
In-Vehicle Vision Processors for Driver Assistance Systems

Shorin Kyo

System IP Core Research Laboratory

Shin’ichiro Okazaki

System IP Core Research Laboratory
NEC Corporation NEC Corporation

Kawasaki City, 211-8666 Kawasaki City, 211-8666
Tel : +81-044-431-7453 Tel : +81-044-431-7453
Fax : +81-044-431-7489 Fax : +81-044-431-7489

e-mail: s-okazaki@cq.jp.nec.com e-mail: s-kyo@cq.jp.nec.com

Abstract - This paper describes existing designs and future
design trends of in-vehicle vision processors for driver assistance
systems. First, requirements of vision processors for driver
assistance systems are summarized. Next, the characteristics of
vision tasks for safety are described. Then several in-vehicle
vision processor LSI implementations are reviewed, and the
design approach of one of them, the IMAPCAR highly parallel
processor, is further described in detail. Finally, future trends of
in-vehicle vision processors focusing on their architectures and
application coverage expansion such as integration of vision for
safety, Digital TV codec, and 3D graphics functions of future car
navigation, are discussed.

Fig. 1. Relationship between performance, cost, and flexibility,
and the Control versus Operational circuit Ratio (COR).
(a) Relationship between performance, cost, and flexibility.
(b) The Control versus Operational circuit Ratio (COR)
observation of several representative processor LSI
implementations.

I Introduction

Vision processing (or image recognition) is the subject of
high expectations as a promising function for assisting drivers
to improve driving safety. In future driver assistance systems,
multiple cameras will be mounted to capture images inside
and around the vehicle, along with other sensors such as radar
and ultrasonic sensors, all simultaneously providing basic data
for retrieving information on the environment around the
vehicle to avoid traffic accidents. Such implementation will
steadily raise the bar in terms of computation performance for
future in-vehicle vision processors. Furthermore, due to the
continuous evolution of vision tasks for coping with a wide
variety of applications, and as well as various recognition
targets and ambience changes, processors targeting this
emerging market must also provide high flexibility
(programmability). Finally, low cost and low power
implementation with compact (space saving) realization are
also a major requirement for in-vehicle vision processors due
to limited in-vehicle space budgets and severe temperature
and mechanical (vibration) conditions over a long period.

As a result, requirements of in-vehicle vision processors for
future driver assistance systems can be summarized as low
cost, high performance, and high flexibility. Generally the
total circuitry (= total cost) of a processor LSI can be roughly
classified into two categories: "operational circuitry" (for
example, data-path and wired logic), which determines its
theoretical peak performance; and "control circuitry" (for
example, instruction issuance management and interface
logic), which contributes mainly to improved its flexibility.
Based on the above classification, an inevitable trade-off
between performance, cost, and flexibility arises as illustrated

in Figure 1 (a). Figure 1 (b) shows the Control versus
Operational circuit Ratio (COR) observation of several
representative processor implementations estimated from their
die photos [1][6][10][12], demonstrating a fairly accurate
match between the COR value of each processor category and
its well-known flexibility degree: the larger the COR, the
higher the degree of flexibility. The challenge of in-vehicle
vision processor design will be, to provide a compromised
solution against these requirements, i.e. to balance
performance, flexibility, and cost by fully taking into account
the features of the target application domain. This paper
describes existing designs and future trends of in-vehicle
vision processors for driver assistance systems focusing on
this issue.

Section II describes in greater detail both the performance
and flexibility requirements of vision applications for safety,
and then reviews current commercial LSI implementations for
automotive application. In Section III, one of such LSI
implementation, IMAPCAR, is described with further details
about its architectural and LSI implementation features, as

4D-2

383978-1-4244-1922-7/08/$25.00 ©2008 IEEE

well as flexibility. Finally, Section IV describes future trends
toward better solutions, balancing performance, flexibility,
and cost requirements, including the direction of fusing vision
processing architectures with other media processing
architectures for Digital TV codec and 3D graphics. Section V
presents the conclusions.

II. Vision Applications and Processor Implementation
Characteristics for Automotive Applications

A. Variety of vision applications and vision algorithms

Vision processing for driver assistance includes the
recognition of the vehicle's surrounding environment as well
as recognition of inside vehicle conditions. Surrounding
environment recognition targets include on-road vehicles,
obstacles and pedestrians as well as signals, traffic signs,
on-road signs (marks) and other temporary board signs (such
as "under construction"). Inside vehicle condition recognition
includes recognition of the driver's status such as driver
drowsiness (eyelid status monitoring), face/eye direction and
driver posture.

Beside the above stated variety, the capability of vision
processing for automotive application should be robust and
tolerate various outside scene conditions and environmental
changes. These conditions include road and traffic conditions,
lighting conditions (day, night, tunnels), and also weather
conditions (sunny, cloudy, rainy). Rapid changes of these
conditions should also be considered. In order to recognize in
a robust way various types of objects under each varied
environmental condition, the use of more kinds of vision
processing algorithms is required. For example in on-road
vehicle detection, it is necessary to utilize appropriate vision
processing algorithms depending on the relative position
(front, rear, side) of the target vehicle. Various preprocessing
algorithms are also required according to weather and lighting
conditions for increasing the reliability of recognition results.

Typical on road vehicle recognition consist of two steps.
The first step is quick search and detection of target
candidates (hypothesis generation). The second step is
validation of candidate correctness (hypothesis verification)
[14]. During the hypothesis generation step, various kinds of
algorithms are proposed including vehicle detection using
knowledge of symmetry, color, shadow, corner,
vertical/horizontal edge, texture and light for vehicles[5].
Vehicle detection can also be performed by using stereo
information using a disparity map, as well as motion
information based on optical flow calculations. For the
hypothesis verification step, template based methods using
correlations of images and templates are proposed. Learning
algorithms that learn the vehicle appearance characteristics
from a set of images are also used. For example, vehicle and
non-vehicle pattern classification problems are solved through
feature extraction using PCA (Principal Component Analysis)
and classification using Neural Nets or Support Vector
Machines. Moreover, these algorithms are also frequently
used in combination with tracking algorithms [14].

B. Performance requirement and processing characteristics

Vision processing for safety purposes, which is critical for

human life, must be realized with extremely high reliability
and recognition accuracy. In some cases, more than several
hundred GOPS (Giga Operations Per Second) are required to
realize such highly reliable recognition and real-time
processing of vast amounts of data within a limited time.
Figure 2 anticipates the required computational complexities,
the expected date of realization of these applications, and also
the performance scaling of embedded single core CPUs,
multi-core CPUs, and dedicated vision processors, showing
that performance scaling of general purpose processor will not
meet the performance requirements of vision applications for
safety in the near future without the use of specifically
designed vision processor ASSPs.

Generally vision processing algorithms can be categorized
into low-level, intermediate-level, and high-level processing
(refer to Figure 3), where tasks such as preprocessing and
feature detection be classified to low-level, tasks such as
statistical measurements, matching, and classification be
classified to intermediate-level, and finally tasks such as
hypothesis verification be classified to high-level processing.
In order to achieve high performance with low power
consumption, the existence of rich data locality and a large
amount of pixel level parallelism in low-level processing
should be fully exploited by using highly parallel processor
architectures. Task level parallelism and somewhat increased
irregular data access patterns of intermediate-level processing
should also be exploited by a medium level parallel processor
architectures. On the other hand, high-level processing which
utilizes decision information calculated by intermediate-level
processing normally has less parallelism. Its reduced
computational complexity compared with low- and
intermediate-level processing enable realization by traditional

Fig. 2. In-vehicle vision complexities, performance
requirements, and expected performance scaling of processors.

CPUs.

Fig. 3. Processing structure of vision applications.

4D-2

384

C. In-vehicle processor LSI implementations

d performance
ition tries to as

w

 by NISSAN as the processing
en

pted by HONDA as
th

IMAP-CE [6] for fulfilling the
te

Based on the knowledge of the flexibility an
requirements of vision processing, while in add

ell fulfill the low cost requirements from a commercial
product point of view, vision processor design approaches that
have actually been chosen for use in commercial products thus
far can be divided into three types. The first design approach
is based on using parameter tunable dedicated hardware that
cooperates with embedded CPU. The second design approach
fuses dedicated hardware with embedded CPU in a tighter
way to improve flexibility. Finally the third design approach
uses a fully programmable highly parallel architecture to
maximize performance, while tries to overcome the reduced
flexibility by establishing and promoting parallelizing
techniques for the architecture.

VCHIP [9] developed by Hitachi belongs to the first design
approach, and has been adopted

gine of an in-vehicle lane departure warning system in 2001.
VCHIP consists of fundamental image processing dedicated
circuits including several filtering functions, binarization and
histogram processing, and is viewed as a hardware accelerator
from the CPU. Degree of flexibility of VCHIP is limited to
several parameter-setting of the dedicated hardware. This
approach allows maximum cost reduction, and thus is
desirable if target vision applications are limited and their
algorithms can be fixed at an early stage.

Visconti [4][12] developed by Toshiba belongs to the
second design approach, and has been ado

e processing engine of its intelligent night vision system at
2004. Visconti consists of 3 MeP (Media embedded Processor)
modules, where each MeP module is a programmable 3-way
VLIW coprocessor with five 8-parallel (8-bit x 8) SIMD
arithmetic units, and achieves 18 GOPS at 150 MHz. The chip
contains 21M transistors with 1 W power consumption
operating at 1.5 V using the 0.13 m process technology. The
design approach of MeP uses the so called SWAR (SIMD
within a register) technique, similar to the well-known MMX
technology of desktop CPU, to accelerate computation at the
instruction sub-word level in low cost, while integrates
multiple MePs to exploit task level parallelism. Degree of
flexibility of Visconti originates from its combination of both
a restricted SIMD and MIMD supports, which will be further
elaborated in Section IV.

IMAPCAR [11] developed by NEC and NEC Electronics,
which is a re-design of

mperature and reliability requirements for automotive use,
takes a third design approach. It has been adopted by
TOYOTA LEXUS as the processing engine for obstacle
detecting pre-crash safety system at 2006. IMAPCAR
employs the highly parallel SIMD linear array processor
architecture, aiming at providing a highest performance in
low-cost, while still maintaining a degree of flexibility
supported by a fully programmable PE array RISC instruction
set. The chip contains 26.8M transistors with power
consumption estimated to average 1 to 2 W operation at 1.2V
using the 0.13 m process technology, and achieves 100
GOPS at 100MHz. The next section describes in detail the
design strategy and implementation details of IMAPCAR.

 III. The IMAPCAR Highly Parallel Linear Array Processor

D. Basic components

Figure 4 shows the main building blocks of IMAPCAR.
IMAPCAR consists of 128 8-bit 4-way VLIW RISC PE each
equipped with a 24-bit MAC (Multiply Add Accumulation),
256KB (2KB/PE) of data RAM (IMEM), one CP (16-bit RISC
Control Processor) with 32KB program and 2KB data caches,
and a DMA engine for data transfer between the IMEM and
external SSRAM (Synchronous SRAM). A shift-register style
ring network is used for inter-PE communication. Another
shift-register configuration is also used for transferring up to
three channels of NTSC format video data in parallel with PE
operation, into the IMEM or external SSRAM. As a result,
IMAPCAR can handle up to two video streams of 640 or 768
pixels wide, or up to three video streams of 512 pixels wide at
the same time. This mechanism makes it easier to efficiently
compose multi-channel vision applications, such as the stereo
vision applications of the TOYOTA LEXUS system [2].

The LSI is packaged using a 500-pin TBGA and satisfies
the temperature range requirements (-40 to +85 degrees
Celsius) for automotive use. To ensure long-term supply and
as well full reliability control for automobile usage, the
SSRAM is adopted as external memory devices instead of
SDRAM. Furthermore, program code area in the external
memory and the program cache body within the CP are
protected by adding 4bits of ECC (Error Correction Code) in
addition to each 32bit program word, while other memory
area including data cache body and IMEM are protected by
one parity bit per 8bit data word. Figure 5 shows the die photo
and a photo of its PCI evaluation board. In case the external
interface detects parity error, or ECC error that cannot be
recovered, an interrupt signal will be generated and passed to
the external supervisor CPU.

Fig. 4.IMAPCAR block diagram.

Fig. 5.Die photo and IMAPCAR PCI test board.

4D-2

385

E. Programming support

A data parallel C extension called 1DC (one dimensional C)
is used as the programming language of IMAPCAR. In 1DC,
entities associated with the PE array are declared by using a
"sep" ("separate") keyword. A "sep" data item possesses a
number of scalar elements that is a multiple of the number of
PEs. Explicitly parallel operations are specified using "sep"
variables in 1DC expressions. Six major primitive operator
extensions of 1DC from C are shown in Figure 6.

Figure 7 shows the IMAPCAR programming model.
Column-wise mapping of image to each PE is assumed. The
collection of all PE local memories (IMEM) is called the 2-D
memory plane, where the source, destination and work images
can be explicitly allocated by using 1DC. The line drawn on
the 2-D memory plane is called a Pixel Updating Line (PUL).
The PUL consists of a collection of memory addresses (or
pixel locations) upon which the PEs work simultaneously in
each time unit. Each PUL can be regarded as directly
corresponding to one variable of the “sep” data structure, and
thus can be easily generated and controlled by user programs.

Parallelizing methods are designed based on the idea of
sweeping PUL in various ways across the 2-D memory plane
[7]. As described in the next subsection, the one RAM/block
per PE configuration enables each PE to access a different
memory address at the same time, thus enabling sweeping of
the PUL in various ways across the 2-D memory plane. A
mixture of multiple PULs is usually effective; for example, a
2-D FFT is implemented by first applying a row-wise PUL
(1D-FFT), followed by a row-systolic PUL (transposing
columns to rows), and finally another row-wise PUL
(1D-FFT). Several other examples of PUL mixtures are shown
in Figure 8.

Fig. 8. Examples of PUL combinations for parallelizing typical
vision tasks.

Fig. 6. Six primitive 1DC syntax forms (extension from C) and
the 1DC compiler system

F. Hardware support of 1DC execution

One important design goal of IMAPCAR is to achieve an
efficient execution of 1DC codes. The hardware features of
IMAPCAR that enable efficient execution of the six essential
syntax forms of 1DC are summarized here.

Column(s)/PE Image Data Mapping
Automatic column-wise mapping of image data to each PE
is a precondition for designing most algorithms based on
various parallel methods using 1DC. Efficient mapping is
achieved by using multiple inter-PE shift register paths for
video I/O.

Arithmetic Operation
Based on the 4-way VLIW execution unit of each PE, a

maximum of three “sep” data arithmetic operations and a
maximum of one memory access operation can be
accomplished within one clock cycle. The 1DC optimizing
VLIW compiler provides an efficient way of VLIW code
generation from 1DC descriptions.

Left/right Reference Operation

Fig. 7. IMAPCAR program working model

Left/right reference operation is one of the most frequently
used operations, and is also an essential functionality for
implementing for example image filters using the PE array.
Each PE is designed to perform a direct register-to-register
data access of neighborhood PE using the inter-PE shift
register path of the ring network, enabling execution of the
left/right reference operation within one clock cycle.

Index Addressing Operation
Index addressing is an essential functionality for designing

algorithms based on sweeping the PUL across the 2-D image
plane. For achieving index addressing, each PE is assigned a
separate RAM block as the local memory, which enables each
PE to perform access to a mutually different memory address
in the same clock cycle.

PE Grouping Operation
PE grouping operation is used for implementing SIMD

style conditional branch statements. Several hard-wired
instructions, which are combinations of arithmetic and flag
manipulation operations, are implemented in addition to the
PE RISC instruction set, for achieving the PE grouping
operation in one clock cycle.

Scalar-Substitution/Status-Collection Operation

4D-2

386

The tightly coupled CP-PE pipeline achieves fast
communication between the CP and the PE array, by which
each scalar-substitution or status-collection operation is
accomplished within three pipeline stages, where the
throughput is one clock cycle.

G. Evaluation

The performance of major image processing tasks and
vision applications implemented on IMAPCAR by using
several standard parallelizing techniques [7] are evaluated by
comparing 1DC code running on a 100MHz IMAPCAR with
C code running on a 2.4GHz Intel P4, a GPP (general purpose
processor). As shown in Figure 8, the first benchmark, which
consists of various image processing tasks, IMAPCAR
ac

tions, IMAPCAR achieves a
performance that is approximately three times better. A few

 reports can be found in [12].

iction.
d

IM n
o rd design approaches,

 each design approach

t

 higher
flex

cated in a continuous memory address to be
eff

he PUL in various ways across the
2D

ime maintain a performance as
hig

Fig. 9. COR relationship between existing in-vehicle vision
processor architectural design approaches.

hieves a performance up to 8 times better with a speedup
approximately proportional to the amount of inherent
parallelism of each task. In the second benchmark, which uses
lane-mark and vehicle detection applications [5] containing
various types of image opera

wi

other benchmark

IV. Future Trends of In-Vehicle Vision Processor Designs

H. Existing design approach analysis

The implementation example of in-vehicle vision
processors described in the previous sections can also be
plotted onto the COR graph (refer to Section 1), as shown in
Figure 9, mainly based on their die photos. For IMAPCAR
and Visconti, the COR graph is plotted based on the COR
value observation of the whole chip [4][15], and also on that
of the area of the PE array (IMAPCAR-PEs) and the VLIW
coprocessor (Visconti-VLIW) respectively. Note that because
the die photo of VCHIP is not available, the plots for VCHIP
and VCHIP+CPU integration are based on pred

First of all, by focusing on VCHIP, Visconti-VLIW, an
APCAR-PEs, a gradual rise in the degree of flexibility ca

be bserved from the first to the thi
reflecting the differences in strength of

h regard to support of various types of low-level
processing.

The rise in flexibility from the first to the second design
approach is at the cost of the increased expense for additional
switches between computing units. By adding such extra
switches, computing units within the dedicated circuits of the
first approach acquire the flexibility of being separately
controlled by each instruction word of a very long instruction
word (VLIW) generated from user programs, and fed by
operands from various register sources. In this way,

ibility with respect to computing unit usage can be
achieved by the second approach, thus supporting more kinds
of low-level processing.

However, while the second design approach allows only
collective use of the extended computing units, that is, allows
only data lo

iciently fed at the same time to the extended computing
units, the third design approach demonstrated by IMAPCAR
allows more flexible memory data supply towards a highly
parallel set of computing units, at the cost of a highly banked
memory array configuration. However, the cost of such
configuration is estimated to be a modest increase in die size
of approximately 10 percent, compared to the case where
eight 2 KB (8b/W) RAMs are unified into a single 16 KB
(64b/W) RAM for each 8 PE integration block (refer to Figure
5). The resulting flexibility has been demonstrated in the
previous section to drive t

-memory plane (refer to Figure 8), by which acceleration of
various low-level processing tasks, as well as the support of
various memory access patterns existing in intermediate-level
processing tasks are achieved.

On the other hand, the plots VCHIP+CPU, Visconti, and
IMAPCAR in Figure 9 show a gradual increase of opportunity
for achieving higher control flexibility. Under the same cost
constraint, integrating VCHIP with more complex or higher
frequency CPUs may become possible. So does Visconti
achieve the integration of three individual MeP modules into a
single chip. In contrast, as IMAPCAR uses most of its die area
for a huge PE array, little area is left for the CP (refer to
Figure 5). As a result, while Visconti and IMAPCAR consume
a similar number of transistors and power under the same
process technology, the peak performance of the former is one
fifth that of the latter, while in exchange task level parallelism
is easier exploited by the former. To support task level
parallelism while at the same t

h as that of IMAPCAR without raising power and
transistor consumption requires further architectural evolution.

Fig. 8. Speedup ratio of C code running on a 2.4GHz P4
compared with 1DC code running on a 100 MHz IMAPCAR,
using various vision tasks.

4D-2

387

I. Future trend and architectural design directions

As described in the previous subsection, the design
approaches of in-vehicle vision processor have each tried to
balance the performance and flexibility requirements under a
fixed cost (such as up to 2W of power consumption).
Consequently, further pursuing low-power technologies such
as DVFS and clock gating at the circuit level, as well as
further pursuing low-cost realization of performance and
flexibility against various low- and intermediate-level vision
tasks at the architectural level will be the next important
subjects. As data level parallelism has been thus far
successfully exploited by previous low-cost architectural
techniques such as VLIW instructions and highly parallel
SIMD arrays, the next major architectural level topic for
in-vehicle vision processor design will be to find l
de approaches for exploiting task level parallelism

ow-cost
sign so as to

fur

the stated requirements, and
the emergence of a unified multi- and many-core processor
architecture tha tal TV codec,
vision applications dicted.

es for
Trans.

Electron., Vol.E90-C, No.10

[4]

cle Detecting and
Tracking System for Wet Weather Conditions Using the
IMAP-VISION Image Processing Board", Proc. of IEEE
International Conferenc 23-428, 1999.

Array of 128 4-Way

, 2005.

ence on

[9]

, Vol.1,

[10]

[12] Single-Chip

[13]
Highly Parallel Image

[14]

ther accelerate intermediate-level processing of vision tasks.
Such direction of evolution will enhance the versatility of
vision processors, however, the strict cost limitation coming
from the product side and the performance and flexibility
requirements from the vision application side will drive such
research activities, whereby the architectural design
approaches for vision processors will be differentiated from
those for more general-purpose oriented future multi- or
many-core processor design approaches. One research activity
toward this challenge can be found in [8], where a novel
hardware component reuse design methodology is proposed to
support task level parallelism through low-cost dynamic
reconfiguration of a pure highly parallel SIMD architecture.

The authors anticipate that, at the end of the realization of
a wider application coverage in-vehicle vision processor, the
role of vision processors will be combined with that of media
processors for car navigation systems, resulting in a unified
multi- or many-core processor architecture for both in-vehicle
vision applications and media applications including digital
TV codec and 3D graphics [3]. Note that as mobile GPUs are
also evolving in a similar direction, i.e. increasing
programmability and support of thread level parallelism,
competition between mobile GPUs, vision processors, and
other possible media processor candidates, or further
architectural fusion between them, may also be an interesting
research field in the near future.

V. Summary and Conclusions

This paper first summarizes the requirements for
in-vehicle vision processor designs. Next, the characteristics
of vision applications for driver assistance systems, as well as
the required computational complexities and the expected date
of realization of these applications are predicted. Then, several
commercially available in-vehicle vision processor
implementations are reviewed, one of the LSI design is
reported, and its design approach towards addressing the
stated requirements of in-vehicle vision processors is
examined. Finally, the relationships between these existing
in-vehicle vision processor designs are analyzed. The research
trends toward further fulfilling

t can commonly covers digi
 and 3D graphics, are also pre

Acknowledgements

The authors would like to thank Dr. Kuroda of NEC
Electronics Corporation, and Dr. Nishiwaki and Mr. Takahashi
of NEC Corporation for their valuable inputs.

References

[1] J. Hart, et al.: "Implementation of a 4th-Generation 1.8GHz
Dual-Core SPARC V9 Microprocessor", ISSCC Digest of
Technical Papers, 10.3, pp. 186-187, 2005.

[2] H.Ikai, M. Usami, M. Ohta, K. Ohue, F. Hidano: “Obstacle
Sensor Using Stereo Vision”, in Proc. of ITS Congress 2006.

[3] I. Kuroda and S. Kyo: "Media Processing LSI Architectur
Automotives —Challenges and Future Trends—", IEICE

, Oct. 2007.

 Y. Kondo, et al.: "A 4GOPS 3Way-VLIW Image Recognition
Processor Based on a Configurable Media-processor.", ISSCC
Digest of Technical Papers, pp. 148-149, 2001.

[5] S. Kyo, K. Sakurai, S. Okazaki: "A Robust Vehi

e on ITS, pp. 4

[6] S. Kyo, T. Koga, S. Okazaki, R. Uchida, S. Yoshimoto, I. Kuroda:
"A 51.2GOPS Scalable Video Recognition Processor for
Intelligent Cruise Control Based on a Linear
VLIW Processing Elements," ISSCC Digest of Technical Papers,
pp. 48-49, 2003.

[7] S. Kyo, T. Arai, S. Okazaki: "An Integrated Memory Array
Processor Architecture for Embedded Image Recognition
Systems," Proc. of the 32nd Annual International Symposium on
Computer Architecture (ISCA), pp. 132-145

[8] S. Kyo, T. Koga, H. Lieske, S. Nomoto, S. Okazaki "A
Mixed-Mode Parallel Processor Architecture for Embedded
Systems," Proc. of ACM International Confer
Supercomputing, pp. 253-262, June 2007

 S. Muramatsu, Y. Otsuka, H. Takenaga, Y. Kobayashi, I.
Furusawa, T. Monji: "Image Processor Device for Automotive
Vision Systems," IEEE Intelligent Vehicle Symposium
pp.121–126, 2002.

 S. Naffziger, et al.: "The Implementation of a 2-core
Multi-Threaded Itanium-Family Processor", ISSCC Digest of
Technical Papers, 10.1, pp. 182-183, 2005.

[11] S. Okazaki, S. Kyo, F. Hidano: "IMAPCAR: A Highly Parallel
Integrated Memory Array Processor for In Vehicle Image
Recognition Applications, " in Proc. of ITS Congress 2006.

 T. Shiota, et al.: "A 51.2 GOPS 1.0GB/s-DMA
Multi-Processor Integrating Quadruple 8-Way VLIW Processors",
ISSCC Digest of Technical Papers, 10.7, pp. 194-195, 2005.

 K. Sakurai, S. Kyo, S. Okazaki: "Implementation of Overtaking
Vehicle Detection Using the IMAPCAR
Processor", in Proc. of ITS Congress 2006.

 Z. Sun, G. Bebis, R. Miller: "On-road vehicle detection: a review,
" IEEE Trans. PAMI, Vol. 28-5, May 2006, pp. 694-711.

[15] J. Tanabe, et.al.: "Visconti: Multi-VLIW Image Recognition
Processor based on Configurable Processor", IEEE Custom
Integrated Circuits Conference, pp.185--188, 2003.

4D-2

388

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

