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Abstract - This paper describes existing designs and future 
design trends of in-vehicle vision processors for driver assistance 
systems. First, requirements of vision processors for driver 
assistance systems are summarized. Next, the characteristics of 
vision tasks for safety are described. Then several in-vehicle 
vision processor LSI implementations are reviewed, and the 
design approach of one of them, the IMAPCAR highly parallel 
processor, is further described in detail. Finally, future trends of 
in-vehicle vision processors focusing on their architectures and 
application coverage expansion such as integration of vision for 
safety, Digital TV codec, and 3D graphics functions of future car 
navigation, are discussed. 

Fig. 1. Relationship between performance, cost, and flexibility, 
and the Control versus Operational circuit Ratio (COR).  
(a) Relationship between performance, cost, and flexibility.  
(b) The Control versus Operational circuit Ratio (COR) 
observation of several representative processor LSI 
implementations.

I Introduction 

Vision processing (or image recognition) is the subject of 
high expectations as a promising function for assisting drivers 
to improve driving safety. In future driver assistance systems, 
multiple cameras will be mounted to capture images inside 
and around the vehicle, along with other sensors such as radar 
and ultrasonic sensors, all simultaneously providing basic data 
for retrieving information on the environment around the 
vehicle to avoid traffic accidents. Such implementation will 
steadily raise the bar in terms of computation performance for 
future in-vehicle vision processors. Furthermore, due to the 
continuous evolution of vision tasks for coping with a wide 
variety of applications, and as well as various recognition 
targets and ambience changes, processors targeting this 
emerging market must also provide high flexibility 
(programmability). Finally, low cost and low power 
implementation with compact (space saving) realization are 
also a major requirement for in-vehicle vision processors due 
to limited in-vehicle space budgets and severe temperature 
and mechanical (vibration) conditions over a long period.  

As a result, requirements of in-vehicle vision processors for 
future driver assistance systems can be summarized as low 
cost, high performance, and high flexibility. Generally the 
total circuitry (= total cost) of a processor LSI can be roughly 
classified into two categories: "operational circuitry" (for 
example, data-path and wired logic), which determines its 
theoretical peak performance; and "control circuitry" (for 
example, instruction issuance management and interface 
logic), which contributes mainly to improved its flexibility. 
Based on the above classification, an inevitable trade-off 
between performance, cost, and flexibility arises as illustrated 

in Figure 1 (a). Figure 1 (b) shows the Control versus 
Operational circuit Ratio (COR) observation of several 
representative processor implementations estimated from their 
die photos [1][6][10][12], demonstrating a fairly accurate 
match between the COR value of each processor category and 
its well-known flexibility degree: the larger the COR, the 
higher the degree of flexibility. The challenge of in-vehicle 
vision processor design will be, to provide a compromised 
solution against these requirements, i.e. to balance 
performance, flexibility, and cost by fully taking into account 
the features of the target application domain. This paper 
describes existing designs and future trends of in-vehicle 
vision processors for driver assistance systems focusing on 
this issue. 

Section II describes in greater detail both the performance 
and flexibility requirements of vision applications for safety, 
and then reviews current commercial LSI implementations for 
automotive application. In Section III, one of such LSI 
implementation, IMAPCAR, is described with further details 
about its architectural and LSI implementation features, as 
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well as flexibility. Finally, Section IV describes future trends 
toward better solutions, balancing performance, flexibility, 
and cost requirements, including the direction of fusing vision 
processing architectures with other media processing 
architectures for Digital TV codec and 3D graphics. Section V 
presents the conclusions. 

II. Vision Applications and Processor Implementation 
Characteristics for Automotive Applications

A. Variety of vision applications and vision algorithms 

Vision processing for driver assistance includes the 
recognition of the vehicle's surrounding environment as well 
as recognition of inside vehicle conditions. Surrounding 
environment recognition targets include on-road vehicles, 
obstacles and pedestrians as well as signals, traffic signs, 
on-road signs (marks) and other temporary board signs (such 
as "under construction"). Inside vehicle condition recognition 
includes recognition of the driver's status such as driver 
drowsiness (eyelid status monitoring), face/eye direction and 
driver posture. 

Beside the above stated variety, the capability of vision 
processing for automotive application should be robust and 
tolerate various outside scene conditions and environmental 
changes. These conditions include road and traffic conditions,   
lighting conditions (day, night, tunnels), and also weather 
conditions (sunny, cloudy, rainy). Rapid changes of these 
conditions should also be considered. In order to recognize in 
a robust way various types of objects under each varied 
environmental condition, the use of more kinds of vision 
processing algorithms is required. For example in on-road 
vehicle detection, it is necessary to utilize appropriate vision 
processing algorithms depending on the relative position 
(front, rear, side) of the target vehicle. Various preprocessing 
algorithms are also required according to weather and lighting 
conditions for increasing the reliability of recognition results.  

Typical on road vehicle recognition consist of two steps. 
The first step is quick search and detection of target 
candidates (hypothesis generation). The second step is 
validation of candidate correctness (hypothesis verification) 
[14]. During the hypothesis generation step, various kinds of 
algorithms are proposed including vehicle detection using 
knowledge of symmetry, color, shadow, corner, 
vertical/horizontal edge, texture and light for vehicles[5]. 
Vehicle detection can also be performed by using stereo 
information using a disparity map, as well as motion 
information based on optical flow calculations. For the 
hypothesis verification step, template based methods using 
correlations of images and templates are proposed. Learning 
algorithms that learn the vehicle appearance characteristics 
from a set of images are also used. For example, vehicle and 
non-vehicle pattern classification problems are solved through 
feature extraction using PCA (Principal Component Analysis) 
and classification using Neural Nets or Support Vector 
Machines. Moreover, these algorithms are also frequently 
used in combination with tracking algorithms [14]. 

B. Performance requirement and processing characteristics 

Vision processing for safety purposes, which is critical for 

human life, must be realized with extremely high reliability 
and recognition accuracy. In some cases, more than several 
hundred GOPS (Giga Operations Per Second) are required to 
realize such highly reliable recognition and real-time 
processing of vast amounts of data within a limited time. 
Figure 2 anticipates the required computational complexities, 
the expected date of realization of these applications, and also 
the performance scaling of embedded single core CPUs, 
multi-core CPUs, and dedicated vision processors, showing 
that performance scaling of general purpose processor will not 
meet the performance requirements of vision applications for 
safety in the near future without the use of specifically 
designed vision processor ASSPs.  

Generally vision processing algorithms can be categorized 
into low-level, intermediate-level, and high-level processing 
(refer to Figure 3), where tasks such as preprocessing and 
feature detection be classified to low-level, tasks such as 
statistical measurements, matching, and classification be 
classified to intermediate-level, and finally tasks such as 
hypothesis verification be classified to high-level processing. 
In order to achieve high performance with low power 
consumption, the existence of rich data locality and a large 
amount of pixel level parallelism in low-level processing 
should be fully exploited by using highly parallel processor 
architectures. Task level parallelism and somewhat increased 
irregular data access patterns of intermediate-level processing 
should also be exploited by a medium level parallel processor 
architectures. On the other hand, high-level processing which 
utilizes decision information calculated by intermediate-level 
processing normally has less parallelism. Its reduced 
computational complexity compared with low- and 
intermediate-level processing enable realization by traditional 

Fig. 2. In-vehicle vision complexities, performance 
requirements, and expected performance scaling of processors. 

CPUs.

Fig. 3. Processing structure of vision applications. 
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C. In-vehicle processor LSI implementations 
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Based on the knowledge of the flexibility an
requirements of vision processing, while in add

ell fulfill the low cost requirements from a commercial 
product point of view, vision processor design approaches that 
have actually been chosen for use in commercial products thus 
far can be divided into three types. The first design approach 
is based on using parameter tunable dedicated hardware that 
cooperates with embedded CPU. The second design approach 
fuses dedicated hardware with embedded CPU in a tighter 
way to improve flexibility. Finally the third design approach 
uses a fully programmable highly parallel architecture to 
maximize performance, while tries to overcome the reduced 
flexibility by establishing and promoting parallelizing 
techniques for the architecture. 

VCHIP [9] developed by Hitachi belongs to the first design 
approach, and has been adopted

gine of an in-vehicle lane departure warning system in 2001. 
VCHIP consists of fundamental image processing dedicated 
circuits including several filtering functions, binarization and 
histogram processing, and is viewed as a hardware accelerator 
from the CPU. Degree of flexibility of VCHIP is limited to 
several parameter-setting of the dedicated hardware. This 
approach allows maximum cost reduction, and thus is 
desirable if target vision applications are limited and their 
algorithms can be fixed at an early stage. 

Visconti [4][12] developed by Toshiba belongs to the 
second design approach, and has been ado

e processing engine of its intelligent night vision system at 
2004. Visconti consists of 3 MeP (Media embedded Processor) 
modules, where each MeP module is a programmable 3-way 
VLIW coprocessor with five 8-parallel (8-bit x 8) SIMD 
arithmetic units, and achieves 18 GOPS at 150 MHz. The chip 
contains 21M transistors with 1 W power consumption 
operating at 1.5 V using the 0.13 m process technology. The 
design approach of MeP uses the so called SWAR (SIMD 
within a register) technique, similar to the well-known MMX 
technology of desktop CPU, to accelerate computation at the 
instruction sub-word level in low cost, while integrates 
multiple MePs to exploit task level parallelism. Degree of 
flexibility of Visconti originates from its combination of both 
a restricted SIMD and MIMD supports, which will be further 
elaborated in Section IV.  

IMAPCAR [11] developed by NEC and NEC Electronics, 
which is a re-design of 

mperature and reliability requirements for automotive use, 
takes a third design approach. It has been adopted by 
TOYOTA LEXUS as the processing engine for obstacle 
detecting pre-crash safety system at 2006. IMAPCAR 
employs the highly parallel SIMD linear array processor 
architecture, aiming at providing a highest performance in 
low-cost, while still maintaining a degree of flexibility 
supported by a fully programmable PE array RISC instruction 
set. The chip contains 26.8M transistors with power 
consumption estimated to average 1 to 2 W operation at 1.2V 
using the 0.13 m process technology, and achieves 100 
GOPS at 100MHz. The next section describes in detail the 
design strategy and implementation details of IMAPCAR. 

 III. The IMAPCAR Highly Parallel Linear Array Processor 

D. Basic components 

Figure 4 shows the main building blocks of IMAPCAR. 
IMAPCAR consists of 128 8-bit 4-way VLIW RISC PE each 
equipped with a 24-bit MAC (Multiply Add Accumulation), 
256KB (2KB/PE) of data RAM (IMEM), one CP (16-bit RISC 
Control Processor) with 32KB program and 2KB data caches, 
and a DMA engine for data transfer between the IMEM and 
external SSRAM (Synchronous SRAM). A shift-register style 
ring network is used for inter-PE communication. Another 
shift-register configuration is also used for transferring up to 
three channels of NTSC format video data in parallel with PE 
operation, into the IMEM or external SSRAM. As a result, 
IMAPCAR can handle up to two video streams of 640 or 768 
pixels wide, or up to three video streams of 512 pixels wide at 
the same time. This mechanism makes it easier to efficiently 
compose multi-channel vision applications, such as the stereo 
vision applications of the TOYOTA LEXUS system [2]. 

The LSI is packaged using a 500-pin TBGA and satisfies 
the temperature range requirements (-40 to +85 degrees 
Celsius) for automotive use. To ensure long-term supply and 
as well full reliability control for automobile usage, the 
SSRAM is adopted as external memory devices instead of 
SDRAM. Furthermore, program code area in the external 
memory and the program cache body within the CP are 
protected by adding 4bits of ECC (Error Correction Code) in 
addition to each 32bit program word, while other memory 
area including data cache body and IMEM are protected by 
one parity bit per 8bit data word. Figure 5 shows the die photo 
and a photo of its PCI evaluation board. In case the external 
interface detects parity error, or ECC error that cannot be 
recovered, an interrupt signal will be generated and passed to 
the external supervisor CPU. 

Fig. 4.IMAPCAR block diagram. 

Fig. 5.Die photo and IMAPCAR PCI test board. 
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E. Programming support 

A data parallel C extension called 1DC (one dimensional C) 
is used as the programming language of IMAPCAR. In 1DC, 
entities associated with the PE array are declared by using a 
"sep" ("separate") keyword. A "sep" data item possesses a 
number of scalar elements that is a multiple of the number of 
PEs. Explicitly parallel operations are specified using "sep" 
variables in 1DC expressions. Six major primitive operator 
extensions of 1DC from C are shown in Figure 6. 

Figure 7 shows the IMAPCAR programming model. 
Column-wise mapping of image to each PE is assumed. The 
collection of all PE local memories (IMEM) is called the 2-D 
memory plane, where the source, destination and work images 
can be explicitly allocated by using 1DC. The line drawn on 
the 2-D memory plane is called a Pixel Updating Line (PUL). 
The PUL consists of a collection of memory addresses (or 
pixel locations) upon which the PEs work simultaneously in 
each time unit. Each PUL can be regarded as directly 
corresponding to one variable of the “sep” data structure, and 
thus can be easily generated and controlled by user programs. 

Parallelizing methods are designed based on the idea of 
sweeping PUL in various ways across the 2-D memory plane 
[7]. As described in the next subsection, the one RAM/block 
per PE configuration enables each PE to access a different 
memory address at the same time, thus enabling sweeping of 
the PUL in various ways across the 2-D memory plane. A 
mixture of multiple PULs is usually effective; for example, a 
2-D FFT is implemented by first applying a row-wise PUL 
(1D-FFT), followed by a row-systolic PUL (transposing 
columns to rows), and finally another row-wise PUL 
(1D-FFT). Several other examples of PUL mixtures are shown 
in Figure 8. 

Fig. 8. Examples of PUL combinations for parallelizing typical 
vision tasks. 

Fig. 6. Six primitive 1DC syntax forms (extension from C) and 
the 1DC compiler system 

F. Hardware support of 1DC execution 

One important design goal of IMAPCAR is to achieve an 
efficient execution of 1DC codes. The hardware features of 
IMAPCAR that enable efficient execution of the six essential 
syntax forms of 1DC are summarized here. 

Column(s)/PE Image Data Mapping 
Automatic column-wise mapping of image data to each PE 
is a precondition for designing most algorithms based on 
various parallel methods using 1DC. Efficient mapping is 
achieved by using multiple inter-PE shift register paths for 
video I/O. 

Arithmetic Operation 
Based on the 4-way VLIW execution unit of each PE, a 

maximum of three “sep” data arithmetic operations and a 
maximum of one memory access operation can be 
accomplished within one clock cycle. The 1DC optimizing 
VLIW compiler provides an efficient way of VLIW code 
generation from 1DC descriptions. 

Left/right Reference Operation 

Fig. 7. IMAPCAR program working model 

Left/right reference operation is one of the most frequently 
used operations, and is also an essential functionality for 
implementing for example image filters using the PE array. 
Each PE is designed to perform a direct register-to-register 
data access of neighborhood PE using the inter-PE shift 
register path of the ring network, enabling execution of the 
left/right reference operation within one clock cycle. 

Index Addressing Operation 
Index addressing is an essential functionality for designing 

algorithms based on sweeping the PUL across the 2-D image 
plane. For achieving index addressing, each PE is assigned a 
separate RAM block as the local memory, which enables each 
PE to perform access to a mutually different memory address 
in the same clock cycle.  

PE Grouping Operation 
PE grouping operation is used for implementing SIMD 

style conditional branch statements. Several hard-wired 
instructions, which are combinations of arithmetic and flag 
manipulation operations, are implemented in addition to the 
PE RISC instruction set, for achieving the PE grouping 
operation in one clock cycle. 

Scalar-Substitution/Status-Collection Operation 
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The tightly coupled CP-PE pipeline achieves fast 
communication between the CP and the PE array, by which 
each scalar-substitution or status-collection operation is 
accomplished within three pipeline stages, where the 
throughput is one clock cycle. 

G. Evaluation 

The performance of major image processing tasks and 
vision applications implemented on IMAPCAR by using 
several standard parallelizing techniques [7] are evaluated by 
comparing 1DC code running on a 100MHz IMAPCAR with 
C code running on a 2.4GHz Intel P4, a GPP (general purpose 
processor). As shown in Figure 8, the first benchmark, which 
consists of various image processing tasks, IMAPCAR 
ac

tions, IMAPCAR achieves a 
performance that is approximately three times better. A few 

 reports can be found in [12]. 

iction. 
d
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o rd design approaches, 

 each design approach 
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 higher 
flex

cated in a continuous memory address to be 
eff

he PUL in various ways across the 
2D

ime maintain a performance as 
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Fig. 9. COR relationship between existing in-vehicle vision 
processor architectural design approaches. 

hieves a performance up to 8 times better with a speedup 
approximately proportional to the amount of inherent 
parallelism of each task. In the second benchmark, which uses 
lane-mark and vehicle detection applications [5] containing 
various types of image opera

wi

other benchmark

IV. Future Trends of In-Vehicle Vision Processor Designs 

H. Existing design approach analysis 

The implementation example of in-vehicle vision 
processors described in the previous sections can also be 
plotted onto the COR graph (refer to Section 1), as shown in 
Figure 9, mainly based on their die photos. For IMAPCAR 
and Visconti, the COR graph is plotted based on the COR 
value observation of the whole chip [4][15], and also on that 
of the area of the PE array (IMAPCAR-PEs) and the VLIW 
coprocessor (Visconti-VLIW) respectively. Note that because 
the die photo of VCHIP is not available, the plots for VCHIP 
and VCHIP+CPU integration are based on pred

First of all, by focusing on VCHIP, Visconti-VLIW, an
APCAR-PEs, a gradual rise in the degree of flexibility ca

be bserved from the first to the thi
reflecting the differences in strength of

h regard to support of various types of low-level 
processing. 

The rise in flexibility from the first to the second design 
approach is at the cost of the increased expense for additional 
switches between computing units. By adding such extra 
switches, computing units within the dedicated circuits of the 
first approach acquire the flexibility of being separately 
controlled by each instruction word of a very long instruction 
word (VLIW) generated from user programs, and fed by 
operands from various register sources. In this way,

ibility with respect to computing unit usage can be 
achieved by the second approach, thus supporting more kinds 
of low-level processing.  

However, while the second design approach allows only 
collective use of the extended computing units, that is, allows 
only data lo

iciently fed at the same time to the extended computing 
units, the third design approach demonstrated by IMAPCAR 
allows more flexible memory data supply towards a highly 
parallel set of computing units, at the cost of a highly banked 
memory array configuration. However, the cost of such 
configuration is estimated to be a modest increase in die size 
of approximately 10 percent, compared to the case where 
eight 2 KB (8b/W) RAMs are unified into a single 16 KB 
(64b/W) RAM for each 8 PE integration block (refer to Figure 
5). The resulting flexibility has been demonstrated in the 
previous section to drive t

-memory plane (refer to Figure 8), by which acceleration of 
various low-level processing tasks, as well as the support of 
various memory access patterns existing in intermediate-level 
processing tasks are achieved. 

On the other hand, the plots VCHIP+CPU, Visconti, and 
IMAPCAR in Figure 9 show a gradual increase of opportunity 
for achieving higher control flexibility. Under the same cost 
constraint, integrating VCHIP with more complex or higher 
frequency CPUs may become possible. So does Visconti 
achieve the integration of three individual MeP modules into a 
single chip. In contrast, as IMAPCAR uses most of its die area 
for a huge PE array, little area is left for the CP (refer to 
Figure 5). As a result, while Visconti and IMAPCAR consume 
a similar number of transistors and power under the same 
process technology, the peak performance of the former is one 
fifth that of the latter, while in exchange task level parallelism 
is easier exploited by the former. To support task level 
parallelism while at the same t

h as that of IMAPCAR without raising power and 
transistor consumption requires further architectural evolution. 

Fig. 8. Speedup ratio of C code running on a 2.4GHz P4 
compared with 1DC code running on a 100 MHz IMAPCAR, 
using various vision tasks. 
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I. Future trend and architectural design directions  

As described in the previous subsection, the design 
approaches of in-vehicle vision processor have each tried to 
balance the performance and flexibility requirements under a 
fixed cost (such as up to 2W of power consumption). 
Consequently, further pursuing low-power technologies such 
as DVFS and clock gating at the circuit level, as well as 
further pursuing low-cost realization of performance and 
flexibility against various low- and intermediate-level vision 
tasks at the architectural level will be the next important 
subjects. As data level parallelism has been thus far 
successfully exploited by previous low-cost architectural 
techniques such as VLIW instructions and highly parallel 
SIMD arrays, the next major architectural level topic for 
in-vehicle vision processor design will be to find l
de  approaches for exploiting task level parallelism

ow-cost 
sign  so as to  

fur

the stated requirements, and 
the emergence of a unified multi- and many-core processor 
architecture tha tal TV codec, 
vision applications dicted.  

es for 
Trans. 

Electron., Vol.E90-C, No.10

[4]

cle Detecting and 
Tracking System for Wet Weather Conditions Using the 
IMAP-VISION Image Processing Board", Proc. of IEEE 
International Conferenc 23-428, 1999. 

Array of 128 4-Way 

, 2005. 

ence on 

[9]

, Vol.1, 

[10]

[12]  Single-Chip 

[13]
Highly Parallel Image 

[14]

ther accelerate intermediate-level processing of vision tasks. 
Such direction of evolution will enhance the versatility of 
vision processors, however, the strict cost limitation coming 
from the product side and the performance and flexibility 
requirements from the vision application side will drive such 
research activities, whereby the architectural design 
approaches for vision processors will be differentiated from 
those for more general-purpose oriented future multi- or 
many-core processor design approaches. One research activity 
toward this challenge can be found in [8], where a novel 
hardware component reuse design methodology is proposed to 
support task level parallelism through low-cost dynamic 
reconfiguration of a pure highly parallel SIMD architecture. 

The authors anticipate that, at the end of the realization of 
a wider application coverage in-vehicle vision processor, the 
role of vision processors will be combined with that of media 
processors for car navigation systems, resulting in a unified 
multi- or many-core processor architecture for both in-vehicle 
vision applications and media applications including digital 
TV codec and 3D graphics [3]. Note that as mobile GPUs are 
also evolving in a similar direction, i.e. increasing 
programmability and support of thread level parallelism, 
competition between mobile GPUs, vision processors, and 
other possible media processor candidates, or further 
architectural fusion between them, may also be an interesting 
research field in the near future. 

V. Summary and Conclusions 

This paper first summarizes the requirements for 
in-vehicle vision processor designs. Next, the characteristics 
of vision applications for driver assistance systems, as well as 
the required computational complexities and the expected date 
of realization of these applications are predicted. Then, several 
commercially available in-vehicle vision processor 
implementations are reviewed, one of the LSI design is 
reported, and its design approach towards addressing the 
stated requirements of in-vehicle vision processors is 
examined. Finally, the relationships between these existing 
in-vehicle vision processor designs are analyzed. The research 
trends toward further fulfilling 

t can commonly covers digi
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