optimized by a series of manual steps involving

transformations at all levels. Such a full-custom implementa-

tion is not only of high complexity, its specialized structure

makes it difficult to apply any kind of abstraction above the

Boolean bit-level. Obviously, designs resulting from such a

manual optimization process may contain hard to find errors

that will surface late in the design cycle and may not be

found by simulation or emulation. The famous Intel Pentium

division bug [8] resulted from such circumstances. Even after
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many years, and in spite of substantial progress in formal

verification, functional correctness of full-custom arithmetics

has remained a major concern in SoC design flows.

Multipliers have become very common in today’s designs

of processors, digital signal processors, hardware accelerators

and other signal processing devices. While standard property

checking usually fails for such designs, in industrial practice

it is often attempted to verify these designs by equivalence

checking against some reference. This can work well if refer-

ence and design have a large amount of structural similarities

and share many functionally equivalent signals. But if design

and reference have different architectures the equivalence

check immediately becomes impossible.

This paper presents a new and convenient methodology for

proving the correctness of multiplier and multiply-accumulate

circuit designs in a full custom design flow. It utilizes a basic

description of the implemented algorithm which is created

in early phases of the design flow and requires only little

extra work for the designer who spends most of the time

in full-custom optimizations. This specification defines the

arithmetic circuit at the arithmetic bit level and allows for

generation of a gate level netlist. In this way, a large amount

of structural similarity with the design is obtained so that

a standard equivalence checker can be utilized to verify the

design against the specification. Furthermore, the correctness

of the specification is proven by arithmetic bit-level reasoning.

A typical application of our method can be found in the

context of verifying floating-point-units (FPUs). Their embed-

ded multipliers are separated for formal approaches, e.g. by

black boxing [2], and often checked by simulation. With the

proposed technique, the designer will provide a high level

description of the implemented algorithm that allows early

verification of the multiplier’s datapath.

The paper is organized as follows. At first, we give an

overview of previous approaches to verify multipliers. We

continue by introducing our methodology, we provide basic

definitions and illustrate the individual steps of our proof. We

further present extensions to our approach, that enable us to

solve more complex arithmetic problems. The paper concludes

with a presentation of experimental results on industrial full-

custom multipliers.

II. PREVIOUS WORK

Multipliers lack a compact canonical representation that

can be built efficiently from gate level implementations. For

ROBDDs [1] it is well-known that the number of nodes

grows exponentially with the number of input bits to the

multiplier[1]. Even if BDDs are not directly used to build

the multiplier outputs but only certain internal relations, like

in the implicit approach proposed by Stanion[10], they lack

robustness and suffer from BDD node explosion. Lamb [7]

showed an optimal partitioning of a multiplier so that the BDD

5A-1

398978-1-4244-1922-7/08/$25.00 ©2008 IEEE



2

does not grow faster than the square of the number of inputs,

however it is not clear whether such a partitioning always

exists and how it can be found for arbitrary designs.

There have been several attempts to solve the multiplier

verification problem with different variants of decision dia-

grams. Bryant and Cheng used word level decision diagrams

called binary moment diagrams (BMDs) [4] to efficiently

represent integer multiplication. In a *BMD the number of

nodes to represent integer multiplication only grows linearly

in contrast to the exponential growth of a BDD. The authors

also gave a hierarchical verification approach, which, however,

requires a manual partitioning. Hamaguchi et. al. showed an

efficient backward construction for *BMDs [11] to overcome

this manual partitioning, but Wefel and Molitor showed cases

where constructing the *BMD for a faulty multiplier in this

way suffers from exponential growth of the diagram [9].

Several improvements to Hamaguchi’s method have been

made [12] but the main obstacle remains - BMDs require

word level information about the design which usually is not

available or is very hard to extract from highly optimized

gate level descriptions being typical in high performance

applications. When building *BMDs for such highly irregular

multipliers the same node explosion can be observed during

the construction process as for BDDs, in spite of the theoretical

result that the final representation will be compact.

Several approaches propose functional decomposition of

multipliers [3], [13], [14] in order to prove subproblems

and solve global equivalence by induction or interpolation.

These again require manual partitioning of partial products

and intermediate sums that may be hard to find when complex

implementations are under examination.

In [16], [17] a combination of theorem proving and sym-

bolic trajectory evaluation [18] is used to verify multiplier

designs. Both approaches decompose the general proof into

several proof steps. A theorem prover is used to show the

validity of the decomposition. At the lowest proof level, prop-

erties are given in form of pre- and postconditions and checked

by symbolic trajectory evaluation. Since some preconditions

have to be defined on intermediate results of the design, the

lower level proofs may still require considerable manual effort

to be carried out.

In [5] an equivalent network of bit adders is extracted

from a gate level description of arithmetic circuits. Equiva-

lence between two extracted networks is proven by a simple

calculus. In [15] this work is extended towards applications

in property checking. They provide a normalization process

that creates structural similarities between the design under

verification and the specification, given as a property. However,

it is assumed that not only the property but also the design

is specified at the arithmetic bit level or higher levels of

abstraction.

Both approaches ([5], [15]) rely on the successful extraction

of the arithmetic bit level information. This is possible for

synthesized netlists but in full-custom design the situation

is different. Manual architectural changes and full-custom

optimizations may involve global transformations. Extraction

of an arithmetic bit-level description can turn out to be quite

difficult since there is an exponential number of possible

decompositions.

III. METHODOLOGY

A. Definitions

In this section we will outline our methodology for mul-

tiplier verification. Throughout this paper the term multipli-

cation refers to integer multiplication. After some basic defi-

nitions that are summarized in subsection III-A we will start

with an overview of the proposed methodology in subsection

III-B. The details of this methodology are then elaborated in

subsections III-C, III-D and III-E.

In the remainder of the paper we will use the following

notations:

• a is a vector of n Boolean variables

a = (an−1, . . . , a0) = a[n − 1 : 0]
• The natural number represented by a is

〈a〉 =
∑n−1

i=0
ai · 2

i .

• With a = a[n − 1 : 0] and b = b[m − 1 : 0] the
product of both shall be defined as 〈r〉 = 〈a〉 · 〈b〉 and
r = r[m + n − 1 : 0] .

Adder
Network

Product
A

B

Pratial
Product

Generation

Fig. 1. Basic multiplier architecture

Typically a multiplier can be divided into two portions

(Figure 1) a generator of “partial products” and the adder-tree

to generate the multiplication result. We first define generation

of partial products:

Definition 1: Partial product generation calculates a set of

vectors ppj = ppj[m + n − 1 : 0] for vectors a = a[n − 1 :
0] and b = b[m − 1 : 0]. Usually they are defined by bit-
wise multiplication ppj = a · b[j] ·2j or some Booth-encoding

ppj = a · Bj . It holds:

〈r〉 =
∑

j

〈ppj〉 =

m+n−1∑

k=0

rk · 2k.

Notice that partial products may contain p leading zeros

and q trailing zeros ppj = (0p, ppj,m+n−1, · · · , ppj,0, 0
q).

The second portion is a network of adders, which is used

to sum up the partial products to the final multiplication result.

Definition 2: Following [15], an addition network is a set

of Boolean variables A, being the addends to the network.

An addend a ∈ Ai contributes to column i of the network.

Addends are weighted by signed integers ωi : Ai → Z. The

result of the addition network r = r[m + n − 1 : 0] may be
defined as the sum of weighted addition network outputs.

〈r〉 =

m+n−1∑

i=0

2i · (
∑

a∈Ai

ωi(ai) · ai)
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B. Overview

The basic flow for multiplier verification used in our ap-

proach is depicted in Figure 2. In addition to the design under

verification we provide an abstract reference at the word level.

The language used to define this reference will be outlined

in Subsection III-D. We use this language to formulate a

detailed specification of the algorithm implemented by the

design under verification. This description is similar to initial

implementations that a designer will create when starting to

implement a given multiplier algorithm.

In contrast to references specified in standard property lan-

guages, we provide a mechanism to translate the reference into

a gate netlist that shows significant structural similarity with

the design under verification. Hence, a standard equivalence

checker can be used to prove equivalence between reference

and implementation. Furthermore, our specification language

provides arithmetic functions that we use to specify partial

products and the addition network of our implementation.

Consequently, it is very easy to extract the adder network. We

prove that the reference is a correct model for multiplication

with a series of simple transformations of the network that

lead to a standard representation for multiplication. We prove

that the reference is a correct model for multiplication with

a simple transformation algorithm that produces a standard

representation for multiplication. The transformations will

be described in III-C. The transformation process is fully

automated.

Correctness of the design will be concluded from arithmetic

correctness of the reference in conjunction with gate level

equivalence between reference and design.

Reference
(word level)

Design
(gate netlist)

Extract adder
network

Convert to
gate netlist

Reference
(adder network)

Reference
(gate netlist)

correct
arithmetic
function?

Fix Reference Fix Design

Design correct

is equivalent?
nono

yes yes

Fig. 2. Methodology overview on multiplier verification

In some implementations multipliers are reused to imple-

ment more than one function. For example, several integer

multiply-add operations can be calculated in parallel given a

multiplier of sufficient bit width. The underlying arithmetic

algorithms for such functions are slightly different from a stan-

dard multiplication algorithm. In our work, this is approached

by creating an individual specification and performing a sep-

arate verification run for each function.

C. Proving arithmetic correctness

In the following, we will describe our transformation algo-

rithm to prove correctness of a multiplication algorithm. The

transformations utilize associative and commutative laws for

bit level addition. Note, that in contrast to [15] we do not need

the distributive laws.

Using these laws we can verify implementations with

various optimizations, e.g., Booth-encoding. This is achieved

by expressing every ARDL function at the arithmetic bit

level, thereby constructing an adder network of the reference.

Through a series of transformations on this network we can

restore the basic definition of multiplication at the bit level:

〈a〉 · 〈b〉 = (
∑

i

ai · 2
i) · (

∑

j

bj · 2
j) =

∑

k

2k
∑

k=i+j

ai · bj

This equation defines an addition network where the (ai ·bj)
are addends to column k = i + j with weight ω(aibj) = 1:

〈r〉 =
∑

k

2k ·
∑

k=i+j

ai · bj · ωi,j(aibj).

This corresponds to multiplication learned in grade-school

which is often expressed in matrix notation as follows:

P =
· · · · · · a2b0 a1b0 a0b0

· · · a2b1 a1b1 a0b1 0
a2b2 a1b2 a0b2 0 0

In the following, we will investigate how to transform other

multiplication schemes used for implementation into this basic

reference scheme.

Many implementation techniques for multipliers focus on

reducing the number of partial products. This will reduce the

number of additions necessary to calculate the final result and

will therefore reduce delay and area of the implementation.

A prominent technique for this purpose is called Booth en-

coding. A prominent technique for multiplier optimization is

reducing the number of partial products by Booth encoding.

The standard scheme for multiplication defines partial products

by ppj = a · b[j] · 2j . These products correspond to the

lines given in matrix-notation of P . Booth encodings define

a Booth-digit Bj that subsumes several consecutive bits of b.

The precise definition of the Booth-digit Bj depends on the

chosen radix. The prevalent version used in industry is radix-4/

Booth-2 encoding, where the Booth-digit is defined as B2j =
−2b[j+1]+b[j]+b[j−1]. In this version of Booth-2 encoding,
the partial products are defined as ppj = a · B2j . Obviously,

ppj subsumes several partial products of the basic multiplier

definition. In order to facilitate a transformation of the addition

scheme generated by the algorithm with Booth-encoding into

the basic multiplication scheme we have to consider inde-

pendent partial products rather than their aggregation. Hence,

we implement the partial products of our reference by the

expanded definition ppj = pp1,j + pp2,j + pp3,j where the

appropriate three partial products pp1,j = −2b[j + 1] · a · 4j ,

pp2,j = b[j] · a · 4j and pp3,j = b[j − 1] · a · 4j are added.

Booth encoding therefore results in negative weights

ωij(aibj+1) < 0 for pp1,j . At the bit level these negative

numbers will be represented in two’s complement. This would
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result in negated addends in the addition network. However,

these negated addends will be canceled out throughout the

addition network. In implementations all negative addends are

created by inversion and addition of an additional hot-one bit

to an appropriate column. Inversion of a single bit ai can be

represented by 1 − ai = ai. When an inverted vector a is

added to the addition network, we replace every addend ai

to column i by two addends −ai and an additional addend

ci = 1. These constants will cancel out with the hot-one bit
specified in the reference model. After these transformations

the resulting addition network significantly differs from the

basic multiplier scheme. The observed differences can be

summarized as follows:

• negative weights in columns due to subtraction

• shifted addends

• addends are added into multiple columns

However, if the underlying multiplication algorithm is sound

all these differences will cancel out each other. For instance,

addends that seem to be added twice into the network will be

subtracted again later.

To transform arbitrary multiplication into the standard

scheme we use the following transformations in our algorithm.

1. Normalization: Let M be an addition network with

addends aibj . In the normalized addition network N(M) all
occurrences of an addend aibj are moved to column k = i+ j

and the weight of ωk(aibj) is modified accordingly.
2. Purging: In each column k of an addition network M

multiple instances ppl−1 · · · pp0 of an addend aibj are summa-

rized by addition of the weights ωk(aibj) =
∑l−1

s=0
ωk(pps).

Both transformations lead to an equivalent addition network

where the order of addition has been rearranged at bit level

and optimizations of the implementation have been reversed.

It is possible to transform any equivalent addition network

M to the basic multiplication scheme by M ′ = P (N(M)).
In the resulting addition network M ′ we only have to check

whether ωi+j(aibj) = 1 and ωk(aibj) = 0 is valid for all i, j

and k �= i + j. In this case we have proven correctness of the

initial addition network and hence of the underlying algorithm.

If differences remain through the transformation, these will be

reported as arithmetic errors in the reference. The runtime of

proofs on erroneous references does not exceed that of correct

references.

D. Reference Description Language

In this section we describe the proposed arithmetic reference

description language (ARDL) used to model the structure for

implementations of multiplier-like functions. ARDL is used to

create specifications on an abstraction layer between the gate

level description of the design and the word level description

of the corresponding arithmetic function. ARDL is restricted

to combinational models only. Sequential implementations can

be handled by unfolding into a combinational netlist.

According to the flow of Figure 2 the model described in the

proposed language is used to generate a gate level as well as

an arithmetic bit level description of the reference. In this way,

our language facilitates arithmetic reasoning at the bit level,

in combination with a structural view of the implementation.

Its syntax is close to the usual HD languages like VHDL or

Verilog but only contains a few combinational functions to

describe basic multiplier elements.

Developing a reference model is quite natural in a typical

design process. Often a very similar but informal specification

is created by designers anyway when starting to develop a

new multiplier. Our language could substitute such an informal

description.

In the first section, named variables, of every ARDL ref-

erence description the variables used for inputs, outputs and

intermediate results are declared. This section, name variables,

can be easily translated into the corresponding VHDL decla-

rations. We use the following notations:

• a = (al, ..., a0) always denotes a vector of Boolean
variables called bit vector

• I, O are sets of bit vectors

We call every a ∈ I an input and a ∈ O an output. ARDL

requires that I ∩O = {∅}. The keywords in and out indicate
whether a declared variable is an input or an output. We also

declare variables used as partial products with the keyword

pp. Remaining intermediate variables of the adder tree are

automatically determined.

The following two sections of an ARDL specification are

named def_pp and def_tree, respectively. These sections are

used to specify the arithmetic function calculated by the

reference model. They correspond to the basic blocks depicted

in Figure 1. These blocks are:

• a partial product generator, that determines the chosen

Booth-encoding and computes the partial product with

respect to this encoding

• an adder-tree, that will sum all partial products.

In the def_pp section, the encoding for partial products can

be chosen. Furthermore, there is an option to specify a

segmentation of the inputs. For this purpose, the language

provides functions with the following signature:

• Booth(b, r, h)
• PG(a, B, j)

Given an input vector b, the radix r ∈ N and the position

0 ≤ h ≤ m+n−1 for the hot-one bit, function Booth(b, r, h)
will calculate a bit vector B called Booth-digit for the selected

encoding. As parameter for function Booth, b can be replaced

by an arbitrary number of consecutive bits of b concatenated

with constant values. Based on the resulting Booth digits B

the function PG will calculate the partial products ppj that

are inputs to the addition part of the multiplier. Just like b also

a can be replaced by slices a′ concatenated with constants in

function calls to PG.

In order to model typical optimizations in adder trees for

booth encoded partial products, a parameter h is used in

function Booth to indicate the position of the so called hot-

one or hot-two bit.

When generating the gate level reference each call to

the functions and causes an instantiation of a corresponding

generic VHDL entity.The arithmetic bit level description of

the reference is generated by expanding the booth encoded

partial products into weighted sums of bit wise multiplications

ppj = pp1,j + pp2,j + pp3,j as described in Section III-C.
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A special treatment for the negative addends has been imple-

mented to handle the optimizations performed on the addition

tree due to sign extensions. To this end we now describe

how to specify the addition tree of a multiplier-like function

implementation in ARDL. Given timing and area constrains

a designer will choose Addstep-, CSA-, Wallace trees, etc.

to obtain an optimal implementation. For specifying such

addition trees ARDL provides functions with the following

signatures:

• SUM(A) and
• CARRY (A).

These functions map a set of vectors A to a single vector

a. Since they are defined on sets of vectors, they can realize

different tree structures with an arbitrary number of inputs to

the nodes. The functions SUM and CARRY are translated

into their gate level representations in a straightforward way

by instantiation of a CSA-Adder with corresponding outputs

for sum and carry.

In order to obtain the arithmetic bit level representation

for the adder-tree the intermediate results are recursively

substituted by the arithmetic bit level description of their

fanin. This process finally leads to a set of addition networks

corresponding to the adders in the def_tree section. Note that

the sets of addends for these addition networks will only

contain partial products or primary inputs.

For the reference model, the equivalence of its gate level

netlist and its arithmetic bit level description follows from the

equivalence of the local function implementations.

Example 1 simple 4bit multiplier

variables {
a: in (0 to 3);
b: in (0 to 3);
sum: out (0 to 7);
carry: out (0 to 7);
prod: out (0 to 7);
ppb: pp(a,b) (0 to 2) }

pp_def{
ppb(0) <= PG(a(0 to 3), Booth(0 & 0 & b(0),2,2),0);
ppb(1) <= PG(a(0 to 3), Booth(b( 0 to 2),2,2),1);
ppb(2) <= PG(a(0 to 3), Booth(b( 2 to 3) & 0,2,2),2) }

tree_def{
s1a <= SUM(ppb(0), ppb(1), ppb(2));
c1a <= CARRY(ppb(0), ppb(1), ppb(2));
sum <= s1a;
carry <= c1a;
int_prod <= SUM(s1a, c1a);

prod <= int_prod }

Algorithm 1 gives an example how a simple 4bit multiplier

with radix 2 booth encoding is specified in the proposed

language ARDL. This example defines an output for the

final product and two additional outputs for the carry-save

representation of the product.

E. Equivalence check

When checking the equivalence of the ARDL reference and

the design under verification the reference model is compiled

into VHDL and standard equivalence checking is employed.

To keep the equivalence check tractable the following issues

need to be given special consideration.

Equivalence checking is simpler if a large number of

internal equivalences between the designs under comparison

exist. To benefit from this, our description language is designed

to achieve a high amount of internal equivalences. The circuit

designer is requested to document the arithmetic algorithm

implemented in the design using ARDL. This will lead to

sufficient similarity between the reference multiplier and the

design. In particular, the designer is requested to use the same

topology of the adder tree for both, reference and implementa-

tion. This includes the order of inputs to the individual adders.

This is essential as it is well known that swapping operands

in addition trees is sufficient to eliminate most of the internal

equivalences, thus increasing the proof complexity beyond the

capacity of modern equivalence checkers.

Furthermore, we try to create as many equivalence as

possible related to inputs of the adder tree. This is achieved

by creating the same partial products which requires that the

same kind of Booth encoding is used for reference model and

design. Even more equivalences on the inputs of the adder

trees are achieved if the correction signals hot-one or hot-

two for sign conversion of negative values are added into the

reference scheme in the same way as in the implementation.

ARDL provides a mechanism to facilitate this.

Following the above guidelines, we obtain a high degree of

structural similarity between reference and implementation. In

our experiments nearly all intermediate results are equivalent

between reference and design. Therefore, a structural analysis

of both designs is usually sufficient to reduce the SAT in-

stance by constant propagation and, even more importantly,

by identical subexpression elimination [6].

The proof will either show that design and reference are

equivalent or a counterexample will be calculated.

IV. EXTENSION AND INTEGRATION

In this section we will briefly discuss how the proposed

approach can be integrated into existing verification method-

ologies and how the approach can be extended to solve a wider

range of verification problems.

Arithmetic units of modern processor designs often support

instructions for more complex tasks than multiplication of

two single operands. For example, some designs contain

hardware to accelerate matrix operations in order to enhance

image processing. Some of these operations consist of several

multiplications and additions but typically only one multiplier

is realized in hardware. Nonetheless, if the multiplier is of

sufficient width it can be reused to calculate several smaller

products in parallel. To calculate the sum of those products

additional shifters and adders are required in the design.

Our approach can also handle these complex operations. We

use a distinct reference model for every embedded operation

of this kind. For the reference, we reuse the addition network

of the multiplier reference model created when verifying the

multiplier in the design. We augment this addition network

with additional adders in the same way as it has been done in

the design. By slicing portions of the operands we obtain the

appropriate encoding for the partial products.

A further extension of our approach can be obtained by

integrating the reference multiplier in more complex reference
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models for designs that use integer multipliers. For example,

floating-point multiplication is performed on integer multipli-

ers with additional logic for exponent handling and rounding.

Approaches like [2] that black-box the multiplier could benefit

from the structurally similar multiplier reference that allows us

to do equivalence checking of a complete FPU reference model

against the design. Thereby, as a side effect, the verification

of the integer multiplier completes the FPU verification efforts

in a full custom design flow.

V. RESULTS

For evaluation, the proposed approach has been applied to

verify several multiplier designs from IBM, created in a full

custom design flow. In this section, we will present some

details about these experiments. In order to show the flexibility

of our approach we verified an integer multiplier with Booth-2

encoding for 24bit operands. The design also supports addition

of two 32-bit products or four 16-bit products. For each of

the operations a separate reference model has been created.

The design implemented a mixture of different hot-one and

hot-two-encodings and required different tree structures for

each operation. We also tested integer multipliers for 53bit

and 64bit operands. All designs implement a Wallace tree and

are highly optimized on bit level, e.g. constant bits of partial

products might be omitted. Furthermore, we present results

of two experimental designs for 4bit and 8bit operands. All

results where computed on a 64bit 2GHz Power5 machine.

operation cpu time

(operand’s width in bit) AP EC

4x4 0.6s 2s

8x8 1s 2s

8x8+8x8+8x8+8x8 9s 2s

16x16+16x16 9s 10s

24x24 7s 10s

53x53 8min 15s

64x64 14min 21s

TABLE I
EXPERIMENTS RUNTIME

The experimental results are reported in Table I where

columns two and three show CPU-Times for the arithmetic

proof (AP) and the equivalence check (EC). The results reflect

the quadratic growth of the model’s addition network. Note

that our prototype implementation for the arithmetic check is

based on a simple scripting language. Therefore, we believe

that further optimizations of the implementation can reduce

the CPU-time significantly.

The time necessary to prove equivalence between reference

and design is also related to the width of the multiplier. In

these experiments subexpression elimination was sufficient to

solve the equivalence checking problems. Therefore, runtime

increases with the number of expressions to be compared.

We believe that multiplier designs that can be described in

the proposed language are contained in nearly every design of

arithmetic circuits for IEEE754 floating-point and fixed-point

operations. The manual effort to provide an ARDL reference

is almost negligible compared the the overall design effort in a

full-custom flow. While the datapath for multiplication has to

be tested by simulation in other approaches our solution pro-

vides a formal proof of correctness. Hence, we can ensure high

quality of the data path already in early design phases. This

allows for a faster stabilization of the design throughout the

design process, and possible changes like timing corrections

can be verified immediately. Our methodology complements

tests by simulation to focus on control structures of arithmetic

circuits.
VI. CONCLUSIONS

In this paper we have proposed a new approach for practical

multiplier verification based on a simple arithmetic proof in

conjunction with equivalence checking. The key concept of

our method is the construction of a reference model for the

arithmetic circuit based on ARDL. The reference description

serves two purposes. We can very easily extract the underlying

arithmetic at the bit level and prove it by transforming it

to a radix-2 representation. Furthermore, we can construct

a structurally similar VHDL representation of the reference

that implements the arithmetic described by the reference. By

checking equivalence between reference and design we can

decide whether the design is correct. The approach has proven

to be easily extendable to meet different multiplier designs.
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