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Abstract - This paper describes the multithreaded MiraXT SAT 
Solver which was designed to take advantage of current and 
future shared memory multiprocessor systems. The paper 
highlights design and implementation details that allow the 
multiple threads to run and cooperate efficiently. Results show 
that in single threaded mode, MiraXT compares well to other 
state of the art solvers on Industrial problems. In threaded 
mode, it provides cutting edge performance, as speedup is 
obtained on both SAT and UNSAT instances. 

I. Introduction 

The Boolean Satisfiability (SAT) solvers of today, are 
considerably more advanced than the original Davis-Putnam 
algorithm [25]. Many performance enhancements have been 
more algorithmic, such as Non-Chronological Backtracking 
with Conflict Clause Learning [3,5], and novel Decision 
Strategies (VSIDS [1], BerkMin [2], and VMTF [8]). 
However, many changes, especially from zChaff, improved 
the implementation of these algorithms by considering the 
hardware that was running the solver. For example, zChaff 
introduced watched literal lists [4], that effectively use the 
caches of modern CPUs. Of course, the algorithm as a whole 
was also implemented efficiently, allowing zChaff to get 
more out of each CPU cycle. 

Since Moore's prediction approximately 40 years ago [28], 
chip manufacturers have been doubling the number of
transistors on a chip roughly every two years. Recently, new 
processes have given chip designers an overabundance of free 
transistors. To utilize all these transistors, multicored and 
multithreaded CPUs were introduced. In the x86 world, Intel 
started by adding Hyper-Threading, in which one CPU can 
run two threads simultaneously, sharing the CPU's internal 
resources. Now both AMD and Intel have taken the next step 
with their X2 and Pentium 4 D lines which contain two 
physical CPU's on one die, or in one package. This trend will 
continue in the future, providing CPU's with 4 or more cores. 
Some higher end CPUs such as SUN's UltraSPARC T1 
processor (8 cores, 32 threads), or IBM’s POWER5 
Quad-MCM (4 cores, 8 threads) have already done this. 

Basically, future SAT solvers will be running on shared 
memory multi-CPU systems. Work has been done on 
parallelizing SAT solvers for use on asynchronous distributed 
systems, using some form of message passing. Such 
examples are GridSAT [19], PaSAT [21], PaMIRA [23], and 
others [16,17,18,20,22,24]. Message passing, however, is 
slow and requires a lot of overhead when compared to a well 
designed shared memory system. Recently, work has been 
published on a multithreaded shared memory solver called 
ySat [15]. This paper concluded that these types of solvers 

have a detrimental effect on cache performance, thus 
degrading the overall performance of the entire solver. On the 
contrary, we will show that a well designed multithreaded 
shared memory solver can provide speedup on many 
industrial benchmarks. 

The following section will start with an overview of the 
SAT problem, then describing how SAT solvers works. The 
shared memory multiprocessor system used is described in 
Section III. Next, our solver MiraXT will be discussed, 
highlighting single and multithreaded performance features 
and optimizations. Then experimental results will be shown 
followed by a few closing remarks. 

II. SAT and Parallel SAT 

In many different research fields from Verification to 
Artificial Intelligence, problems can be described as a 
Boolean Satisfiability Problem and formatted in Conjunctive 
Normal Form (CNF). This consists of a conjunction of 
clauses, with each clause consisting of the inclusive 
disjunction of literals. A literal is the occurrence of a variable 
in its positive or negative form. A SAT solvers’s task is to find 
a solution to the problem such that the entire formula 
evaluates to 1 or to prove that no solution exists.

F(x1,..,xn)=( ¬x1+x2)·( ¬x1+¬x2+x3)·( ¬x1+¬x2+¬x3)·…

A single threaded SAT solver starts with all the variables in 
an undefined state. Then, using a heuristic, a decision is made 
assigning a variable to a value (1 or 0). Such a variable is 
called a decision variable. After every decision, a Boolean 
Constraint Propagation (BCP) procedure is run to find 
implications resulting from that decision. Most solvers 
maintain a chronological list of decision variables and the 
implication found by the BCP procedure in a decision stack. 
Each decision and resulting implications are referred to as a 
decision level, with the first decision and its implications on 
level 1. Decision level 0 however, contains implications that 
do not depend on a decision (e.g. implications from so called 
unit clauses). As the BCP procedure runs, it can also find 
conflicts, evoking a conflict analysis procedure to find the 
reason for conflict. This procedure would then try to resolve 
the conflict by backtracking to a previous decision level. It 
would also record a conflict clause to prevent the conflict 
from being repeated. If the conflict analysis procedure finds a 
conflict on decision level 0, the problem is unsatisfiable. 
Otherwise, if the BCP procedure finishes and no conflicts are 
found and all variables are defined, the problem is solved. For 
an in-depth overview of a modern SAT solver, refer to [6]. 
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In a parallel SAT solver, each thread or process operates in 
the same way; however there are a few points that should be 
highlighted. First, conflict clauses can be exchanged between 
parallel running solvers. This exchange of knowledge allows 
all solvers to benefit from what each other has learnt. 
Secondly, for a parallel SAT solver, the problem space must 
be divided. The most obvious way is to use decision variables, 
as both possible values of every decision variable must be 
searched in order to prove unsatisfiability. Normally, the 
chronologically first decision variable is chosen. Fig.1 shows 
how a solver with two threads could operate. Once the search 
space is divided, both solver processes can operate like 
normal single threaded solvers. If one solver finds a solution, 
the search is over. However, if one solver proves its half is 
unsatisfiable, the remaining subproblem from another solver 
can be re-divided in the same manner. This method of 
dividing the decision stack is referred to as the guiding path 
method by PSATO [24]. 

Fig. 1. Boolean SAT problem splitting. 

III.Multiprocessor System and Solver Designs 

A. AMD Opteron System 

This section will cover the AMD Opteron shared memory 
system used in the experiments in this paper, providing a 
quick overview of the hardware so that the reader can better 
understand the following sections, discussing the 
optimizations made to the threaded solver MiraXT. 

Fig. 2. AMD dual processor system [27]. 

In Fig.2, the AMD Uniform Memory Access (UMA) 
multiprocessor system is shown. In this system, each 
processor has its own local memory, and the processors are 
connected to each other with a HyperTransport bus. This bus 
allows processors to access other processor's local memory. 
Even though the memory is separated, the programmer only 
sees one continuous block. However, the farther the memory 
is away from the current processor, the slower it is. The 
programmer can easily allocate memory to insure that each 
thread or process is running in the local memory of its current 
CPU. Cache coherency between the memory and the different 
processor cache's must also be enforced over the 
HyperTransport bus.  

B. High Level Solver Designs 

When designing a parallel SAT solver, there are many 
aspects that make it inherently more complex than a single 
threaded solver. First, all solver threads must be controlled in 
some manner such that a SAT problem can be loaded and 
divided dynamically amongst all the solver threads. This 
control system must also be able to start and then terminate 
the threads. Secondly, conflict analysis with conflict clause 
recording is a powerful part of any SAT solver, and in order to 
take full advantage of this in a parallel solver, some 
mechanism must allow for the exchange of conflict clauses 
between solver threads. Furthermore, the solver must still 
maintain good single threaded performance with these parts 
included, otherwise the speedup achieved through the use of 
multiple processors might be negated. For example, PaSAT 
achieved an excellent speedup of 40 on a benchmark set 
called longmult using 24 processors [18]. However, the single 
threaded solver took thousands of seconds to solve each 
instance in the benchmark set. Good single threaded solvers 
such as MiraXT and SatELite [7] can solve all 8 instances in 
this benchmark set in a few hundred seconds on our AMD 
system, making them faster than PaSAT with 24 processors, 
although a direct comparison cannot be made as PaSAT was 
run on older hardware. Lastly, as a side note, MiraXT also 
achieves super linear speedup on these benchmarks in 
threaded mode (as do most parallel solver we have seen). 

There are many different ways of implementing a parallel 
SAT solver to realize the points mentioned above, each 
having its respective advantages and disadvantages. To 
compare designs, we are going to focus on how different 
solvers implement clause sharing. This is because clause 
sharing can significantly improve performance and generally 
makes up the vast majority of the communication between 
threads. Here, we will discuss the three main ways we have 
seen that allow the solver’s threads to communicate. 

The first and most common way is by using Message 
Passing. A library such as MPICH [13] is normally used. This 
method allows for best scaling, allowing for solver threads to 
be located anywhere as long as they are all connected to some 
sort of network. This setup was used in GridSAT [19], and in 
our previous work [23], with both papers showing that 
speedup can be achieved. However, due to the overhead 
associated with sending messages, and the limited network 

Thread 1 
Thread 2 
Decision 
Implication 

Split 
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bandwidth, only short clauses are sent (e.g. of length 3 or less 
in GridSAT), and they are sent in bundles introducing more 
latency into the clause sharing system. 

The second method uses a shared memory “Clause Store” 
to share clauses. In this system, each thread occasionally 
sends clauses to the clause store while also checking to see if 
other new clauses have been added by other threads. PaSAT 
[21] and ySat [15] both use this design. One difference 
between the two, is that ySat shared physical copies of each 
clause, while in PaSAT each thread made its own physical 
copy of each clause. While the clause store is not as scalable 
as message passing, the use of shared memory allows longer 
clauses to be shared (e.g. PaSAT achieved the best speedup 
sharing clauses with 5 to 10 literals). This system also reduces 
the latency within the clause sharing system. Note, PaSAT 
later combined Message Passing and the “Clause Store” in 
[18] to allow better system scaling. 

The third way is the shared memory clause database design 
that MiraXT uses. Here, the database contains only one 
physical copy of each clause that threads share. All conflict 
clauses are added to the database, and each thread selects 
which clauses it wants to use. This is the reverse of the clause 
store, in which each thread chooses which clauses it wants to 
offer or send to the other threads. MiraXT’s design allows 
each thread to consider its current decision stack and status 
when selecting which conflict clauses it wishes to use. The 
thread can now decide to add very long clauses that will force 
implications or cause conflicts, while ignoring short clauses 
that are already solved by the thread’s current variable 
assignment. This design takes full advantage of the low 
latency and bandwidth a shared memory database provides. 
PaSAT did something similar in [18] with mobile agents that 
contain thread specific information. This information 
however, was incomplete and not always up-to-date. 

IV.The MiraXT Solver 

MiraXT is a zChaff class solver based on MIRA [10,11] 
but significantly enhanced and modified to allow it to run 
with multiple threads. MiraXT contains the original MIRA’s 
Early Conflict Dection BCP (ECDB) and Implication Queue 
Sorting (IQS). In MiraXT, a modified VSIDS algorithm is 
used, in which all scores over 512 are concatenated so that a 
bucket sort can be used to sort the list in O(n) time. This 
allows us to sort the list more frequently keeping it up-to-date, 
and makes the decision heuristic less greedy. Lastly, it was 
implemented in C++ using POSIX threads. 

A. Shared Clause Database 

As mentioned above, MiraXT has one master clause 
database that stores pointers to the original problem clauses, 
plus pointers to all the conflict clauses generated by each 
thread. Each clause is only present once in memory, and is 
shared between threads. In order to insure coherency within 
the database, a lock must be acquired before a thread inserts a 
pointer to its newly generated conflict clause. As soon as the 
pointer is inserted and the database clause counter is 

incremented (two simple operations) the lock is released. All 
clauses, once generated, are read-only, so that sharing can be 
done without locks. These steps are important as we want to 
reduce the amount of locks needed by the solver, and remove 
any lock contention and wait times that might result from the 
remaining locks. Also, each thread has one lock associated 
with it that is used when the thread requests a new clause 
from the master clause database. This lock is used to 
increment its current database position pointer. This pointer 
keeps track of which clauses the thread has already looked at, 
and those that can still be added. Fig.3 shows a top level 
diagram with threads inserting pointers to clauses into the 
master clause database. In Fig. 3, Cx represents a pointer to a 
conflict clause. 

Fig. 3. Shared clause database structure. 

Clause deletion is also an important issue. In MiraXT, each 
thread deletes clauses using an algorithm similar to Berkmin 
[2] in which older inactive clauses are easier to delete. To 
facilitate clause deletion efficiently on a multiprocessor 
system, each thread has one Boolean variable associated with 
it for every clause. Each clause consists of an array of literals 
with the first few spots in the array being reserved. These 
reserved spots specify the clause length, and its unique master 
database reference number. When a thread deletes its 
references to a clause, it must set its Boolean variable for that 
clause using the clause’s reference number. Because the 
Boolean variable for the clause is specific for that thread, no 
global lock is required when deleting clauses. 

Once a thread has deleted all the clauses it wants to delete, 
it will ask the master database to see if a master delete should 
be run, as the threads only delete their references to clauses, 
and not the actual clauses themselves. In MiraXT, a simple 
test based on how many threads there are, and how many 
deletion processes have been run, is used to decide if a master 
delete is required. If the master database needs cleaning, the 
thread grabs a lock and proceeds to delete clauses that are no 
longer used by any thread, relinquishing the lock when it is 
finished. This lock is used to insure that no two threads run a 
master clause deletion procedure at the same time. When the 
master clauses are deleted, spaces are left in the array the 
master database uses to keep track of all the clauses. When 
there are too many open spaces, the array must be compacted 
to save memory. During this compaction the master clause 
database is shutdown so that no clauses can be added or 
retrieved. However, this procedure is done as a quick array 
copy, and is only very rarely called. 

Thread 
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Using the fine grained lock system described above,
practically all lock contention issues were removed, and in 
testing we saw no signs of even light lock contention. This 
seemed to be one of the problems the solver in [15] suffered, 
as its authors report that with 4 threads, an average of 10% of 
the time was spent waiting for locks. This number should be 
only fractions of a percent, as is indeed the case for MiraXT 
on most problems. This means that in MiraXT, the majority of 
the time (over 99% on average) is spent actually solving the 
problem. This is also good indicator of scalability wrt. future 
CPU’s that contain multiple cores. 

B. Important Supporting Data Structures 

In most solvers, to keep track of the watched literals, the 
original clause is modified in some way (e.g. by using the first 
two literals in the clause). This is not possible in MiraXT, 
because clauses are read-only. So, each thread creates a 
second data structure called the Watched Literal Reference 
List (WLRL). For each clause, this structure contains two 
watched literals, and a third literal called a cache variable. 
The cache variable (CV), is assigned by using the previous 
watched literal the BCP procedure replaced when it examined 
the clause. The WRL basically allows each thread in MiraXT 
to have a condensed reference or copy of every clause. This is 
done because on the AMD system, when a thread creates a 
new conflict clause, that clause is located in that CPU's local 
memory. If other threads want to access it, they must copy it 
from that thread's local memory into their cache. Reading 
clauses across the HyperTransport bus can slow the solver 
down. To combat this problem, the WLRL lists are stored in 
each threads local memory. In testing on a selection of BMC 
problems, 84% of clauses with 3 literals or more can be 
directly evaluated with only the WLRL. This means the 
original clauses are not needed 84% of the time. Also, on 
many problems, clauses with 3 literals or less are fairly 
common and the entire clause can be stored here. In any case, 
this allows MiraXT to better utilize each CPUs cache and 
local memory. Lastly, this is similar to the work in [10,11,12], 
however, in these papers, the clauses were directly used. 

C. Preprocessing 

In this paper, the SatELite solver [7] was used to 
preprocess all benchmarks. Preprocessors like SatELite or 
NiVER [26], can greatly reduce the number of variables and 
clauses in the problem. In addition to this, MiraXT runs a 
Boolean unit propagation look ahead procedure on all free 
variables before starting the actual solver. This procedure can 
eliminate variables by observing that some variables can 
force the same implications, irrelevant of whether the 
variable is set to 1 or 0. This is discussed in detail in [14], and 
used in SAT Solvers like Oepir [9]. This technique is also 
used in MiraXT during the SAT solver phase when each 
thread receives a new subproblem, or when the solver has 
assigned a large number of variables to decision level 0. In 
these situations, the procedure will only look at variables 
which could be directly affected by the new variable 

assignments such as free variables that are in unsolved 
clauses which contain decision level 0 variables.  

These preprocessor techniques eliminate many bad 
splitting variables (i.e. variables that have no real effect when 
dividing the problem space, for example, variables that only 
appear in clauses that are already solved). These variables, if 
used to divide the problem, will not force new implications, 
solve new clauses, cause conflicts, or really change the state 
of the solver in a meaningful way, and in essence, solver 
threads will end up redundantly searching the same part of the 
problem space. Also, preprocessing normally improves the 
solver’s single threaded performance. 

D. Multithreaded Solver Control 

MiraXT contains no controlling master process unlike 
most other parallel solvers. Instead a master control object 
(MCO) allows the threads to communicate with each other. 
All communication is done in a passive way, such that the 
MCO will not interfere with the threads. It will only store 
messages and suspend threads which ask for it to do so. 
Solver threads poll the MCO occasionally to see if there are 
any messages, or idle threads waiting for a new subproblem. 

In principle, MiraXT’s threads and the MCO function as 
follows. Thread 0 starts the solving process on the decision 
stack given to it after the preprocessing is complete. All other 
threads start by requesting a subproblem from the MCO and 
are now waiting to be signaled. Idle threads are not wasting 
CPU cycles polling, they are put to sleep and awakened using 
the POSIX cond_wait / cond_signal commands. Periodically, 
running threads ask the MCO for any new global events (e.g. 
problem solved, waiting threads, or time limit). This is done 
without a lock, and with a simple Boolean variable. If 
something has happened, a more complicated procedure with 
a lock will be run. In our example, when thread 0 checks the 
MCO, it will realize that other threads are waiting for a 
subproblem. It will then ask the MCO for the decision stack 
queue lock. This queue contains decision stacks that need to 
be searched. Once the thread has acquired this lock, it will 
split its decision stack at decision level 1, and add a decision 
stack to the queue. It will then signal a sleeping thread, 
release the decision queue lock, and then continue solving its 
part of the problem. If there are more threads waiting, they 
will be randomly served by running threads. No heuristic is 
used to decide which thread should split its decision stack. If 
a thread proves its subproblem is unsatisfiable, it will request 
a new subproblem. If all the threads are waiting for a new 
decision stack, the problem is unsatisfiable. 

E. Multithreaded Conflict-Driven Learning 

The conflict analysis procedure in MiraXT is based on the 
first Unique Implication Point [3]. However, a separate clause 
addition procedure was added. In MiraXT, the conflict 
analysis procedure will add a clause pointer to the master 
clause database. Then the clause addition procedure will be 
run, asking the master clause database for all new clauses; 
this includes clauses generated by other threads and its newly 
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generated conflict clause. It will then process these clauses, 
deciding which clauses should be added. Currently, all 
conflict clauses, undefined clauses, or really short clauses (10 
literals or less), are added. The clause addition procedure will 
assign watched literals, search for implications, and perform 
conflict driven backtracking as needed. Both the conflict 
analysis procedure and the clause addition procedure can 
signal that the current subproblem is unsatisfiable. Note, 
sometimes the thread might decide not to add the conflict 
clause it just generated because clauses generated by other 
threads were better, allowing the solver to backtrack further. 

The shared memory database MiraXT uses, allows each
thread to easily look at all conflict clauses in an efficient 
manner. Unlike other parallel solvers, MiraXT can be more 
generous when selecting which clauses to share as there is no 
real performance penalty associated with sharing. In other 
parallel solvers, threads are limited to databases that contain 
only their conflict clauses. So, in other solvers, each thread 
(or master thread) decides which clauses to distribute, using 
some simple criteria such as clause length. However, these 
strategies have a serious drawback in that each thread's 
current state is not taken into account when sharing clauses. 
This means useful clauses might not be sent (e.g. because the 
master process thinks they are too long), and/or useless 
clauses are sent (e.g. because the threads current decision 
stack solves the clause). Also, other solvers share clauses by 
sending them in bundles as messages, or occasionally 
checking a clause store. Both these designs introduce latency 
in the knowledge sharing scheme meaning that sometimes 
clauses are not immediately available where they are needed. 
In our scheme, these problems are avoided. The shared 
memory database is what differentiates MiraXT from all 
other parallel SAT solvers that we know of. 

V.Results and Performance 

The results on the IBM BMC 2004 [30] and Industrial
2005 [29] benchmarks are shown in Table 1 and Fig.4. This 
mix of over 1200 benchmarks contains both SAT and UNSAT 
instances. The Industrial 2005 benchmarks contain all the 
grieu05, maris05, narain05, and velev05 sets. The AMD 
Opteron machine used in this benchmarking section was 
running a Linux SMP enabled kernel (kernel 2.6.*), contained 
two Opteron 252 (@2.6 GHz) processors, and had 4 GB of 
main memory (2 GB of local memory per CPU). The 
benchmarks were all preprocessed with SatELite first, and 
then each solver was given 1800 seconds per benchmark. To 
remove the preprocessing time SatELite required and insure a 
fair comparison, SatELite was restarted on the preprocessed 
benchmark with a time limit of 1800 seconds. zChaff version 
2004.11.15 and SatELite version 1.0 were used. In Table 1, T1

is the total time used by the solver in thousands of seconds. T2

is T1 minus the time for all the benchmarks that no solver 
solved, and #S is the number of benchmarks solved. Mira1T 
and ySat1T are running with 1 thread. Mira2T and ySat2T are 
running with two threads. The ‘a’ and ‘b’ times for MiraXT 
are different runs of the same solver, included to show the 
variation in multiprocessor solving times. 

TABLE I 
Comparison of Solvers 

IBM BMC 2004 Industrial 2005 Solver 
T1 T2 #S T1 T2 #S 

Mira2Ta 279.4 81.4 923 67.0 18.4 183 
Mira2Tb 284.5 86.5 923 69.3 20.7 182 
Mira1T 318.2 120.2 900 75.0 26.4 178 
SatELite 314.9 116.9 901 77.1 28.5 176 
zChaff 525.4 327.4 784 84.5 35.9 175 
ySat2T 707.6 509.6 709 148.0 99.4 136 
ySat1T 813.0 615.0 649 148.7 100.1 135 

Fig. 4. BMC/Industrial problems solved vs time required. 

From Table 1, Mira1T and SatELite are significantly faster 
than the other solvers on the IBM benchmarks, and all solvers 
excluding ySat are competitive on the industrial benchmarks. 
However, Mira2T is significantly faster than the other solvers. 
ySat is considerably slower then the other solvers on both 
benchmarks, even when using two processors. Using time T2, 
MiraXT had an average speedup of 1.43 on the IBM, and 1.36 
on the industrial Benchmarks with 2 threads. Focusing only 
on problems solved by MiraXT (excluding the other solvers 
results), the speedup is even more pronounced at 1.45 for 
IBM, and 1.44 for industrial. Speedup was also attained for 
both SAT and UNSAT instances. On the IBM benchmarks, 
average speedups of 1.55 and 1.41 were attained for the SAT 
and UNSAT instances respectively. Remember, these are 
general benchmarks and not just a select few like the 
longmult example discussed in Section III.  
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Next, as can be seen in Fig.4, the curves for Mira1T and 
SatELite are similar, and zChaff’s and ySat’s stumbling 
performance on the IBM benchmarks is quite clear. MiraXT’s 
performance advantage when running with two threads is 
easy to see. Also, it’s interesting that while ySat2T achieved 
speedup over the single threaded version on the BMC
benchmarks, no speedup was attended on the industrial 
benchmarks, unlike MiraXT. 

VI.Future Perspectives 

Preliminary work has also been done on a dual CPU Intel 
Pentium 4 XEON Machine. It uses a shared memory bus
architecture in which both CPU's must share one memory bus. 
On this system, MiraXT also scales well from one to two 
threads, providing a performance increase that is just slightly 
less then the AMD system. This is most likely due to 
increased memory bus contention. The Intel system however, 
should be more indicative of dual core CPU performance as 
dual core CPU's will also share one memory bus. With this in 
mind, we believe that dual core CPU's should scale almost as 
well as the AMD system presented here. As for further 
scaling beyond 2 processors, we foresee no issues. Based on 
experimental results with 2 processors, MiraXT did not suffer 
from any lock contention issues, and the amount of work 
done by the solver (e.g. the number of clauses examined per 
second) scales almost perfectly. Lastly, roadmaps from both 
Intel and AMD seem to show future CPU's with significantly 
larger caches, and faster memory buses. Both should improve 
MiraXT’s multithreaded performance. 

VII. Conclusion 

As was shown in this paper, a modern SAT solver can be 
parallelized using threads to achieve speedup. Significant 
speedup of 44-45% on both SAT and UNSAT benchmarks 
was shown when two processors were used. Implementation 
details that allow the MiraXT solver threads to efficiently 
work together were discussed, including features that 
increase single threaded performance. Threaded solvers will 
likely be the way of the future as Intel, AMD, IBM, and SUN, 
have all introduced CPUs that contain multiple cores. 
Utilizing the extra power of these CPUs is and will continue 
to be a major area of interest in computer science. SAT 
solvers will have to adapt and become threaded in order to 
compete with other forms of formal verification. This paper 
and the ideas presented should provide a good starting point 
for future research in this area. 

References 

[1] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. 
Malik, “Chaff: Engineering an Efficient SAT Solver”, Proceedings 
of the 38th DAC, July 2001. 
[2] E. Goldberg and Y. Novikov, “BerkMin: a Fast and Robust 
Sat-Solver”, DATE, 2002. 
[3] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, 
“Efficient Conflict Driven Learning in a Boolean Satisfiability 
Solver”, ICCAD, 2001. 

[4] L. Zhang, and S. Malik, “Cache Performance of SAT Solvers: A 
Case Study for Efficient Implementation of Algorithms”, SAT, 2003. 
[5] J. P. Marques-Silva,K. A. Sakallah, “GRASP: A Search 
Algorithm for Propositional Satisfiability”, IEEE Transactions on 
Computers, Vol. 48, pp. 506-521, 1999. 
[6] N. Eén, and N. Sörensson, “An Extensible SAT-Solver”, SAT, 
2003. 
[7] N. Eén, A. Biere, “Effective Preprocessing in SAT through 
Variable and Clause Elimination”, SAT, 2005. 
[8] R. Lawrence, “Efficient Algorithms for Clause-Learning SAT 
Solvers”, Simon Fraser University Master's Thesis, 2004. 
[9] J. Alfredsson, “The SAT Solver Oepir”, SAT Competition: Solver 
Descriptions, 2004. 
[10] M. Lewis, T. Schubert, and B. Becker, “Early Conflict 
Detection Based BCP for SAT Solving”, SAT, 2004. 
[11] M. Lewis, T. Schubert, and B. Becker, “Speedup Techniques 
Utilized in Modern SAT Solvers - An Analysis in the MIRA 
Environment”, SAT, 2005. 
[12] I. Lynce, J. and Marques-Silva, “Efficient Data Structures for 
Fast SAT Solvers”, Technical Report, 2001. 
[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A 
high-performance, portable implementation of the MPI message 
passing interface standard”, Parallel Computing, 1996. 
[14] D. Le Berre, “Exploiting the Real Power of Unit Propagation 
Lookahead”, SAT, 2001. 
[15] Y. Feldman, N. Dershowitz, and Z. Hanna, “Parallel 
Multithreaded Satisfiability Solver: Design and Implementation”, 
PDMC, 2004. 
[16] M. Böhm, and E. Speckenmeyer, “A Fast Parallel SAT-Solver - 
Efficient Workload Balancing”, Annals of Mathematics and 
Artificial Intelligence, 1996. 
[17] W. Blochinger, C. Sinz, W. Küchlin, “A Universal Parallel SAT 
Checking Kernel”, PDPTA, 2003. 
[18] W. Blochinger, C. Sinz, and W. Küchlin, “Parallel Propositional 
Satisfiability Checking with Distributed Dynamic Learning”, 
Parallel Computing, 2003. 
[19] W. Chrabakh, and R. Wolski, “GridSAT: A Chaff-based 
Distributed SAT Solver for the Grid”, Proceedings of the ACM/IEEE 
Conference on Supercomputing, 2003. 
[20] B. Jurkowiak, Chu Min Li, and G. Utard, “Parallelizing Satz 
Using Dynamic Workload Balancing”, SAT, 2001. 
[21] C. Sinz, W. Blochinger, W. Küchlin, “PaSAT - Parallel 
SAT-Checking with Lemma Exchange: Implementation and 
Applications”, SAT, 2001. 
[22] W. Blochinger, C. Sinz, and W. Küchlin, “Distributed Parallel 
SAT Checking with Dynamic Learning using DOTS”, PDCS, 2001. 
[23] T. Schubert, M. Lewis, B. Becker, “PaMira - a Parallel SAT 
Solver with Knowledge Sharing”, International Workshop on 
Microprocessor Test and Verification, 2005. 
[24] H. Zhang, M. Bonacina,  and J. Hsiang, “PSATO: A 
Distributed Propositional Prover and its Application to Quasigroup 
Problems”, Journal of Symbolic Computation, 1996. 
[25] M. Davis, G. Logemann, and D. Loveland, “A Machine 
Program for Theorem-Proving”, Communications of the ACM, vol. 5, 
pp 394-397, 1962. 
[26] S. Subbarayan, D. Pradhan, “NiVER: Non Increasing Variable 
Elimination Resolution for Preprocessing SAT instances.”, SAT, 
2004. 
[27] http://www.amd.com/us-en/assets/content_type/Downloadable 
Assets/ PID30291H_2P_server_competitive_comp.pdf 
[28] G. Moore, “Cramming More Components Onto Integrated 
Circuits”, Electronics, 1965. 
[29] SAT2005 benchmarks, SATLIB: http://www.satlib.org 
[30] IBM BMC Benchmarks: http://www.haifa.il.ibm.com  
/projects/verification/RB_Homepage/bmcbenchmarks.html 

9C-1

931



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


