
Variability-Driven Module Selection with Joint Design Time

Optimization and Post-Silicon Tuning

Feng Wang, Xiaoxia Wu, Yuan Xie

The Pennsylvania State University, University Park, PA, USA

{fenwang, xwu, yuanxie}@cse.psu.edu

Abstract— Increasing delay and power variation are significant chal-
lenges to the designers as technology scales to the deep sub-micron (DSM)
regime. Traditional module selection techniques in high level synthesis
use worst case delay/power information to perform the optimization, and
therefore may be too pessimistic such that extra resources are used to
guarantee design requirements. Parametric yield, which is defined as the
probability of the synthesized hardware meeting the performance/power
constraints, can be used to guide design space exploration. The para-
metric yield can be effectively improved by combining both design-time
variation-aware optimization and post silicon tuning techniques (such
as adaptive body biasing (ABB)). In this paper, we propose a module
selection algorithm that combines design-time optimization with post-
silicon tuning (using ABB) to maximize design yield. A variation-aware
module selection algorithm based on efficient performance and power
yield gradient computation is developed. The post silicon optimization
is formulated as an efficient sequential conic program to determine
the optimal body bias distribution, which in turn affects design-time
module selection. The experiment results show that significant yield can
be achieved compared to traditional worst-case driven module selection
technique. To the best of our knowledge, this is the first variability-driven
high level synthesis technique that considers post-silicon tuning during
design time optimization. 1

I. INTRODUCTION

Designers have resorted to technology scaling [1] to enhance

performance. For example, Intel recently announce that the new Intel

processors will be built upon the most advanced 45 nm technology;

Embedded processors such as ARM’s Cortex-A8 are already manu-

factured at the leading-edge 65 nm technology. The reliance on deep

sub-micron process technologies for their fabrication has brought the

concerns of process variations to the forefront. The challenges in

fabricating transistors with very small feature sizes have resulted

in significant variations in transistor parameters (such as transistor

channel length, gate-oxide thickness, and threshold voltage) across

identically designed neighboring transistors (this variation is called

within-die variation) and across different identically designed chips

(this variation is called inter-die variation). These manufacturing

variations can cause significant performance and power variations

for an identical hardware design. For example, Intel has shown that

a 30% variation in chip frequency and a 20 times variation in chip

leakage are observed in 1000 sample chips fabricated in 180nm

technology [2]. As technology scales, the performance variations

are even more pronounced. It has been predicted that the major

design focus for sub-65nm VLSI design will shift to dealing with

variability [2].

Traditionally, performance/power variations are handled by a

combination of speed/power binning and design margining [2]:

speed/power binning tests all fabricated chips, those of which with

a slower speed or excessive power are either discarded or sold

at a reduced price; design margining uses worst-case process cor-

ners to guarantee the design requirement. However, these solutions

are becoming insufficient as the variability increases along with

1This research was supported in part by NSF grants of CAREER 0643902,
CNS 0720659 and CCF 0702617.

technology scaling, and may not be a viable solution when the

variability encountered in the new process technologies becomes very

significant. Also, cost sensitivity makes designing for the worst-case

manufactured hardware unacceptable.

To bring the process-variation awareness to the design flow, a new

metric called parametric yield has been introduced [2]–[4]. The

parametric yield is defined as the probability of the design meeting

a specified constraint Y ield = P (Y ≤ Y max), where Y can be

performance or power. To maximize design yield, designers can rely

on two complementary strategies: design-time statistical optimization
and post-silicon tuning:

• Design time statistical optimization approaches, such as gate siz-

ing and multiple vdd/vth selection, use statistical timing/power

analysis to explore design space, and maximize parametric yield.

The design decisions are the same for all fabricated dies and

the decisions are made at the design-time (i.e., pre-silicon). As

a result, some dies may inevitably miss the target power-delay

envelop.

• Post silicon optimization approaches are performed after the

fabrication. Techniques such as adaptive body biasing (ABB)

and adaptive supply voltage [3], [5]–[7] can be used to tune

the fabricated chips, such that the variation in delay/power can

be reduced. Compared to design-time solution, the post-silicon

tuning decision is different for each differently fabricated die.

For example, FBB (Forward Body Biasing) can be applied to

slower dies such that the delay becomes faster at the expense of

higher leakage power, and RBB (Reverse Body Biasing) can be

applied to faster dies such that the circuit is slowed down but

the power is reduced.

The majority of the existing analysis and optimization techniques
related to process variations are at the lower level (device or logic
gate level). In the domain of high-level synthesis, process-variation-

aware research is still in its infancy [4] [8]. It is important to
raise the process variation awareness to a higher level, because

the benefits from higher-level optimization often far exceed those

obtained through lower-level optimization. Furthermore, higher-level

statistical analysis enables early design decisions to take lower-level

process variations into account, avoiding late surprise and possibly

expensive design iterations.

In this work, we propose a variability-driven module selection

algorithm that combines design-time optimization with post-silicon

tuning (using adaptive body biasing) to maximize design yield. To

the best of our knowledge, this is the first variability-driven high level

synthesis technique that considers post-silicon tuning during design
time optimization.

II. RELATED WORK

High level synthesis (HLS) is a well-studied problem [9] [10] [11]–

[15] and we have seen many successes in industrial practice. For ex-

ample, the Mentor Graphics Catapult C high-level synthesis tool [16]

1A-1

2978-1-4244-1922-7/08/$25.00 ©2008 IEEE

has been used by many companies in the design flow. Early high-

level synthesis mainly focused on performance and cost trade-offs [9]

[10]. Then researchers proposed low-power HLS techniques [11]–

[13], as well as fault-tolerant HLS techniques [14], to reduce power

consumption and improve reliability, respectively. Recently, thermal-

aware HLS techniques [15] were also proposed to mitigate the

temperature increase due to higher power density as technology

scales. These existing high level synthesis methodologies explore the

tradeoffs among performance, cost (area), and/or power/reliability.

However, the design space exploration has been limited to deter-

ministic optimization using either constant delay/power values or

worst-case delay/power values for the underlying hardware. These

approaches are blind to the impact of the process variations on delay

or power of the hardware design, and may result in overly pessimistic

synthesis results.

Although the process variation problem was well recognized more

than a decade ago [17], it did not become a major research focus

until recent years [18]. Early statistical timing analysis approaches

were based on Monte Carlo techniques [17], which are expensive in

terms of computation complexity and therefore are not suitable for

large circuits. Recently, many fast and efficient gate-level state-of-

the-art statistical timing analysis methods have been proposed [19].

In sub-90 nm technologies, the major component of the total power

consumption will be leakage power, which exhibits large variations

under the influence of process variations. As a result, gate-level

statistical power analysis methods [18] have been developed. Based

on the statistical timing analysis and power analysis, various statistical

optimization approaches have been proposed, such as statistical

minimization of the total power under timing yield constraints [18],

statistical gate sizing to improve the probability of meeting timing

constraints [20]. Recently, Marculescu et al. developed a statistical

performance analysis approach for the embedded system [21] [22].

In the domain of high-level synthesis, process-variation-aware re-

search is still in its infancy. Recently, Hung et al. [4] use performance

yield (defined as the probability of the synthesized hardware can meet

performance requirement) to guide a Simulated-Annealing based HLS

framework. However, each of the synthesis steps is still deterministic

oriented, and power variation for function units is not considered.

Mohanty et al.’s work [8] takes into account the leakage power

variation in high level synthesis, but time consuming Monte Carlo

techniques is a key limiting factor of this design time technique.

Jung et al. [23] proposed a timing variation aware scheduling and

resource binding algorithm to improve the latency.

In this paper, a two-stage optimization approach in module selec-

tion is proposed to take into account the post-silicon tuning at the
design-time optimization in high level synthesis. At the first stage,

an iterative variation aware module selection algorithm is employed

considering both power and performance variability. At the second

stage, a sequential second order conic programming algorithm is

employed to determine the optimal body bias for post-silicon tuning,

which in turn affects design-time module selection.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. The Influence of Process Variation on HLS

In HLS, each operation (such as addition and multiplication) in a

control data flow graph (CDFG) is scheduled to one or more cycles

(or control steps). Each control step corresponds to a time interval

equal to the clock period. Each operation may be performed by more

than one compatible resource type from the resource library. For

example, the addition operation can be performed by either a ripple-

carry adder or a carry look-ahead adder, which have different delay,

power, and area parameters. Module selection decides the type of

functional units to perform the operations in the CDFG. The same

resource (functional units or registers) can be shared to perform

multiple operations or store more than one variable. Traditionally,

high-level synthesis is performed under resource constraints and per-

formance constraints. Resource constraints require that the operations

are performed with only a limited number of resources available;

performance constraints require that the operations in the CDFG

finish execution in a number of clock cycles with a particular clock

rate (clock cycle time). Note that in this paper, we focus on data-flow
intensive applications, in which most of the computations performed

in the design are arithmetic operations (such as addition and mul-

tiplication), even though the approach could be easily extended for

control-flow intensive applications, which contain significant control-

flow constructs such as nested loops and conditionals.

Traditionally, worst-case delay/power parameters for the resource

are used to facilitate the module selection. However, it is becoming

inappropriate as larger variability is encountered in the new process

technologies. For example, Fig. 1 shows the delay variations (depicted

as normalized sigma/mean) for 11 different type of 16-bit adders that

span a range of circuit architecture and logic evaluation styles, all of

which are implemented in IBM Cu-08 (90nm) technology [24].

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
A

N
C

H
E

S
T

E
R

S
T

A
T

IC

M
A

N
C

H
E

S
T

E
R

D
Y

N
A

M
IC

C
A

R
R

Y
 S

E
LE

C
T

S
T

A
T

IC

C
A

R
R

Y
 S

E
L
E

C
T

P
A

S
S

G
A

T
E

C
A

R
R

Y
 S

E
L
E

C
T

D
Y

N
A

M
IC

K
O

G
G

E
 S

T
O

N
E

R
A

D
IX

 2
 S

T
A

T
IC

K
O

G
G

E
 S

T
O

N
E

R
A

D
IX

 4
 S

T
A

T
IC

K
O

G
G

E
 S

T
O

N
E

R
2
 P

A
S

S
G

A
T

E

K
O

G
G

E
 S

T
O

N
E

R
2
 D

Y
N

A
M

IC

H
A

N
 C

A
R

L
S

O
N

B
R

E
N

T
 K

U
N

G

N
o

rm
a

liz
e

d
 D

e
la

y
 V

a
ri
a

b
ili

ty
 (

S
ig

m
a

/M
e

a
n

)

Fig. 1. The delay variation (normalized sigma/mean) for 16-bit adders in
IBM Cu-08(90nm) technology (Courtesy of K. Bernstein, IBM [24]).

Due to the large variation in delay and power, the existing deter-

ministic worst-case design methodologies in HLS may result in unex-

pected performance discrepancy or a pessimistic performance/power

estimation, or may end up using excess resources to guarantee design

constraints, due to overly conservative design approaches.

Furthermore, worst-case analysis without taking the probabilistic

information into account can also result in a pessimistic estimation.

For example, assume that the delay of an adder (X = Dadd) and

a multiplier (Y = Dmul) have independent Gaussian distribution

N(μ, σ2). In conventional worst-case analysis, the worst-case execu-

tion time (WCET) is calculated as μ + 3σ (3σ delay). Based on the

statistical information, X +Y follows (N(μX +μY , σ2
X +σ2

Y)), and

the WCET for X + Y is WCETX+Y = μX + μY + 3
√

σ2
X + σ2

Y ,

which is smaller than the sum of the WCET of each function unit

(WCETX +WCETY = μX +μY +3(σx+σy)). Therefore, simply

adding the WCET of two function units can result in a pessimistic

estimation of the total delay, and may end up using excess resources

to guarantee performance constraints.

B. Variation-aware Module Selection

Similar to gate-level optimization, we bring the process-variation

awareness to the high-level synthesis flow with the parametric

1A-1

3

yield concept. The performance yield is defined as the probability of

the synthesis results meeting the clock cycle time constraints under

the latency constraints and resource constraints. The power yield is

defined as the probability that the total power of the synthesis result

is less than the power limit under latency and resource constraints.

The performance and power yield analysis methods will be described

in Section V and VI.

It is obvious that the parametric yield of the HLS resultant

hardware depends on all steps of high-level synthesis: scheduling,

module selection, resource sharing, and clock selection. These steps

are usually interacted with each other during high-level synthesis,

and influence the final parametric yield calculations. However, due

to the space limitation, this paper will focus on the module selection

problem, assuming other synthesis tasks have been performed. The

variation aware module selection is formulated as: Given a scheduled
data flow graph, with the latency and resource constraints, and a
resource library with statistical delay and power characterization,
determine the type of function units to perform the operations in
CDFG, to maximize the power yield subject to performance yield
constraints.

PDF

adder1

adder2

t

T1T2T3T4

(a)

T5

(b)

adder2

adder1

PDF

t

CCT WCET based Performance yield based
T1 Adder 2 Adder 2

(WCET ≤ CCT, smaller area) (100% yield, smaller area)

T2 Adder 1 (WCET ≤ CCT) Adder 1 (100% yield)

T3 None Adder 1 (better yield)

T4 None Adder 2 (better yield)

T5 None Adder 2 (better yield)

Fig. 2. An example of module selection for an adder and the comparison
of worst-case execution time (WCET) based and performance yield based
module selection. The delay distribution of two different type of adders are
shown as PDF (probability distribution function), and the area of adder 2 is
smaller.

In process variation aware module selection, we take into account

the distributions of the delay and the power for each resource type in

the library. Fig. 2 shows the complexity of module selection problem

even for a simple example, without considering power variation. The

example also illustrates the difference between conventional worst-

case based module selection and variation-aware module selection.

Assume that the synthesis result is a single adder, and there are two

types of adders with the delay distribution available in the resource

library. In conventional module selection, the worst-case execution

time analysis shows that adder 1 is faster than adder 2. When the

clock cycle time (CCT) constraint is large (e.g., CCT = T1), both

adders meet timing constraint and the one with smaller area (adder 2)

is selected; When we decrease the the CCT , WCET-based module

selection has only one choice (adder 1) or no solution (when both

adders’ WCET are larger than CCT), while performance yield

based approach may select either adder 1 or adder 2, depending

on the performance yield (i.e., the probability of meeting the CCT
constraint, which could be smaller than 100%).

The most interesting observation from Fig. 2 is that, the

performance-yield based selection could be counter-intuitive. For

Delay

P
D

F

Adder Delay Distribution
After ABB

Before ABB

Fig. 3. The adder delay distribution can be adjusted by post-silicon ABB
techniques

example, a heuristic of using the product of sigma and mean (σ×μ)

was proposed [4] to help module selection; however, Fig. 2(a) (when

CCT = T3 and CCT = T4) shows that the heuristic may not be

appropriate. Another example is illustrated in Fig. 2(b): adder 1 has

smaller mean (μ) and smaller variation (σ), which means it is faster

and resistant to delay variation. Therefore, intuitively, it should be

a better choice than adder 2. However, if CCT = T5, adder 2 is

actually a better choice since it has higher performance yield. Note

that the example in Fig. 2 does not take into account power variation

and is only for a single adder module selection.

C. Adaptive Body Biasing

Post silicon tuning techniques can be applied to the fabricated dies

after the fabrication. Adaptive Body Biasing (ABB) [3], [6], [25] is

an effective technique to reduce the impact of the process variations

by controlling the threshold voltage. With bidirectional adaptive body

bias, the applied voltage can either raise the threshold voltage of the

die (i.e., Reverse Body Biasing (RBB)), to reduce the leakage power

at the expense of slowing down circuits, or lower the threshold voltage

(i.e., Forward Body Biasing (FBB)), to increase the clock frequency at

the expense of higher leakage power. ABB techniques can effectively

tighten distribution of the performance and power, thus, the yield loss

due to process variation can be minimized. For example, Figure 3

shows that by applying ABB techniques, the delay distribution can

be adjusted and the spreading is narrowed. Note that the body bias

VSB for each individual die is different, and therefore VSB is a

probability distribution derived from the probability distribution of

performance/power.

IV. FUNCTION UNIT DELAY AND POWER MODELING

In this section, the piecewise linearized delay model for function

units is first introduced, and the exponential power model of function

units is then presented. All these models are simple extension from

the gate level models [26] and [18].

In the delay modeling, the delay of the function unit is expressed in

terms of the gate length (l), the threshold voltage (Vth) and the body

bias voltage (VSB). Piecewise linear approximation of the delay has

been widely used in the gate level timing analysis. Thus, the delay of

the function unit can also be expressed in a piecewise linear function.

Suppose ΔVth represents the deviation of the threshold voltage, Δl
represents the deviation of the gate length, and VSB represents the

applied body biasing, the delay of a function unit, Ti, is expressed

as:

Ti = a0i + a1iΔVth + a2iΔl + a3iVSB (1)

where a0i is the nominal delay computed at the nominal values of the

process parameters without body biasing. a1i, a2i and a3i represent

the sensitivity to the deviation of threshold voltage and gate length,

and applied body bias, respectively.

1A-1

4

The power consumption of a function unit consists of dynamic

power and leakage power. The dynamic power is relatively immune

to process variation, while the leakage power is affected by process

variation greatly, and it becomes a dominant factor in total power

consumption as technology scales to nanometer region [18]. Our

statistical leakage power model is based on the gate level model

and the rms error of this gate level model is around 8% [18]. In

this approach, the leakage power of each logic gate is expressed as

a lognormal random variable in a canonical form, and the leakage

power dissipation of a function unit, which consists of many gates,

can be computed as the sum of these random variables. This sum

can be accurately approximated as a lognormal random variable

using an extension of Wilkinson’s method [18]. Consequently, the

leakage power dissipation of a function unit can also be expressed

as a lognormal random variable in a canonical form. Therefore, the

leakage power of a function unit can be expressed as

Pi = exp(b0i + b1iΔVth + b2iΔl + b3iVSB) (2)

where exp(b0) is the nominal leakage power computed at the nominal

values of the process parameters. bi are the sensitivities to their

corresponding sources of the deviation and the bias voltage.

V. STATISTICAL ANALYSIS FOR DFG

In this section, we briefly describe our statistical timing/power

analysis for a synthesized DFG [13] (in which all operations have

been scheduled and bound to module instances selected from the

resource library). The terminology and approach is similar to most

of the gate-level statistical timing/power analysis approaches [17]–

[20], [27]. Although the fundamental idea is the same, that is,

to consider process variations during timing/power analysis, the

divergence occurs in that the allocated resource can be shared and that

the sequencing order of operations with respect to clock cycle time

must be enforced in HLS. This divergence makes statistical analysis

at high-level synthesis a unique problem. In addition, we introduce

parametric yield computation method for a synthesized DFG and

present fast yield gradient computation methods.

A. Statistical Timing Analysis in HLS

In the statistical timing analysis for a synthesized DFG, the timing

quantity is computed by using two atomic functions sum and max.

Assume that there are three timing quantities, A, B, and C, which

are random variables. The sum operation C = sum(A, B) and the

max operation C = max(A, B) will be developed:

1) The sum operation is easy to perform. For example, if A
and B both follow a Gaussian distribution, the distribution of

C = sum(A, B) would follow a Gaussian distribution with a

mean of μA + μB and a variance of
√

σ2
a + σ2

b − 2ρσaσb, ρ
is correlation coefficient.

2) The max operation is quite complex. Tightness probability

[27] and moment matching [28] techniques could be used

to determine the corresponding sensitivities to the process

parameters. Given two random variables, A and B, tightness

probability of random variable A is defined as the probability

of A being larger than B. An analytical equation in [28]

to compute the tightness probability is used to facilitate the

calculation of max operation.

The delay distribution of module instances can be obtained through

gate-level statistical timing analysis tools [19] [27] or Monte Carlo

analysis in HSPICE. With the atomic operations defined, the timing

analysis for the synthesized DFG can be conducted using PERT-like

traversal [19].

B. Statistical Power Analysis in HLS

Our statistical leakage power analysis method is based on the gate

level analysis approach [18]. In this approach, the leakage power

of each logic gate is expressed as a lognormal random variable in

a canonical form, the total power of the circuit can be computed

as the sum of these random variables. This sum can be accurately

approximated as a lognormal random variable using an extension of

Wilkinson’s method [18]. Since the leakage power dissipation of a

function unit can also be expressed as a lognormal random variable

in a canonical form as show in Section IV, the total power dissipation

of the synthesized DFG is computed as the sum of the leakage power

dissipation of the module instances in the DFG. Thus, this sum can

also be approximated as a lognormal random variable in a canonical

form using the extended Wilkinson’s method. Therefore, the leakage

power of each module instance can be expressed as

Pm = exp(m0 +

n∑

i=1

miYi + mn+1Rm) (3)

where m0 is the nominal value computed at the nominal values of

the process parameters. Yi represents the correlated variation, and

Rm represents the independent random variation. Yi and Rm are

independent and normally distributed random variables with zero

mean and unit variance. mi and mn+1 are the sensitivities to their

corresponding sources of the variation.

The sum of the power dissipation of two modules is approximated

as a lognormal random variable in the same format as expression

(3). Assuming that Pm = Pk + Pn, the coefficient of Pm can be

determined by moment matching [29],

mi = log(
E(PkeYi) + E(PneYi)

(E(Pk) + E(Pn))E(eYi)
) ∀i ∈ [1, n] (4)

m0 = 0.5log(
(E(Pk) + E(Pn))4

(E(Pk) + E(Pn))2 + V ar(Pk) + V ar(Pn) + 2Cov(Pk, Pn)
)

(5)

mn+1 = [log(1+
V ar(Pk) + V ar(Pn) + 2Cov(Pk, Pn)

(E(Pk) + E(Pn))2
)−

n∑

i=1

m
2
i]

0.5
(6)

where E(P) represents the mean of the random variable P ,

the V ar(P) represents the variance of the random variable P and

Cov(P, Q) is the covariance of the random variables P and Q.

C. Statistical Performance Yield Analysis for DFG

In a synthesized DFG, the operations are distributed to the clock

cycles and bound to module instances selected from resource library.

The operations in each clock cycle must finish execution within that

clock cycle. The performance yield is calculated as the probability

of the operations scheduled in each clock cycle meeting the clock

cycle time constraints under the conditions that latency constraints

and resource constraints are not violated. Assuming that the clock

cycle time is T clock, the latency constraints are N clock cycles,

and the critical path delay of the operations scheduled in clock cycle

i is Tmaxi, the performance yield can be computed as

Y ielddelay(DFG) = Prob(Tmax ≤ T clock|constraints) (7)

where Tmax = max(Tmaxi), ∀i ∈ [1, N]. Tmaxi can be

computed using the statistical timing analysis described in Section

V-A. Note that the max operation is defined in Section V-A.

The constraints represent the latency constraints and the resource

constraints.

D. Performance Yield Gradient Computation for Module Selection

1A-1

5

+ -

+

+

- +

Block 0

Block 1

CC0

CC1

CC2

CC3

Multiple-clock-

cycle operation

Resource shared

operation

Fig. 4. Yield computation for a synthesized
DFG. The multiplication operation is bound to a
two-clock-cycle module and two additions share
the same module.

Based on the yield

analysis method in the

previous sub-section, a

yield gradient method

is described in this

sub-section. A brute-

force approach to

performance yield

gradient computation

requires computing

the performance

yield of the entire

synthesized DFG

twice. To facilitate the

yield computation in

the module selection,

we employ a divide and conquer method to avoid the yield

computation over all the clock cycles in a synthesized DFG. The

synthesized DFG is divided into blocks and each block contains

minimum number of clock cycles (time steps) such that resource

shared operations or operations bound to multiple-clock-cycle

modules are in the same block. For example, as shown in Fig. 4,

the multiplication operation is bound to a two-clock-cycle module

and two addition operations share the same module. The block1
consists of two clock cycles, CC2 and CC3, such that the complete

two-clock-cycle multiplication operation/two addition operations

are in the same block. Assuming that the correlation between

the different module instances is relatively small compared to the

resource shared and multiple clock cycle operations, we can compute

the yield of each block separately and approximate the performance

yield of the entire DFG as

Y ielddelay =

M∏

i=1

Y ielddelay(bi) (8)

where Y ielddelay(bi) is the yield value of block i and it can be

computed as Prob(Tmax blocki ≤ T clock|constraints), and M
is the total number of blocks in the DFG. Thus, assuming that an

operation in block j is rebound to a new module, the performance

yield gradient of the module change can be computed as

ΔY ielddelay =
M∏

i=1,i�=j

Y ielddelay(bi) × ΔY ielddelay(bj) (9)

Thus the yield gradient computation for the entire DFG is reduced

to the yield gradient computation for a single block in the DFG.

E. Power Yield Gradient Computation for Module Selection

The statistical power computation is performed by summing the

power dissipation of each module instance in the synthesized DFG

as described in Section V-B. To perform power yield gradient analysis

for an operation rebinding, we first perform statistical power analysis

of the DFG after the rebinding:

P
new
DF G = P

old
DF G − P

old
optk

+ P
new
optk

(10)

where P new and P old refer to the power dissipation distribution

after rebinding and before rebinding, respectively; PDFG and Poptk

denote the total power dissipation of synthesized DFG and the power

of module instance bound to operation k, respectively. With the

distributions of the power dissipation before rebinding and after

rebinding determined, the power yield gradient can be computed as

ΔY ield = Y ield(P
new
DF G) − Y ield(P

old
DF G) (11)

where Y ield(P) is computed as the probability of P less than the

power limit.

VI. MODULE SELECTION WITH DESIGN-TIME OPTIMIZATION

AND POST-SILICON TUNING

In this section, we first introduce a design time module selection al-

gorithm based on the fast yield computation method. We then present

the algorithm on how to decide optimal body biasing, and describe

the module selection strategy of joint design time optimization and

post silicon tuning. Note that a single cycle operation cannot be

bound to a multi-cycle module in module selection. In high-level

synthesis, scheduling and module selection interact with each other.

Therefore, at each scheduling step, the module selection algorithm

will be called to find the optimal instance from the library. Due to

the space limitation, we only present our module selection algorithm,

with the assumption that the schedule step has been performed.

A. Design Time Variation-aware Module Selection Algorithm

Optimization (ISDFG,constraints,Library){
1. While (ΔY ield > ε and meet constraints){
2. Generate multiple moves generates the to move list list;
3. Find k of to move list to maximizing the total gain Gk ;
4. If (total gain Gk > 0){
5. Apply this sequence of moves;
6. Evaluate the power and performance yield;
7. }}}

Generate multiple moves (ISDFG,Library, constraints){
8. While (maximum number of moves is not reached) {
9. For (each possible move in the DFG){
10. Evaluate the gain of that move;
11. Save the move and gain to temp move list;}
12. Insert the move with highest gain to to move list;
13. }

Fig. 5. The Pseudo Code of Variation Aware Optimization in Module
Selection

Our module selection takes an initial scheduled DFG (ISDFG),

constraints (latency constraints, resource constraints, CCT con-

straints, and power constraints), and a module Library as inputs, and

output a synthesized DFG that is power optimized while satisfying

performance constraints. In the initial scheduled DFG, the operations

are bound to the fastest module in the module library, which meet

the latency constraints in terms of the number of clock cycles.

The iterative module selection algorithm consists of two steps: 1)

performance yield maximization; 2) power yield improvement under

the performance yield constraint.

Note that the optimization algorithm shown in Fig. 5 can be

configured as performance optimization or power optimization de-

pending on the gain function, and the gain is the change in total

yield that results from the move (module selection) : for performance

optimization, the gain is the performance yield gain, ΔY ielddelay;

for power optimization under the performance yield constraint (e.g.,

the probability of the synthesis result can run at 200 Mhz should be

at least 90%), the gain is α ∗ ΔY ielddelay + ΔY ieldpower , where

α is weight factor.

Similar to [30], our iterative variation aware module selection

algorithm is based on a variable depth search method. The algorithm

starts with an initial scheduled DFG. It identifies the move with the

maximum gain, and inserts that move to to move list (Line 9-12).

The algorithm continues to identify the moves that give max gain until

the maximum number of moves is reached (Line 8-12). After all these

moves identified, we find a sequence of moves, which gives the best

gain (Line 3). In other words, the algorithm find k consecutive moves,

1A-1

6

which give best Gk =
∑i=k

i=1 gi. Note that the gain of some moves

might be negative. The algorithm accepts these moves when Gk > 0.

This makes our algorithm capable of escaping the local minimum.

The k consecutive moves are then committed, and the performance

yield or power yield are evaluated (Line 5-6). The iteration continues

until the yield improvement is less than a preset small value or the

delay/resource constraint is violated(Line 1).

B. Post-silicon Tuning with ABB

Once the module selection is decided at the design time, adaptive

body biasing (ABB), which is a post-silicon tuning technique, can

be applied to further reduce the parametric yield loss. ABB body

biasing can be applied at the chip level (i.e., all the modules on

a die will have a single body biasing VSB), and the whole chip

is either applied FBB or RBB; ABB can also be applied at the

module level (i.e., each module can have its own VSB), such that each

module can be applied FBB or RBB, achieving a finer granularity

of tuning. After fabrication, the optimal body biasing for each die

can be determined by speed/power binning. However, at design time,

the optimal body biasing VSB (either chip-level or module-level) is

a probability distribution, depending on the statistical delay/power

distribution of the chip.

In this section, we describe how to decide the optimal body biasing

for a particular module selection decision, such that the power yield

is maximized under the performance constraints (i.e., meeting a

particular performance yield requirement). The optimization can be

formulated as a sequential of a second order conic program problem

[31]. To obtain the optimal VSB to compensate the variability caused

by the process variations, we formulate the optimization problem as

follows:

minimize Psttot (12)

subject to P (Tmax < Tclock|constraints) > α (13)

where the objective function Psttot is defined as P̄tot + β ∗ σPtot .

P̄tot and σPtotl are the nominal and the variance of the total

power, respectively. β is a weighting factor, which balances the

optimization effort on reducing the mean and the spread of the

power distribution. α is the required performance yield. The con-
straints represent the latency constraints and the resource constraints.

Tmax = max(Tmaxi), ∀i ∈ [1, N] as shown in equation (7).

In the optimization problem, the applied body biasing VSB , is the

optimization variable to be determined. Applied body bias is used

to compensate the process variation. Thus, VSB is a function of the

random variables. In Mani et al.’s work [3], VSB is set to be an affine

function of the parameter variations. To simplify the optimization

problem, which can be solved using a conic programming, we set

VSB = s
T

Y (14)

and the vector s is the compensation vector. Thus the vector s is

the optimization vector to be determined. Y is the random variable

vector used to model process variations, which consists of the random

variables Yi and Rm in equation (3).

The constraint function of this optimization problem is the integra-

tion of the delay distribution, Tmax. This random variable, Tmax, is

obtained by performing max operation over the timing quantities, Ti.

Thus, the constraint functions need to be transformed. First, since the

VSB is an affine function of the variation parameters, the delay of a

module instance can be expressed as a linear function of optimization

variables:
Ti = h

T
i s (15)

Second, to compute Tmax, the max operation over the timing

quantities Ti is performed. The max operation is complex and

involves the integration of the exponential function. Thus, the max

operation has to be approximated. According to Clark’s work [28],

the max operation can be computed as a linear function under specific

constraints as follows:

Assuming that Tmax = max(Tmax0, ..., Tmaxn), we then

have
Tmax = Σ

n
i=1CiTmaxi (16)

where Ci is the probability of the timing quantity, Tmaxi, determin-

ing the Tmax. To make this approximation valid, a new constraint

is introduced to limit the change of body bias VSB to be less than a

small value, ε. In this paper, the change of the body biasing, ΔVSB ,

is set to be 0.01. From equation (15) and (16), we can express Tmax
as a linear combination of the optimization vector s,that is

Tmax = b
T

s (17)

Given that Tmax is a gaussian random variable, the constraint,

P (Tmax < Tlimit) < α, can be transformed to a quadratic function

[31]:
T̄max + φ

−1
(α)(σT max) ≤ Tlimit (18)

where T̄max and σTmax are the mean and variance of Tmax. Thus,

we can express the constraint function in terms of optimization vector

s,
b̄

T
s + φ

−1
(α)(s

T
Σs)

1/2 ≤ Tlimit (19)

The objective function, Psttot, takes into account the mean and

variation of the power. However, the objective function is an ex-

ponential function of random variables. To efficiently solve the

optimization problem using second order conic programming, the

objective function is transformed. According to probabilities theory,

the mean and variance of the log-normal random variable can be

expressed as a exponential function. Consequently, the objective

function is a complex nonlinear function of the optimization vector

s. Thus, Taylor expansion is used to obtain its linear approximation.

We then have:

P̄DFG = PDFG(sini) + (s − sini)
T∇s(P̄DFG) (20)

σPDF G = σPDF G(sini) + (s − sini)
T∇s(σPDF G) (21)

where sini represents the initial value of the optimization variable

vector. To simplify the notation, a1 and a2 is set to be ∇s(P̄DFG)
and ∇s(σPDF G) respectively. We then express the objective function

as a linear function of the optimization vector s:

a1T s + β ∗ a2T s (22)

Based on the above transformations in equations (22) and (19),

the optimal body biasing assignment problem can be formulated as

a second order conic program:

minimize (a1 + β ∗ a2)T s (23)

subject to b̄T s + φ−1(α)(sT Σs)1/2 ≤ Tlimit (24)

cT (s − sini) < ε (25)

The linear constraint is set to make the approximation of Tmax
valid.

Based on this second order conic program formulation, the se-

quential conic program (SCP) algorithm is shown in Fig. 6. In

the sequential programming algorithm, the complex optimization

problem is transformed to a sequence of the simplified subproblem.

In this work, the subproblem, CP i, is used as an approximation of

1A-1

7

the optimal body biasing problem in a range, ε. In this work, the

subproblem is solved using the above second order conic program.

At the end of each iteration, the solution of the subproblem, CP i, is

evaluated for convergence. The iteration exits when the convergence

test fails, or the number of maximal tries has been reached.

SCP (ISDFG,constraints,s)
1. While (convergent){
2. setup the CP i(ε)
3. solve the CP i(ε)
4. }

Fig. 6. The Pseudo code of optimal body biasing of DFG

C. Joint Optimization Algorithm

JointOpt (ISDFG,constraints,Library)
1. While (ΔY ield > ε and meet constraints){
2. Design time module selection under current body bias;
3. Sequential Conic Optimization;
4. }

Fig. 7. The Pseduo Code of Variation Aware Optimization of DFG

Our joint design time module selection and post silicon tuning

algorithm takes an initial scheduled DFG, constraints (latency

constraint, resource constraint, CCT constraint, and power constraint),

and a module Library as inputs, and outputs a synthesized DFG

with optimal body bias that is power optimized while satisfying

performance constraints. In the initial scheduled DFG, the operations

are bound to the fastest module in the module library, which meet

the latency constraints in terms of the number of clock cycles.

Our joint optimization algorithm consists of two steps: 1) design

time module selection algorithm selects the module instance for the

operations in DFG to maximize the power yield under power yield

constraints, and the module selection is performed under the body

bias determined in previous iteration; 2) the sequential conic program

determines the optimal body bias for the module instances in the

current iteration to tighten the delay and power distribution to further

improve the power yield. The body bias is initially set to be zero.

These two steps are iterated until no improvement can be obtained.

VII. ANALYSIS RESULTS

In this section, we present the analysis results and show that our

joint design time and post silicon time method can effectively reduce

the impact of the process variation and maximize the parametric yield,

as compared to traditional worst-case based design-time module

selection method.

We implement our joint design time module selection and post

silicon tuning algorithm in C++ and conduct the experiments on

six high level synthesis benchmarks: a 16-point symmetric FIR filter

(FF), a 16-point elliptic wave filter (EWF), an autoregressive lattice

filter (ARF), an algorithm for computing Discrete Cosine Transform

(DCT), a differential equation solver (DES), and an IIR filter (IIR).

The resource library contains different adders and multipliers, im-

plemented in 90 nm technology, with statistical delay and power

distributions, as shown in Fig. 1. The library characterization is

performed based on the results of Monte Carlo analysis in HSPICE. A

few experiments are conducted to demonstrate the effectiveness of our

algorithm, with the average runtime of algorithm for all benchmarks

(on a 2GHz Pentium 4 Linux machine) less than 0.5 sec:

• Design-time only variation-aware vs. Worst-case deterministic
module selection. First, we compare our variation-aware design

time optimization approach (without considering post-silicon tun-
ing) to the traditional worst case deterministic module selection

method. The power optimization is performed under 90% perfor-

mance yield constraints. As shown in Fig. 8, the reference design

time approach has significant yield improvement over the worst

case design time approach. An average 34% yield gain is achieved

using our reference variation design time approach.

Power Yield Gain for Different Benchmarks

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

AR DCT DES EWF FF IIR

Benchmarks

P
o

w
e

r
Y

ie
ld

 G
a
in

Absolute Gain

Relative Gain

Fig. 8. Power yield improvement over worst-case based deterministic module
selection, with 90% performance yield constraint.

• Joint design-time and post-silicon tuning Vs. design-time only
variation-aware module selection. We then compare the results

of our joint design-time and post-silicon tuning module selection

algorithm (JT) against the variation-aware design-time only module

selection method (DT). Table I shows the results of our method

with a single chip-level body bias control (JTS) against those of

the design time module selection technique (DT), under a 99%

performance yield requirement. From the second column to the

third column, we show the absolute power yield results of the

joint optimization method (JTS) and the design-time only module

selection technique (DT), respectively. In the fourth column, we

show the absolute value of the yield improvement of our method

over design-time only method. In the fifth column, we show the

relative yield improvement of our method over the design time

method. As we can see from Table I, significant yield improvement

could be obtained if we take into account post-silicon tuning

techniques in high level synthesis. The yield results show that joint

design time and post silicon optimization can achieve average 38%

power yield improvement, compared to design-time only variation-

aware module selection. If we relax the power constraint, we may

have larger power yield. For example, Table II shows that for the

same 99% performance yield constraint, if we relax the power

constraint, joint design time and post silicon optimization can

achieve average 11% power yield improvement.

TABLE I

POWER YIELD UNDER 99% PERFORMANCE YIELD CONSTRAINT

Name DT JTS JTS-DT (JTS-DT)/DT

AR 47% 86% 39% 83%

DCT 60% 85% 25% 42%

DES 76% 90% 14% 18%

EWF 79% 90% 11% 14%

FF 75% 92% 17% 23%

IIR 58% 85% 27% 47%

Average 66% 88% 22% 38%

• Module-level post-silicon tuning. The more aggressive approach is

module-level post-silicon tuning (i.e., each module can have its

own VSB control). This approach results in a finer granularity tun-

ing, and can effectively address the intra-die variation). However,

the additional overheads of the body bias generator and control

circuitry can adversely affect the gain of this approach. Therefore,

it is appropriate to apply post-silicon tuning at multiple-module

level instead of single module level.

1A-1

8

TABLE II

POWER YIELD UNDER 99% PERFORMANCE YIELD CONSTRAINT WITH

POWER CONSTRAINT RELAXATION

Name DT JTS JTS-DT (JTS-DT)/DT

AR 74% 90% 16% 22%

DCT 80% 89% 9% 11%

DES 88% 93% 5% 6%

EWF 90% 97% 7% 8%

FF 85% 94% 9% 11%

IIR 83% 90% 7% 8%

Average 83% 92% 9% 11%

• Comparison against previous variation-aware HLS work.
We also compare our algorithm against previous variation-aware

HLS work proposed by Hung et.al [4]. Their module selection is

based on a heuristic of using the product of sigma and mean (

σ × μ). However, as we have shown in Section III.B, Fig. 2, this

heuristic may not be appropriate. In addition, their algorithm only

considered the area reduction (using smaller number of resource

to meet a specific performance yield) without considering power

variations.

VIII. CONCLUSION AND FUTURE WORK

Process variation in deep sub-micron (DSM) VLSI design has

become a major challenge for designers. Dealing with delay/power

variations during high level synthesis is still in its infancy. Per-

formance/power yield, which is defined as the probability of the

synthesized hardware meeting the performance/power constraints, can

be used to guide high level synthesis. Our research demonstrates that

the yield can be effectively improved by combining both design-
time variation-aware optimization and post silicon tuning techniques

(adaptive body biasing (ABB)) during the module selection step in

high level synthesis. The experiment results show that significant

yield can be achieved compared to traditional worse-case driven

module selection technique. To the best of our knowledge, this is the

first variability-driven high level synthesis technique that considers

post-silicon tuning during design time optimization.

Our future work is to integrate the module selection algorithm into

the design flow of a state-of-the-art high level synthesis tool (Catapult

C [16]) with the support from Mentor Graphics, and evaluate the

effectiveness of our approach using industrial design examples.

REFERENCES

[1] T. Yuan, D. A. Buchanan, C. Wei, D. J. Frank, K. E. Ismail, L. Shih-
Hsien, G. A. Sai-Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind,
and W. Hon-Sum. Cmos scaling into the nanometer regime. Proceedings
of the IEEE, 85(4):486–504, 1997. 0018-9219.

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In
Design Automation Conference, pages 338–342, 2003.

[3] M. Mani, A.K Singh, and M. Orshansky. Joint design-time and post-
silicon minimization of parametric yield loss using adjustable robust
optimization. In Proc. of ICCAD, pages 19–26, 2006.

[4] W.-L. Hung, X. Wu, and Y. Xie. Guarantee performance yield in high
level synthesis. In International Conference on Computer Aids Design,
2006.

[5] T. Chen and S. Naffziger. Comparison of adaptive body bias (abb) and
adaptive supply voltage (asv) for improving delay and leakage under the
presence of process variation. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 11(5):888–899, 2003. 1063-8210.

[6] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De. Apaptive body bias for reducing imapcts of die-
to-die and within-die parameter variaions on microprocessor frequency
and leakage. IEEE Journal of Solid State Circuits, 37(11):1396–1402,
2002.

[7] N. Azizi and F. N. Najm. Compensation for within-die variations in
dynamic logic by using body-bias. In IEEE-NEWCAS Conference, pages
167–170, 2005.

[8] S. P. Mohanty and E. Kougianos. Simultaneous power fluctuation and
average power minimization during nano-cmos behavioral synthesis. In
Proc. of VLSID, pages 577–582, 2007.

[9] A. Raghunathan, N. K. Jha, and S. Dey. High-level power analysis and
optimization. Kluwer Academic Publishers, 1998.

[10] D. Gajski, N. Dutt, and A. Wu. High-level synthesis: Introduction to
chip and system design. Kluwer Academic Publishers, 1992.

[11] E. Kursun, A. Srivastava, S. G. Memik, and M. Sarrafzadeh. Early eval-
uation techniques for low power binding. In International Symposium
on Low Power Electronics and Design, pages 160–165, 2002.

[12] C.-G. Lyuh and T. Kim. High-level synthesis for low power based
on network flow method. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 11(3):364–375, 2003. 1063-8210.

[13] X. Tang, H. Zhou, and P. Banerjee. Leakage power optimization
with dual-vth library in high-level synthesis. In Design automation
conference, pages 202–207, 2005.

[14] R. Karri and A. Orailoglu. Time-constrained scheduling during high-
level synthesis of fault-secure vlsi digital signal processors. Reliability,
IEEE Transactions on, 45(3):404–412, 1996. 0018-9529.

[15] R. Mukherjee, S. Ogrenci Memik, and G. Memik. Temperature-aware
resource allocation and binding in high-level synthesis. In Design
Automation Conference, pages 196–201, 2005.

[16] Catapult c synthesis. Technical report, Mentor Graphics Corporation,
Products Overview,.

[17] S. Devadas, H. F. Jyu, K. Keutzer, and S. Malik. Statistical timing
analysis of combinational circuits. In International Conference on
Computer Design: VLSI in Computers and Processors, pages 38–43,
1992.

[18] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical analysis and
optimization for VLSI: Timing and power. Springer, 2005.

[19] S. Sapatnekar. Timing. Kluwer Academic Publishers, 2004.
[20] A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov. Circuit optimization

using statistical static timing analysis. In Design Automation Conference,
pages 321–324, 2005.

[21] D. Marculescu and S. Garg. System-level process-driven variability
analysis for single and multiple voltage-frequency island systems. In
Proc. IEEE/ACM Intl. Conference on Computer-Aided Design (ICCAD),
Nov. 2006.

[22] S. Garg and D. Marculescu. System-level process variation driven
throughput analysis for single and multiple voltage-frequency island
designs. Proc. IEEE Design, Automation and Test in Europe (DATE),
Apr. 2007.

[23] Jongyoon Jung and Taewhan Kim. Timing Variation-Aware High-Level
Synthesis. Proc. of ICCAD, November 2007.

[24] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-performance
cmos variability in the 65-nm regime and beyond. IBM J. Res. Dev.,
50(4/5):433–449, 2006.

[25] S.H. Kulkarni, D. Sylvester, and D. Blaauw. A Statistical Framework
for Post-Silicon Tuning through Body Bias Clustering. Proc. of ICCAD,
pages 39–46, Nov. 2006.

[26] J. Jess, K. Kalafala, S. Naidu, R. Otten, and C. Visweswariah. Statistical
timing for parametric yield prediction of digital integrated circuits.
IEEE/ACM DAC, pages 932–937, 2003.

[27] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan. First-order incremental block-based statistical timing
analysis. Design Automation Conference (DAC), pages 331–336, June
2004.

[28] C. Clark. The greatest of a finite set of random variables. Operations
Research, pages 145–162, 1961.

[29] A. Srivastava, S. Shah, K. Agarwal, D. Sylvester, D.Blaauw, and
S. Director. Accurate and efficient gate-level parametric yield estimation
considering correlated variations in leakage power and performance.
Design Automation Conference (DAC), pages 535–540, 2005.

[30] Anand Raghunathan and Niraj K. Jha. An iterative improvement
algorithm for low power data path synthesis. In Proc. of ICCAD, pages
597–602, 1995.

[31] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Ad-
justable robust solutions of uncertain linear programs. Math. Program.,
99(2):351–376, 2004.

1A-1

9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

