
Timing-Power Optimization for Mixed-Radix Ling Adders

by Integer Linear Programming

Yi Zhu, Jianhua Liu, Haikun Zhu and Chung-Kuan Cheng
Department of Computer Science, University of California, San Diego

La Jolla, CA, 92093-0404, U.S.A.
{y2zhu,jhliu,hazhu,ckcheng}@ucsd.edu

Abstract— This paper optimizes timing and power consump-
tion of mixed-radix Ling adders with the physical area constraints
using an integer linear programming formulation. Each cell in
the prefix network is flexible to have different radix and size, and
Ling carries are incorporated. Optimal solutions are obtained by
solving the proposed formulation. The experiments show that the
produced optimal structures have a large power saving compared
with traditional designs. The ASIC implementation results are
superior to those produced by Synopsys Module Compiler.

I. INTRODUCTION

As the most fundamental and commonly used operation in com-

puter arithmetic, binary addition has been extensively studied in the

data path research. There have been a large variety of algorithms

to construct adder structures, among which parallel prefix adders are

popular since they have simple cells and offer high flexibility. Three

classic regular structures, Sklansky [12], Kogge-Stone [7] and Brent-

Kung [1] adders, can achieve minimal logic levels, wire tracks, or

fanouts. In addition to these regular structures, Zimmermann pro-

posed a non-heuristic algorithm to produce irregular prefix networks

that are able to deal with non-uniform input arrival times [15]. In [14]

zero-deficiency adder was defined, which can reach the lower bound

of number of components for given number of logic levels. In [9] Liu

et al. used integer linear programming to identify optimal prefix struc-

tures to minimize power consumption, and more practical area, timing

and power models are adopted in their formulation.

However, as most of the previous works, the work in [9] is also

restricted to the traditional radix-2 adders, and do not make use of Ling

adder, which is a popular and efficient technique to speed up prefix

adders [8]. Those who considered these factors, such as [6] and [4],

only explored regular structures. In this paper, we propose an integer

linear programming (ILP) formulation to optimize more generalized

prefix Ling adders. The contributions of this paper include:

• We devise the ILP formulation so that the commercial ILP solver
CPLEX is able to produce minimum power solutions with given

structural, area and timing constraints. Hence it is a useful tool to

generate candidates for back-end design. Furthermore, it is very

easy to adjust our formulation with different parameters and con-

straints, such as regular radix constraints or the relative ratio of

static and dynamic power consumption. It actually provides a

flexible framework for designers to design customized adders.

We also develop a program that can automatically synthesize

adders according to the ILP results; therefore our approach can

be directly used in Synopsys design flow.

• The formulation we devise is able to effectively depict the struc-
ture, timing and power properties of prefix adders using integer

decision variables and linear constraints, which are the essen-

tial conditions for the ILP solver to seek for optimal solutions.

Since prefix adders have a large design space, optimal solutions

are usually hard to identify without good formulations. We work

out several sets of constraints to prune the search space so that

the running time is significantly reduced.

• Mixed-radix adders are formulated in our model, i.e. a GP cell

could have different radix 2, 3, 4, and a prefix network can con-

tain cells with different radix. This feature provides more flexi-

bility to designers to construct fast adders. High-radix adders are

popular for high performance applications such as microproces-

sor ALUs [10][11]. A high-radix adder requires less logic levels;

however, a single high-radix cell has greater logical effort, par-

asitic delay and more power consumption. These factors are all

taken care of in our ILP formulation.

• We construct prefix Ling adders, which are able to compute bit
sum and carry signals faster by using a simplified form of carry

lookahead equations [8]. The experiments show that Ling adders

are able to produce better results than normal prefix adders.

• We apply hierarchical design methods to handle high bit-width
applications. One weakness of ILP solver is the unscalable com-

putational time. So we propose a divide-and-conquer strategy

to optimize 64-bit adders in multiple blocks. We show that the

results are superior to the 64-bit adders produced by Synopsys

Module Compiler.

The rest of the paper is organized as follows. The prefix structure,

Ling adders and mixed-radix adders are introduced in the next section.

Their area, timing and power models, are discussed in Section III. The

ILP formulation is described in Section IV; as the entire formulation

is complex, we shall present how to formulate the properties of Ling

and mixed-radix adders in more details. Several categories of exper-

imental results, including the ASIC implementation, are presented in

Section V. Conclusions are given in the last section.

II. PRELIMINARIES

A. Parallel Prefix Adders

Assuming A = an . . . a2a1 and B = bn . . . b2b1 are two operands

in the addition, with 1-bit carry-in c0, a prefix adder can be considered

as a three-stage circuit. In the preprocessing step, the generate bit gi

and the propagate bit pi are produced for each input i, where gi =
aibi, and pi = ai⊕bi. In the second stage, the generate and propagate

computation is extended to multiple bits. They are defined as:

G[i:j] =

(
gi if i = j

G[i:k] + P[i:k]G[k−1:j] if i ≥ k > j
(1)

2A-3

131978-1-4244-1922-7/08/$25.00 ©2008 IEEE

P[i:j] =

(
pi if i = j

P[i:k]P[k−1:j] if i ≥ k > j
(2)

Finally, in the third stage, the sum si and carry ci can be calculated

from G and P as si = pi ⊕ ci−1 and ci = G[i:0].

We use the prefix operator • to simplify the notation of (G, P)
computation:

(G, P)[i:j] = (G, P)[i:k] • (G, P)[k−1:j] (3)

Interpret the prefix operator • as a node and the signal (G, P) as
an edge in a graph, the prefix computation structures can be viewed

as directed acyclic graphs. Fig. 1 shows an 8-bit Brent-Kung adder.

The symbols �, • and � represent gp generators, GP cells and sum

generators respectively.

12345678
Stage 1

Level1

Level2

Level3

Level4

12:13:14:15:16:17:18:1

Stage 2

Stage 3

Fig. 1. The 8-bit Brent-Kung Prefix Adder

B. Ling Adders

In our formulation and implementation, we follow the approach

in [4] that presented a prefix formulation which takes advantage of

the simplicity of Ling equations. Ling adders are a variation among

the commonly used carry lookahead adders. Consider the adjacent bit

pairs (ai, bi) and (ai−1, bi−1), Ling defined the i
th Ling pseudo carry

as Hi = ci + ci−1 [8]. Therefore, Hi can be expressed by the g and

p signals as

Hi = gi + gi−1 + pi−1 · gi−2 + . . . + pi−1 · pi−2 · . . . · p1 · g0 (4)

The main advantage of Ling adders is that Hi can be computed

faster than the corresponding carry ci since it is derived from a simpler

Boolean function. However, the derivation of final sum bits is a little

more complicated. As we know that ci = pi · Hi, it holds that si =
(ai ⊕ bi) ⊕ ci−1 = (ai ⊕ bi) ⊕ (pi−1 · Hi−1). It can be further
transformed as follows:

si = Hi−1 · (ai ⊕ bi) + Hi−1 · ((ai ⊕ bi) ⊕ pi−1) (5)

To obtain the prefix formulation of Ling adders, first the g and p

signals of adjacent bits are combined as

G
∗

i = gi + gi−1 and P
∗

i = pi · pi−1 (6)

Then the group signals (G∗

[i:j], P
∗

[i:j]) is defined as follows

(G∗

[i:j], P
∗

[i:j]) = (G∗

i , P
∗

i−1) • (G∗

i−2, P
∗

i−3) • . . . • (G∗

j , P
∗

j−1) (7)

The meaning of the prefix operator • remains the same. Note that there
is one offset in the index of a GP pair, and the index offset between

consecutive pairs are two. The recursive formulation can be written as

(G∗

[i:j], P
∗

[i:j]) = (G∗

[i:k], P
∗

[i:k]) • (G∗

[k−2:j], P
∗

[k−2:j]) (8)

The Ling carry Hi is equal to G∗

[i:1]. Compared with the recursive

formulation (3), the lower part signal is from k − 2 instead of k −
1, which indicates that we can separate odd and even bits: odd bits
signals are always from lower odd bits and even bits signals are always

from lower even bits.

An example of Lander-Fischer prefix Ling adder is shown in Fig.

2. Note that in the first level of the prefix network, there are ellipses

instead of circles, which means the cells are simpler than normal GP

cells, since the G∗

i is computed by only g signals and merely an OR

operation is needed.

This simplification mainly affects the performance in three aspects:

first, we could obtain faster g signals than normal prefix adders; sec-

ond, lower bit P signals are used in each bit — note in Equation (7),

the pair (G∗

[i:j], P
∗

[i:j]) is generated by P ∗

i−1 instead of P
∗

i ; finally, the

simpler cells in the first level also consume less power. As the trade-

off, the sum generator is more complicated and requires an XOR gate

and a multiplexer instead of a single XOR gate in the traditional de-

sign, as shown in Fig. 2.

Fig. 2. The 8-bit Lander-Fischer Ling Adder

C. Mixed-Radix Adders

In mixed-radix adders, each GP cell in the prefix adder may have

number of fanins larger than 2. They need less logic levels but each

GP cell is more complicated and has larger delay and power con-

sumption. In this work we consider GP cells may have radix 2, 3 or

4. Consider the flexibility, we allow different radix GP cells to ap-

pear in the same prefix network — it is easy to revise the formulation

to impose regularity. The prefix recursive formula should be revised

to have multiple operands. For example, for a radix-4 GP cell, the

formula (8) is revised as

(G∗

[i:j], P
∗

[i:j]) = (G∗

[i:k1], P
∗

[i:k1]) • (G∗

[k1−2:k2], P
∗

[k1−2:k2])
•(G∗

[k2−2:k3], P
∗

[k2−2:k3]) • (G∗

[k3−2:j], P
∗

[k3−2:j]) (9)

The timing and power models for different radix GP cells will be

discussed in the following section.

III. MODELS

A. Area Model

We assume that prefix adders will keep the bit-slice structure in the

placement, while each column will be compactly placed so that there

will not be empty positions between GP cells in each column. Fig.

3 illustrates the compact placement of the 8-bit Lander-Fischer Ling

adder in Fig. 2. Note that, for a specific adder, the physical depth of

the placement is always no more than its logical depth.

Fig. 3. Compact Placement for the 8-bit Lander-Fischer Ling Adder

2A-3

132

��������	
���
����������� ��������	
���
�����������

Fig. 4. Radix-2 and Radix-4 GP Cells

Radix Term Value Radix Term Value

2 PDg 10/3 4 PDg 20/3

2 PDp 3 4 PDp 5

2 LEgL 5/3 4 LEgL 3

2 LEgR1 2 4 LEgR1 10/3

2 LEpL 10/3 4 LEgR2 10/3

2 LEpR1 4/3 4 LEgR3 4

3 PDg 16/3 4 LEPL 14/3

3 PDp 4 4 LEpR1 4

3 LEgL 7/3 4 LEpR2 6

3 LEgR1 8/3 4 LEpR3 2

3 LEgR2 3

3 LEpL 10/3

3 LEpR1 14/3

3 LEpR2 5/3

TABLE I

PARASITIC DELAYS & LOGICAL EFFORTS FOR HIGH RADIXGP CELLS

B. Timing Model

We use a linear timing model based on logical effort method to

estimate the delay in our formulation. It has been shown that logical

effort method is able to predict absolute delay within 5% – 20% of

HSPICE [2][3]. We use the logical effort derivation similar to that

in [6] and [9]. To incorporate the features of mixed-radix and Ling

adders, we need to emphasize the following two enhancements.

First, we distinguish the timings of G and P signals for each GP

cell. In the previous work [9], it is assumed that G path is always

slower than the P path. In fact, this assumption is not always valid,

especially when the input arrival times are non-uniform.

Second, we consider GP cells with mixed radix in our model.

Hence different GP cell structures and logical effort values should

be used to distinguish them. The structures for raidx-2 and radix-4

GP cells are shown in Fig. 4 [5]; the parasitic delay and logical effort

values of various inputs for radix 2, 3 and 4 GP cells are listed in

Table I.

In Table I, PD denotes the parasitic delays, LE denotes the in-

put logical efforts, “g” and “p” indicate the signals for G and P , and

left and right inputs are denoted by “L” and “R” respectively. For

high-radix GP cells, the right inputs are ordered from left to right, as

illustrated in Fig. 5 (The symbols in the brackets indicate the logic po-

sitions of the components). For example, LEgR2 represents the logical

effort of G signal in the second right input.

������ ������ ������

������ �	

���

� ������ �������	

���

� �	

�
���
�
� �	

���

� �	

�
���
�
� �	

���

�

�� ��� �� ��� ���
��� ��� �����

����������������� ����������
������ �����������������

Fig. 5. Adder Input Structures

Given the logical effort and parasitic delay, the delay of a cell for

G and P signals, denoted as T G and T P , can be calculated using the

following formula respectively:

T
G(R) = max{ max

i∈[1..R]
{T G

i + LE G(R,i) · Output Load
Input Cap

},

max
i∈[1..R−1]

{T P
i + LE P(R,i) · Output Load

Input Cap
}} + PD G(R) (10)

T
P (R) = max

i∈[1..R]
{T P

i +LE P(R,i)·Output Load
Input Cap

}+PD P(R) (11)

where R is the radix of the cell and can be 2, 3 or 4; T G
i and T P

i

indicate the timing of the ith input (from left to right) for G and P

signals; and LE G, LE P, PD G and PD P denote the logical effort
and parasitic delay for G and P signals. They are the functions of the

cell radixR and input i, and can be looked up in Table I. The unit used

to measure the delay is the parasitic delay of a single invertor, which

is 1
5
fanout-of-4 delay.

The output load consists of gate capacitance and wire capacitance.

The ratio of the gate capacitance and input capacitance is the number

of fanouts. To estimate the wire capacitance, we follow the method in

[9] to calculate the total wire length of the bounding box around all

the fanouts in the physical placement. A scaling factor 0.5 is applied

to the total wire length, as suggested by [6].

When doing the gate sizing, we assume the input capacitance is

inversely proportional to the size and the parasitic delay keeps con-

stant; and the load capacitance will linearly increase if a cell drives

a larger output, so we should use “normalized fanouts” instead of

fanouts, which is the weighted sum of its fanouts with sizing. E.g.

when a cell drives two cells with size 2 and 1 respectively, the normal-

ized fanouts are 3. Consequently, we have the following equation that

can be substituted to the delay calculation formula (10) and (11):

Output Load

Input Cap
=
#normalized fanouts+ 0.5 · wire length

size
(12)

In addition, we do not count the timing delay for the gates in the

preprocessing stage (g, p signals generation) and postprocessing stage

(sum calculation) in our formulation, since they keep unchanged for

different prefix structures. Their power consumption is omitted as

well.

C. Power Model

We consider both dynamic power and static power consumption.

The dynamic power consumption is mainly due to the charging and

discharging of capacitance and measured by the switching activities.

We make use of the analysis in [13] about the switching activities in

prefix adders and further consider the effect of load capacitance. Let d

be the total number of logic levels and Ci be the total load capacitance

in level i, the total dynamic power is

dX
i=1

i · Ci (13)

The static power contributes a significant portion to the total power

consumption nowadays.We use the total number of GP cells to mea-

sure the total static power. In addition, two factors must be taken into

account. First, the static power is increasing along with the size of

a GP cell, here we assume this relation is linear; second, GP cells

with different radix have different static power consumption. Conse-

quently, the static power consumption of a single GP cell depends on

both its size and radix, which has been considered in our ILP formu-

lation. All the power consumption are measured by the unit 1
4
FO4

switching power consumption.

2A-3

133

IV. ILP FORMULATIONS

The ILP formulation is described in this section. Due to the space

limitation, we shall only briefly introduce the main idea, and focus on

how to formulate the unique constraints due to Ling adders and high-

radix adders, as well as those constraints that can reduce the search

space and running time.

A. Structural Constraints

Three types of constraints, named as Bit-slice constraints, GP
constraints andOverlap constraints, were used to ensure the ILP so-
lution has a valid structure in the n× d array, where n is the bit-width

and d is the logical depth; and a series of variables were introduced to

depict the prefix structure. The notations are expanded as follows:

• x(i,j) ∈ {0, 1}: 1 if and only if a GP cell is located in the

ith bit and jth level (or say column i and row j); furthermore,

x(i,1) = 1 for all i ∈ [1..n], since the first level of Ling adder is
fixed.

• wL
(i,j,h) ∈ {0, 1}: 1 if and only if there is a left fanin wire to
position (i, j) from position (i, h), and h < j.

• wR1
(i,j,k,l), w

R2
(i,j,k,l), w

R3
(i,j,k,l) ∈ {0, 1}: 1 if and only if there is a

first (second, third) right fanin WR1 (WR2, WR3) (refer to Fig.

5) to position (i, j) from position (k, l), and k < i, l < j.

• wZ
(i,j) ∈ {0, 1}: 1 if and only if the output of a GP cell (i, j)
connects to the primary output in column i.

• yL
(i,j), y

R
(i,j) ∈ [1, n]: the left and right bounds of a GP cell

(i, j), which means theGP cell covers the range [yL
(i,j) : yR

(i,j)].

• p(i, j) ∈ [0, m]: the physical level of a GP cell (i, j). The
physical position will be (i, p(i,j)).

The Bit-slice constraints ensure the bit-slice structure is preserved
in each column: the left fanin is always from some one above in the

same column, and the three right fanins are from the top-right quad-

rant. They can be formulated using the following constraints:X
h

w
L
(i,j,h) = x(i,j) ∀i > h (14)

X
k,l

w
R1
(i,j,k,l) = x(i,j) ∀i > k & j > l (15)

X
k,l

w
R2
(i,j,k,l) ≤ x(i,j) ∀i > k & j > l (16)

X
k,l

w
R3
(i,j,k,l) ≤ x(i,j) ∀i > k & j > l (17)

X
j

w
Z
(i,j) = 1 ∀i (18)

Note that (17) and (18) use “≤” instead of “=”, since the second and
third right inputs are optional for radix-2 and radix-3 cells.

We impose the following two constraints to make sure wr2 is al-

ways right to wr1 and wr3 is always right to wr2. In fact they are not

necessary to guarantee the feasibility since the order will be imposed

by the laterGP constraints. But it does help to prune the search space
and speed up the optimization process.X

l

w
R1
(i,j,k1,l) +

X
l

w
R2
(i,j,k2,l) <= 1 if k1 ≤ k2 (19)

X
l

w
R2
(i,j,k2,l) +

X
l

w
R3
(i,j,k3,l) <= 1 if k2 ≤ k3 (20)

The GP constraints are used to guarantee the obtained logical
structure is a feasible prefix network, i.e. each GP cell covers a cer-

tain bit range determined by its inputs, which are ordered consecutive

intervals, as expressed in Equation (9). The primary output at column

i must cover the interval [i, 1]. They are implemented by calculating
the values yL and yR. Since we are considering mixed-radix cells, 2,

3 or 4 intervals need to be checked. We are not enumerating the entire

bunch of constraints here due to the space limitation. As examples,

the left bound is equal to the left bound of its left input:

y
L
(i,j) = y

L
(i,h) if w

L
(i,j,h) = 1 (21)

And the right bound of the left input is adjacent to the left bound of

the first right input:

y
R
(i,h) = y

L
(k,l) + 1 if w

L
(i,j,h) = w

R1
(i,j,k,l) = 1 (22)

The similar constraints exist to check the boundaries for other inputs,

and additional constraints are needed to take care of the cases when

WR2 and WR3 are absent. In [9], the above constraints must be trans-

formed to “pseudo-linear” constraints, which do harm to the perfor-

mance of the ILP solver. For instance, constraint (21) needs to be

written as

y
L
(i,j) ≥ y

L
(i,h) − n · (1 − w

L
(i,j,h)) (23)

y
L
(i,j) ≤ y

L
(i,h) + n · (1 − w

L
(i,j,h)) (24)

However, we observe that the left bound of a specific cell is always

equal to its column index, thus constraint (21) can be simply written

as a linear constraint:

y
L
(i,j) = i (25)

and constraint (22) can be simplified to:

y
R
(i,h) =

X
(k,l)

k · wR1
(i,j,k,l) + 1 if w

L
(i,j,h) = 1 (26)

Although this simplification cannot eliminate all the pseudo-linear

constraints (constraints with respect to the right bound cannot be sim-

plified in this way), it is able to reduce around half of them for GP
constraints and significantly improve the performance.
The Overlap constraints are simply to guarantee that no two cells

are placed on the same physical position when placing the prefix net-

work on a physical n × m array, where m is the physical depth. The

constraint is written as

p(i,j) �= p(i,h) ∀j �= h (27)

B. Timing Constraints

We can compute the timing delay T G
(i,j) and T P

(i,j) for cell (i, j)
by decomposing the Max operators in formula (10) and (11) into a

series of inequalities which ensure the values are greater than all the

expressions inside theMax operators. But there are two factors, the

radix R and the sizing variables, exist in the formula. In order to

ensure the constraints are linear, we must avoid formulating these two

parameters as variables directly. An “incremental” method is used in

our formulation to handle this issue, by taking the advantage that both

the radix and sizing have very limited number of discrete values —

radix can only be 2, 3 or 4, and we only allow cells to be enlarged to

2, 3 or 4 times of the original size. For example, the parasitic delay of

G signal for cell (i, j) can be expressed as

10

3
+ 2 ·

X
(k,l)

w
R2
(i,j,k,l) +

4

3
·

X
(k,l)

w
R3
(i,j,k,l) (28)

where 10
3
is the parasitic delay for a radix-2 cell, which is considered

as the “base case”; 2 is the incremental value from radix-2 to radix-

3 (16
3

− 10
3
, referring to Table I);

P
(k,l) wR2

(i,j,k,l) indicates whether

the second right input exists, or say, whether it is radix-3 or radix-

4; and 4
3
is the incremental value from radix-3 to radix-4. We use

2A-3

134

binary variables size2
(i,j), size3

(i,j) and size4
(i,j) to indicate the size

of cell (i, j). Consequently, these two factors can be taken care of by
incremental constraints in the similar way as above.

Referring to the delay calculation formula (10) and (11) in Sec-

tion III.B, to obtain a delay for a specific cell, we should compute its

number of normalized fanouts and output wire length. The fanouts is

calculated as

c
G
(i,j) =

X
h

w
L
(i,h,j)+

X
(k,l)

w
R1
(k,l,i,j)+

X
(k,l)

w
R2
(k,l,i,j)+

X
(k,l)

w
R3
(k,l,i,j)+w

Z
(i,j)

(29)

and it can be adjusted to normalized fanouts (fanouts with output load

sizing) by using the incremental method mentioned above.

The wire length is estimated by the half perimeter of the bounding

box covering all fanouts, which is the maximal vertical and horizontal

distance of each fanout. Hence the following constraints can be used

to compute vertical and horizontal wire length:

c
WV
(i,j) ≥ p(i,h) − p(i,j) if wL

(i,h,j) = 1 (30)

c
WV
(i,j) ≥ p(k,l) − p(i,j) if wR1

(k,l,i,j) + wR2
(k,l,i,j) + wR3

(k,l,i,j) ≥ 1(31)

c
WH
(i,j) ≥ k − i if wR1

(k,l,i,j) + wR2
(k,l,i,j) + wR3

(k,l,i,j) ≥ 1(32)

All these three are pseudo-linear constraints. However, we note that

wR1
(k,l,i,j) + wR2

(k,l,i,j) + wR3
(k,l,i,j) ≤ 1 for each tuple (i, j, k, l), there-

fore constraint (32) can be revised to a linear constraint:

c
WH
(i,j) ≥ (k − i) · (wR1

(k,l,i,j) + w
R2
(k,l,i,j) + w

R3
(k,l,i,j)) (33)

Hence the load portion for cell (i, j) in the delay calculation, as shown
in Equation (12), denoted as c(i,j), is computed as

c(i,j) =
cG
(i,j) + 0.5 · cWV

(i,j) + 0.5 · cWH
(i,j)

size(i,j)

(34)

C. Power Consumption Objective

According to the discussion in Section III.C, the total power con-

sumption includes the dynamic power and static power, which depend

on the logic level, output load, and number of cells respectively and

can be formulated as

Minimize
X
(i,j)

j ·(cG
(i,j) +0.5 ·cWV

(i,j) +0.5 ·cWH
(i,j))+λ

X
(i,j)

x(i,j) (35)

where λ is the scaling factor to adjust the ratio between dynamic and

static power.

V. EXPERIMENTAL RESULTS

We conducted four categories of experiments: first we explored the

delay and power trade-off of 16-bit optimal adders when the uniform

arrival/required time is assumed; then we demonstrated the flexibility

of our formulation by conducting experiments with non-uniform ar-

rival/required time; a hierarchical design methodology was then used

to build 64-bit adders, which were implemented using Synopsys Data-

path design flow and the results were compared with those generated

by Synopsys Module Compiler. Throughout our experiments, the ILP

formulation was solved by ILOG CPLEX 9.1 solver; in the ASIC

implementation, the area, timing and power values were reported by

Physical Compiler, Astro and Prime Power respectively.

Radix Delay Power CPU Radix Delay Power CPU
(DF O4) (PF O4) (sec) (DF O4) (PF O4) (sec)

2 11.6 45.5 1 2,3,4 20 28 10

2 11.4 48 1 2,3,4 17 28.5 21

2 10.6 50.5 3 2,3,4 16 30.5 68

2 10 53.25 11 2,3,4 15 31 125

2,3,4 14 31.5 200

2,4 18 29.75 10 2,3,4 13 33.25 541

2,4 16 32.75 67 2,3,4 12 34.25 2850

2,4 14 33.75 232 2,3,4 11 38.75 5647

2,4 13 35.75 613 2,3,4 10 41 71687

2,4 12 40 1806 B-K 15 41.5 -

2,4 11 44.25 6187 Sklansky 11 45.5 -

2,4 10 49 32576 K-G 12.5 55.75 -

TABLE II
16-BIT OPTIMAL LING ADDERS RESULTS

A. Uniform Input Arrival Time

To test the timing and power trade-off of different adder structures,

we apply our ILP formulation to find optimal solutions for 16-bit

adders with different timing delay constraints. In the experiments,

we test three types of adders: traditional radix-2 adders, adders with

radix-2 and radix-4 cells only (sometimes radix-3 cells are not pre-

ferred in design), and mixed-radix adders which allow cells to have

radix 2, 3 or 4. For each type, we conduct a series of experiments

with various delay constraints, from loose to tight. The results are

shown in Table II and the power/delay tradeoff curves are plotted in

Fig. 6. For comparison, we plot the curves using dashed lines that

represents the results for normal prefix adders without Ling carries. In

addition, in Table II and Fig. 6, we also show the delay and power con-

sumption for three classical structures, Brent-Kung (B-K), Sklansky,

and Kogge-Stone (K-S) adders with Ling carries . All the timing and

power results are normalized to FO4 delay (DF O4) and FO4 switching

power (PF O4). Note that for each curve, a certain timing interval is

sufficient to show the tradeoff, since the power consumption won’t be

decreased if it is bounded by the adder structure itself but not the delay

constraint; and there are no feasible solutions if the delay constraint is

too tight.

��
��
��
��
��
�	
��
�

��
��
��
��

�

� �	 �� �� �� �� �� �
 �� �� �� �	 �� ��

�����

��
	

��

�
����� �
���������
�������
��� �
����������
�
�������������� �������
��������
���������� ��
�!�"
�#������#��

Fig. 6. Power Delay Trade-off for 16-bit Ling Adders

We have the following observations based on the results:

• Given the same delay constraint, radix-2&4 adders consumes
less power than radix-2 adders and mixed-radix adders have even

lower power consumption. This is understandable since the solu-

tion space for high radix-adders is larger; though each high-radix

cell consumes more power, the entire network has less compo-

nents as well as logic levels. For example, Figure 7, 8 and 9

show the minimum power 16-bit radix-2, radix-2&4 and mixed-

radix Ling adders without any delay constraints respectively. We

can observe that with radix-4 cells we can save logic levels, and

with radix-3 cells we can further push the cells to lower logic

levels. Therefore, the structure shown in Figure 8 saves 34.6%

power consumption than that in Figure 7, and the adder in Fig-

ure 9 saves 38.5% power consumption than that in Figure 7. The

2A-3

135

mixed-radix adders show more advantages when compared with

classic adders: with the same delay constraint, the mixed-radix

adders can save 25.3%, 14.8% and 38.6% power consumption

compared with Brent-Kung, Sklansky and Kogge-Stone adders

respectively.

• The gap between traditional radix-2 adders and radix-2&4
adders are much larger with moderate delay constraints, which

shows that high-radix has significant effect under this circum-

stance; radix-3 cells only have small marginal improvement and

may not be preferred in real design. For example, if the delay

constraint is 14 FO4 delay, the optimal radix-2&4 adder saves

25.8% power consumption than the radix-2 adder, and the the

mixed-radix adder saves 30.7 %. For tight delay constraints,

however, radix-3 cells are still beneficial. When the constraint is

10 FO4 delay, the radix-2&4 adder and mixed-radix adder save

8.0% and 23.0% power over the radix-2 adders, which indicates

that mixed-radix adders are strongly preferred when tight delay

constraints are imposed.

• The trade-off curves are not entirely concave, but a bit bumpy.
It is because we are searching a discrete solution space. The

adder structures, radix and sizing options, are all discrete vari-

ables. Hence the feasible solutions are isolated points in the

entire space. However, we can still observe that power con-

sumption is gradually increased when delay constraints become

tighter and the increment is sharp when we demand for a very

fast adder.

• Ling adders consume less power than normal prefix adders for all
the three curves, and the gap is almost constant, which is about

4 FO4 switching power consumption. As explained in Section

II.B, Ling adders take three advantages; but in the uniform ar-

rival time cases, using lower bit P signals is not significantly

useful; faster G signals may be dominated by slow P signals;

therefore the majority of improvement is probably due to the

less power consumption in the first level (see Fig. 2). We will

show more advantage of Ling adders in the next subsection.

• The CPU time increases sharply in the cases with tight delay
constraints, which prevents the solver finding optimal solutions

for larger cases. For example, for 16-bit mixed-radix adders, it

takes only 10 seconds to find the optimal solution with 20 FO4

delay constraint but over 70,000 seconds to obtain the optimal

solution with 10 FO4 delay constraint. Hence our method is

more suitable to solve instances with moderate delay require-

ments. Also, this fact motivates us to apply hierarchical design

to handle high bit-width applications, which will be introduced

in the later part of this section.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

Fig. 7. Minimum Power Radix-2 16-bit Ling Adders

B. Non-uniform Arrival and Required Time

Our formulation is also able to seek for optimal adders with non-

uniform signal arrival and required times. This feature is useful in

some applications, such as the final adder in a binary multiplier which

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

Radix-2 Cell Radix-4 Cell

Fig. 8. Minimum Power Radix-2&4 16-bit Ling Adders
1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

Radix-2 Cell Radix-4 Cell Radix-3 Cell

Fig. 9. Minimum Power Mixed-Radix 16-bit Ling Adders
is used to sum up two partial products, where the middle bits arrive

later than most and least significant bits. We design three represen-

tative profiles for input arrival: increasing (from least significant to

most significant bits), decreasing, and convex (middle bits have large

arrival/required values). All experiments are conducted on both nor-

mal prefix adders and Ling adders with mixed-radix. The results are

shown in Table III. We find that generally Ling adders are able to save

power consumption with the same timing constraints from 9.7% to

23.9%; especially in the increasing arrival time case, where the signif-

icant bits signals arrive slower, Ling adder can take the advantage of

its fast carry computation by using less significant P signals – which

means faster P signals, therefore more flexible low power structures

could be used, compared with the normal prefix adders.

C. Hierarchical Design & ASIC Implementation

To overcome the drawback of unscalable computational effort, we

use hierarchical design to handle high bit-width applications. In [9],

a two-level hierarchical structure was proposed. However, their struc-

ture suffers from a serious weakness that all PG signals produced in

the local blocks will be combined in the last stage with the global

carry signals, which requires to use a lot of cells therefore consumes

much area and power. Hence we proposed a new design, in which

only one level is needed. The carry-out signal of each block will be

the carry-in signal of the following block and combined in the ILP

program to perform the optimization. For example, for a 64-bit adder,

we divide the entire structure into 4 blocks, 16-bit for each block. In

the ILP block, we will optimize 17-bit adders (except the first block),

in which the first bit is the carry-in bit. The carry-in signal may have

different arrival time from other bits, since it is generated by the pre-

vious block instead of the primary inputs. The schematic diagram is

shown in Figure 10.

Case Power (Prefix) Power (Ling) Improvement
(PF O4) (PF O4)

Increasing Arrival Time 35.5 27.0 23.9%

Decreasing Arrival Time 34.5 30.5 11.6%

Convex Arrival Time 35.9 32.4 9.7%

Increasing Required Time 34.5 30.5 11.6%

Decreasing Required Time 36.5 32.5 11.0%

Convex Required Time 36.5 32.5 11.0%

TABLE III

NON-UNIFORMARRIVAL/REQUIRED TIME RESULTS

2A-3

136

ILP Block ILP Block ILP Block ILP Block

a1b1a16b16a17b17a32b32a33b33a48b48a49b49a64b64

…... …... …... …...

H64 H49 H48 H33 H32 H17 H16 H1

…... …...…...…...

G*
48 G*

32 G*
16

Fig. 10. Hierarchical Design for 64-bit Ling Adders

Method Area(nm2) Delay (ns) Power (mW)
MC 3512 1.0644 5.471
ILP 3833 0.9425 2.541
ILP 3636 0.9607 2.353
ILP 3114 1.1278 1.973

TABLE IV

64-BIT LING ADDERS ASIC IMPLEMENTATION

To demonstrate the advantage of the proposed ILP methodology,

we implement the prefix ing adders by our ILP method in Synopsys

Data-path design flow. We wrote a C program to perform the logic

synthesis according to the ILP results. The synthesized netlist with

relative placement is then placed and routed by Physical Compiler

and Astro. According to the necessary physical information including

parasitic and coupling capacitance, the area is reported by Physical

Compiler, the delay is reported by Astro and the power is reported by

Prime Power.

We compare the 64-bit adder obtained by our hierarchical method

with fast carry-look-ahead adders generated by Synopsys Module

Compiler. The library we use is TSMC 90nm standard cell library.

Both the high-radix and Ling adders features are incorporated. The

experimental results are shown in Table IV. There are multiple rows

for the ILP results because different delay constraints are given. We

find that the adder structures generated by ILP can save more than half

of the power consumption compared with that generated by MC, with

similar area and delay values. We believe that with the implemen-

tation of mixed-radix cells, the power consumption could be further

reduced.

VI. CONCLUSIONS

This work proposes an integer linear programming formulation to

find minimum power prefix Ling adders in with different delay con-

straints the entire solution space, in which both flexible design choices

and practical constraints are incorporated. Our formulation is able to

handle different radix and size components. All these considerations

are formulated to an integer program with linear constraints and ob-

jectives, which can be optimally solved by the ILP solver CPLEX.

The experiments show that the optimal structures we find save a lot of

power consumption compared with classical designs. We also build

hierarchical structures to construct high bit-width adders, which over-

come the weakness of unscalable computational time. Our work in

fact offers a good framework to find minimum power adders with

flexible requirements, since the solver can always produce optimal

solutions when different parameters and constraints are plugged in.

Hence, it is the prototype of a useful tool for adder designers and able

to generate good prefix structure candidates for customized adders.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of NSF CCF-

0618163 and California MICRO Program.

REFERENCES

[1] R. Brent and H. Kung. A regular layout for parallel adders. IEEE
Trans. Computers, C-31(3):260–264, March 1982.

[2] H. Dao and V. Oklobdzija. application of logical effort on de-

lay analysis of 64-bit static carry-lookahead adder. In Proc. of
35th Asiloma Conference of Singals, Systems and Computers,
volume 2, pages 1322–1324, 2001.

[3] H. Dao and V. Oklobdzija. application of logical effort technqi-

ues for speed optimization and analysis of representative adders.

In Proc. of 35th Asiloma Conference of Singals, Systems and
Computers, volume 2, pages 1666–1699, 2001.

[4] G. Dimitrakopoulos and D. Nikolos. High-speed parallel-prefix

VLSI Ling adders. IEEE Trans. Computers, 54(2):225–231,
February 2005.

[5] D. Harris. Logical effort of higher valency adders. In Proc. of
Asilomar Conference of Signals, Systems and Computers, pages
1358–1362, November 2004.

[6] D. Harris and I. Sutherland. Logical effort of carry progapate

adders. In IEEE Intl. Conf. on Application-Specific Systems, Ar-
chitectures and Processors, pages 269–279, 2004.

[7] P. Kogge and H. Stone. A parallel algorithm for the efficient

solution of a general class of recurrence relations. IEEE Trans.
Computers, C-22(8):786–793, August 1973.

[8] H. Ling. High-speed binary adder. IBM J. R&D, 25:156–166,
May 1981.

[9] J. Liu, Y. Zhu, H. Zhu, J. Lillis, and C. K. Cheng. Optimum

prefix adders in a comprehensive area, timing and power design

space. In Proc. of ASP-DAC 2007, 2007.

[10] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar. A

4-GHz 130-nm address generation unit with 32-bit sparse-tree

adder core. IEEE Journal of Solid-State Circuits, 38(5), May
2003.

[11] S. Naffziger. A subnanosecond 0.5 μm 64b adder design. In

Proc. of Intl. Solid-state Circuits Conf., pages 362–363, 1996.

[12] J. Sklansky. Conditional-sum addition logic. IRE Trans. Elec-
tronic Computers, EC-9:226–231, June 1960.

[13] S. Vanichayobon, S. Dhall, S. Lakshmivarahan, and J. Anto-

nio. Power-speed trade-off in parallel prefix circuits. In Proc.
of SPIE, volume 4863, pages 109–120, 2002.

[14] H. Zhu, C. K. Cheng, and R. Graham. Constructing zero-

deficiency parallel prefix adder of minimum depth. In Proc. of
ASP-DAC 2005, pages 883–888, 2005.

[15] R. Zimmermann. Non-heuristic optimization and synthesis of

parallel prefix adders. In Proc. of In. Workshop on Logic and
Architecture Synthesis, pages 123–132, 1996.

2A-3

137

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

