
Micro-architecture Pipelining Optimization with Throughput-Aware Floorplanning
Yuchun Ma*  Zhuoyuan Li*  Jason Cong   Xianlong Hong   Glenn Reinman   Sheqin Dong*  Qiang Zhou

*Department of Computer Science & Technology, Tsinghua University, Beiijng 100084, P.R.China 
Email: myc@mail.tsinghua.edu.cn  hxl-dcs@tsinghua.edu.cn

**Department of Computer Science & Technology, UCLA, USA 

Abstract -  For modern processor designs in nanometer 
technologies, both block and interconnect pipelining are needed 
to achieve multi-gigahertz clock frequency, but previous 
approaches consider block pipelining and interconnect 
pipelining separately.  For example, all recent works on wire 
pipelining assume pre-pipelined components and consider only 
inserting pipeline stages on point-to-point wire or bus 
connections. To the best of our knowledge, this paper is the first 
that considers block pipelining and interconnect pipelining 
simultaneously. We optimize multiple critical paths or loops in 
the micro-architecture and insert the pipelines stages optimally 
in the blocks and wires of these loops to meet the clock frequency 
requirement. We propose two approaches to this problem. The 
first approach is based on mixed integer linear programming 
(MILP) which is theoretically guaranteed to produce the optimal 
solution, and the second one is an efficient graph-based 
algorithm that produces near-optimal solutions. Experimental 
results show that simultaneous block and interconnect 
pipelining leads to more than 20% improvement over 
wire-pipeling alone on the overall processor performance. 
Moreover, the graph-based approach gives solutions very close 
to the MILP results ( 2% more than MILP results on average) 
but in a much shorter runtime. 

1.  Introduction 
Industry trends indicate that the operating frequencies of 

leading-edge microprocessors have been doubling with every 
process generation [1], having broken the gigahertz barrier several 
years ago. The fraction of the interconnect delay in the shrinking 
system clock period has been increasing across process generations 
and become dominant in the deep submicron (DSM) regime. As 
global wire delays ( e.g. register by pass wires) and RAM/CAM 
delays scale much slower than transistor delays, deeper superscalar 
pipelines experience increased latencies and a significant 
degradation in instruction throughput. 

To ensure that the system operates at the right frequency, the 
delay of the global wire has to be distributed over several clock 
cycles by inserting flip-flops [2][3]. For instance, even with the 
optimal buffer insertion and wire-sizing, five clock cycles are still 
needed to go from corner-to-corner for the predicted die of 28.3*28.3 
mm2 in the 70-nm technology generation, assuming a 5.63-GHz 
clock frequency [12]. As a result of the projected wire delays, overall 
system performance could be reduced by a factor of up to 2 to 3, due 
to wire delays. Therefore, physical design should focus on keeping 
the throughput-critical paths as short as possible. The 
throughput-aware strategies [5][6], which identify and optimize 
throughput-critical paths using floorplanning algorithm to provide 
feedback to architects at very early design stages, are what is 
needed by the microarchitecture design.  

There are some recent attempts on throughput-aware design at 
the floorplanning level. The MEVA system [24] was the first 
automated microarchitecture exploration system combined with 
physical planning that considers both IPC and clock frequency and 
optimizes the overall BIPS. It was enhanced in [6] with a 
sensitivity-based IPC model. In [7], a throughput lookup table 
(LUT), indexed by the set of bus latencies, is constructed using 
cycle-accurate simulations. For a given layout (and the 
                                                       
 * This work is supported by the NSFC 90407005 and 60606007, NSF 
CCR-0096383 and Hi-Tech Research & Development (863) Program of 
China 2004AA1Z1050

corresponding bus latencies), the throughput is evaluated from the 
LUT using some distance metrics. The approach in [10] assigns 
weights to each of the system buses which are proportional to the 
amount of traffic seen on the buses, operating under the notion that 
the more often a bus is accessed, the more critical it is. The objective 
of the floorplanner then is to minimize a weighted sum of bus 
latencies. The authors in [11] propose an approach based on the 
methodology of a statistical design of experiments which identify the 
performance critical buses in a micro-architecture. The performance 
impact of each bus is quantified by assigning weights and the 
approach is applied at the floorplanning level. However, all these 
works [7,10,11] focus on wire-pipelining under the assumption that 
the blocks are separately designed subject to a clock frequency, and 
the wire pipelining is then carried out on the global wires of the 
circuits. As a result, they consider only wire pipelining on the buses 
or two-pin connections between blocks instead of the entire critical 
paths across multiple architecture components. Therefore, their 
pipelining designs are often sub-optimal due to the possible utilized 
slacks in block pipeline designs, resulting extra latencies along the 
paths which degrade the performance of the system.

As a popular technique for performance optimization of 
sequential circuits, retiming [9][22][23] can optimize the clock 
period by moving the flip-flops within a circuit while keeping its 
functionality, but the objective of retiming is to minimize the clock 
period while the latency numbers along the loops are remained 
unchanged. The pipeline designs inside blocks are still assumed 
fixed during the retiming process. In the retiming process, though 
the clock period is minimized with the given latency number, the 
throughput of the system is sub-optimal because of the limitation of 
the fixed pipeline design inside blocks. 

Recent works [6][8] use throughput sensitivity models for selected 
critical paths, and these models guide the floorplanner to optimize 
the system throughput. Though it uses a path-based performance 
model, they assume all the paths can be optimized and pipelined 
independently, which is not true in general, as multiple paths may 
share a common block and the pipelining design of this block has to 
be consistent in all these paths.  Hence, the performance sensitivity 
model used in [6][8] is not accurate. Since the throughput-aware 
floorplaner is intended for providing feedback to architects during 
very early design stages (even before the pipeline stages and HDL 
are generated), it is important to use accurate and realistic 
performance models. Therefore, it is important to consider both 
block and wire pipelining simultaneously. Fig.1 shows a simple 
example with a loop (A-B-A) which demonstrates the difference 
between wire pipelining and path pipelining. Suppose that the clock 
period is  and the two components are identical, each with the delay 
of 1.4 . If the components are pipelined independently without the 
knowledge of wire delay, it may end up with a pipeline solution 
where the maximum delay from the input pin to any flip-flop inside 

A

B

A

B

0.2 0.21

0.2 1 0.2

0.4 
0.3 

0.4
0.3

1.4

1 4

0.7 0.7

0.2 1 0.2

0.7
0.4 

0.3 
0.110.3 

(a) pipeline with pre-designed blocks (b) path-based pipeline
Fig.1 The wire pipelining and the path-based pipelining

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9B-5

920



the blocks (Tsu) and the maximum delay from any flip-flop inside the 
block to the output pin((Tco) are equally divided (Tsu = Tco= 0.2 ).
Since blocks are previously pipelined, there is less flexibility for us 
to pipeline the two paths. Now if it turns out that the delays for all 
wire segments to be 0.7 , the latency for this loop will be 6
(Fig.1(a)). However if we can perform pipeline design for blocks and 
wires together along the loop, the blocks can be pipelined with the 
consideration of wire delay. A feasible pipeline design can reduce the 
loop latency to 5 cycles as shown in Fig.1(b). Hence, the latency 
number can be optimized with the path-based pipeline design 
compared to the wire pipelining since the latency number is really 
sensitive to the distribution of the flip-flops.  

In this paper, we propose a novel optimization methodology of 
architecture pipelining with physical design. Unlike previous works, 
we provide the architects the accurate pipeline design for both blocks 
and wires. To the best of our knowledge, this paper is the first that 
considers block pipelining and interconnect pipelining 
simultaneously. Our approach optimizes multiple critical paths or 
loops in microarchitecture by inserting and positioning the pipeline 
stages optimally in blocks and wires of the loops to meet the clock 
frequency requirement. We propose two approaches to this problem. 

The first approach formulates the problem as a Mixed Integer 
Linear Programming (MILP) problem. Given a floorplanning design 
of a micro-architecture design, we can determine the distribution of 
flip-flops for both blocks and wires by solving the MILP problem. 
Though this approach can theoretically give the optimal solution for 
pipeline design, it is too time consuming to be embedded in the 
process of floorplanning. The second one is an efficient graph-based 
dynamic scanning heuristic that produces near-optimal solutions. It 
can be integrated with the throughput-aware floorplanner which 
feeds the floorplan engine with the actual latency information. Our 
approach enables the automated design for initial architecture 
design with consideration of both the architectural side and the 
physical design. Experimental results show that simultaneous block 
and interconnect pipelining leads to more than 20% improvement 
over wire-pipelining on performance. Moreover, the dynamic 
scanning heuristic gives solutions very close to MILP results (only 
2% more than MILP results on average) but in a much shorter time.  

The remainder of this paper is organized as follows: Section 2 
gives a brief overview of the superscalar processor and the problem 
description of the path-based pipelining; in Section 3, we first 
formulate the path-based pipelining into a MILP problem and then 
present a near-optimal approach which can pipeline all the critical 
paths by dynamically traversing the path graph.  Section 4 gives 
the framework of the throughput-driven floorplanner which 
integrates the pipelining design. The experimental results with an 
Alpha 21264 processor design are shown in Section 5. We conclude 
the paper and discuss the future research directions in Section 6.

2.  Problem Formulation
Superscalar processing is the ability of a microprocessor to 

initiate multiple instructions into multiple pipelines so that the 
computations of many instructions can be done in parallel if they 
are not dependent on each other. Fig.2 shows the important 
elements of a typical high-performance superscalar processor. Each 
of these blocks spans one or more pipeline stages, and instructions 
typically flow through these stages in more or less the order in which 
they have been listed. Since in micro-architecture design, there are 
many different sub-systems which have common components to 
each other - integer units, floating point units, main memory 
interface, and so on; extra delay in any of these sub-systems will 
have different effects on system performance. Usually the designer 
will have preferences, based on system performance. Therefore the 
path-based pipelining is to plan the latency number along each path 
by inserting flip-flop inside blocks or along the wires while the delay 
constraints are satisfied. The objective is to optimize the 
performance of the whole system. 

B ran ch  
p red ic tion

R eord er 
b u ffer

In stru c tion  
cach e 

In t issu e  
q u eu e 

In t reg ister 
file  

In t func tion  
units  

Fp  issu e 
q u eu e 

Fp  reg ister 
file  

Fp  func tion 
units  

Load /store  
q u eu e 

D a ta  
cach e 

D ecod e 
ren am e

Fig. 2  Elements of a modern out-of-order, superscalar processor. 

Since there are complex interactions between loops in superscalar 
processors, unlike the previous wire pipelining approaches which 
inserts flip-flops on pin-to-pin wire segments or buses, the 
path-based pipelining design should optimize the distribution of 
flip-flops along multiple paths. We define path-based pipelining as 
the Simultaneous Block and Interconnect Pipelining (SBIP) Problem. 
In the SBIP problem, we may insert flip-flops not only on the wires 
between blocks, but also inside blocks. Therefore we treat blocks and 
wires equally as the components with corresponding delays. To 
formulate the SBIP problem clearly, we represent the 
micro-architecture design by a path graph G(V,E), where each 
directed edge ei represents a wire or a block, de is the delay for this 
wire or block and each node v is the joint between a block and a wire. 
Each critical path in micro-architecture corresponds to a path 
between two nodes in graph G. With the directed graph G, the SBIP 
problem can be transformed into a problem of labeling the edge with 
the number of flip-flops on each edge. Let nei be the number of 
flip-flops of edge ei. A solution can be viewed as a labeling of the 
edges n: E Z, where Z is the set of non-negative integers. We 
assume the inputs and outputs of the design are registers which can 
be treated as flip-flops. To meet the target clock period , the delay 
between any two flip-flops along the same path is less than clock 
period . The performance of the architecture can be evaluated by 
the weighted sum of nei along the paths Therefore the objective is to 
find a feasible solution with the optimal performance. Fig.3 gives an 
example with three critical loops (A-B-D-A, B-C-B, A-E-A). To 
distinguish the block delays with the wire delays, we use solid lines 
to represent blocks and different dashed lines for wires along 
different loops. In graph G, there may be multiple paths passing the 
same edge, therefore it is not a trivial problem to optimize the 
performance by minimizing the weighted sum of latencies along the 
critical paths. To solve the SBIP problem, it depends on not only the 
delay along paths, but also the topology of the path graph.  

 Fig.3  The path graph

3.  Simultaneous Block and Interconnect Pipelining 
Based on the SBIP formulation, we propose two approaches to 

handle path-based pipelining. We first formulate the problem into a 
MILP problem and a dynamic scanning heuristic is proposed. 
3.1 Optimal pipeline design problem 

For each node, we define a term a(v, Pi) that represents the 
maximum arrival time at node v along path Pi, which is the longest 
delay from a flip-flop or source node to v along Pi (as shown in 
Fig.4). With the given clock period , the set of paths P with the 
weight wpi for each path Pi, we can then formulate the problem as 

A B

D

C

A

E

A’ 
E

E’

B

B’

C

C’

D

D’

9B-5

921



the following MILP. 

Obj.   Min )(
PP Pe

eiPi
i ii

nw

s.t.      a(v,Pi) v V, Pi P                    (1) 
a(v,Pi)  0 v V, Pi P                    (2) 

nei 0 ei E                          (3) 
a(v,Pi) a(u,Pi) + dei – * nei ei E and ei is a      

connection from node u to node v along Pi.        (4) 
The MILP formulation for path-based pipelining is a traditional 

mixed integer linear programming. Suppose the length of path Pi is 
|Pi|, then there are |Pi| real variables a(v,Pi), |E| integer variables 
nei, and 2 |Pi| + 2|V| constraints. If the above set of constraints is 
solvable, the values of a(v,Pi) for all v V and nei for all ei E are 
known. We can then find the exact position of each flip-flop one by 
one as follows. For each edge ei from u to v, if there are flip-flops on 
this edge, the first flip-flop on this edge will be placed at a distance of 
delay Min(  - a(u,Pi)) for all paths Pi passing through edge ei. Other 
flip-flops can be placed as far from each other as possible, until 
reaching a previous flip-flop or the end of the path. Though MILP 
can be solved effectively, it is still not efficient enough to be 
embedded in floorplanning optimization iterations.

v

a (v,P i )  =  d e la y

F ig .4  th e  m e a n in g  o f  a (v )

3.2 Graph-based heuristic algorithm 
For the paths which compose a connected graph, we want to 

traverse the graph to decide the optimal insertion of flip-flops such 
that the weighted sum of cycle numbers of paths is minimized. 
3.2.1 Slacks along paths 

We find that for a single loop, it is easy to get the optimal insertion 
of flip-flops by scanning the path from the beginning and then back. 
The extra cycles are generated when the slacks distributed between 
flip-flops are larger than the total slack along the path. For each path 
P, if we ideally insert flip-flops, there will be some slacks distributed 
along the path and we define the total slack is Slack(P). Suppose that 
we ideally insert k flip-flops {f1, f2,…fk} along the path and the delay 
between fi and fi+1 is di (1 i k-1). If di is less than , then there is 
slack(Slacki) between fi and fi+1 such that Slacki = -di. Since we 
ideally inert flip-flops along the paths, there are no extra cycles 

generated and Slack(P) = 
1

1

k

i
iSlack .

We pick one flip-flop fi and increase slack between fi and fi+1 by 
decreasing the delay di,. If Slacki > Slack(P) then one extra cycle is 
needed for the rest of the path to meet the clock period. As shown in 
Fig.5, the total delay for this path is 1.6  so that Slack(P) = 0.4 .
We assume there are flip-flops at the beginning and at the end of the 
path. Ideally we need at least 1 flip-flop in the middle of the path. 
Total, we have 3 flip-flops {f1,f2,f3}. Suppose we divide the path by 
1.0:0.6. Slack1=0 and Slack2 = 0.4 . We move f2 towards f1 and 
decrease d1, Slacki increases. If Slack1 0.4 , there is no extra cycle 
generated, but if we move f2 further (Slacki >0.4 ), then the delay 
between f2 to f3 exceeds the clock period. One extra cycle is 
necessary to meet the clock period and the total slack along P is 
changed. Therefore, we can optimize the pipeline design by 
controlling the extra delay slacks when inserting flip-flop along 
paths. Before we analyze the complicated graph with loops, we take 
wires in a combinational circuit to demonstrate the dynamic 
scanning heuristic. Then we analyze the path-based pipelining by 
constructing a directed acyclic graph (DAG) G’(V’,E’) based on the 
path information.  
3.2.2 Dynamic scanning heuristic for combinational circuits 

For a combinational circuit, there is no loop. Correspondingly, 
there is no cycle in the graph. A pair of source node s and target 

 1.6
 1.0  0.6

 0.6  1.0

 0.5
 1.1

Fig.5 Relations between slacks and extra cycles

node t, which connect to the inputs and outputs respectively, is 
added to the graph. We assume there is a flip-flop at node s and 
node t respectively. Therefore, we can scan the graph in topology 
order and try to insert flip-flop to meet the clock period with the 
least extra cycles. We analyze the graph based on paths using the 
arrival time for each passing node along each path. Which is 
defined as a(v, Pi) in previous section.  

At the beginning of pipelining, the number of flip-flops on each 
edge is set to 0. With the dynamic pipelining, the arrival time for each 
node along the paths will be updated accordingly. Since we pipeline 
the scanned edges to meet the target clock period during the 
traversing, the paths are pipelined partially. We define the delay 
slacks on the partially pipelined paths. 

Definition 1: For a path Pi with k edges{e1, e2 ….ek} and the first 
m-1 edges have been pipelined to meet the clock period , the ideal 
slack for this path is the delay slack if the edges {em ….ek} are 
pipelined with no extra slack. Suppose the beginning node for em is v. 

)),((*)1/)),(((

)(_
k

mi
eii

k

mi
eii

i

dPvadPva

PSlackIdeal
     (5)   

Wherever we insert a flip-flop, it will change the timing 
distribution in the graph. And if the delay between a newly inserted 
flip-flop and the previous flip-flop (or source node) is less than one 
clock period, it will introduce extra slack. 

Lemma 1: Suppose we insert a new flip-flop f to an edge ei
which connects two nodes from u to v, and the delay between u to f
is duf. To meet the clock period, each path Pi passing ei should make 
the following inequation satisfied: 

a(u, Pi) + duf
If we insert a new flip-flop on edge ei, the paths passing edge ei

will be influenced. The required time of the new inserted flip-flop is 
forced to be . Therefore, the inserted flip-flop will introduce some 
more slacks 

Definition 2: Suppose a new flip-flop f is inserted on edge E, 
which connects two nodes from u to v, and the delay between u to f
is duf. The extra slack caused by f is  

Extra_Slack(Pi, f) =  - ( a(u, Pi) + duf )           (6) 
  With the inserted flip-flop and the extra slack, we can find 
whether the new inserted flip-flop will generate extra cycles and the 
ideal slacks for the paths should be updated. 

Lemma 2: Suppose we insert a new flip-flop f on an edge ei
which connects two nodes from u to v and path Pi is one of the 
paths which pass edge ei. The ideal slack of P before f is inserted is 
Ideal_Slackcur(Pi), then: 

If Extra_Slack(Pi, f) > Ideal_Slack(Pi) then this new inserted 
flip-flop will generate an extra cycle on path Pi and 
Ideal_Slack(Pi) =  + Ideal_Slackcur(Pi) – Extra_Slack(Pi, f)
If Extra_Slack(Pi, f) Ideal_Slack(Pi) then this new inserted 
flip-flop will not generate an extra cycle on path Pi.
Ideal_Slack(Pi) =  Ideal_Slackcur(Pi) – Extra_Slack(f)

Because of the page limitation, we omit the proof here. 
Based on these Lemmas and definitions, we can traverse the graph 

in topology order and dynamically find where to insert the flip-flops 
so that the weighted sum of the latencies are minimized.  

The optimal positions for flip-flops will be obtained at the same 
time. For each node, we compute the arrival time for the passing path 
a(v,Pi) using the longest path approach. If a(v,Pi)> , ei is the edge 

9B-5

922



along path Pi which connects nodes from u to v. According to lemma 
1, we may need to add a flip-flop before node v or before node u.
Therefore, we can enumerate the feasible positions for flip-flops 
and get the number of extra cycles generated by them. 

Fig.6 is an example with 2 paths (P1: A-C-D and P2: B-C-E) and 
the corresponding path graph. The topology order in Fig.6 should 
be {S, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, T}. We scan the graph 
in topology order and figure out the arrival time for each node: 
a(S,P1) = a(S,P2) = a(n1,P1) = a(n1,P2) =a(n2,P1)= a(n2,P1) = 0; 
a(n3,P1)=0.5; a(n4,P2)=0.7. When we scan edge e35, a(n5,P1)= 1.1, 
thus we need to add a flip-flop before node n3 or after node n3 and 
the inserted flip-flop will influence path P1.

C(0.5 )

0.6 0.7

0.2
0.3

A(0.5 )

B(0.7 )

D(0.5 )

E(0.7 )

S T
0

0 .5  
0 .6  

0 0 .7  0 .2  

0 .5  
0 .7  

0 .5  

0 .3  0 .7  0

0
n 1

n 2

n 3

n 4

n 5
n 6

n 7

n 8 n 9

n 1 0

Fig.6  Two paths and the corresponding path graph

Before we insert the flip-flop, we have 
Ideal_Slackcur(P1) = (( 0.5+0.6+0.5+0.7+0.5 +1)-0.5+0.6+ 

0.5+0.7 +0.5)  = 0.2
If we insert a flip-flop immediately before node n3 on the edge 

between n1 and n3, d1f = 0.5  and a(n1,P1) = 0 
Extra_Slack(P1, f) =  - ( a(n1,P1) + duf ) = 0.5  > 
Ideal_Slackcur(P1)
According to lemma 2, there will be one extra cycle along path 
P1 generated because of this new inserted flip-flop. 

If we insert a flip-flop after n3 to meet the target clock period, 
d3f =  - a(n3,P1) = 0.5 , and a(n3,P1) = 0.5 .
Extra_Slack(P1, f) =  - (a(n3,P1) + d3f ) = 0 < 
Ideal_Slackcur(P1)
According to lemma 2, there will be no extra cycle along path 
P1 generated because of this new inserted flip-flop. 
Therefore, we decide to insert flip-flop between n3 and n5 and 

the delay between n3 to f is 0.4 .
According to lemma 2, we can update the slack information: 
Ideal_Slack(P1) = Ideal_Slackcur(P1) –Extra_Slack(P1, f) =0.2 .
Then we continue with the scanning until node t is met. The 

corresponding process is listed step by step in Table 1. Finally, we 
can get an optimal solution with no extra cycles for both paths as 
shown in Fig.6. Here we can see that in an optimal solution, the 
flip-flop is not inserted after node n5 to utilize the full period in 
path P2, but instead we insert a flip-flop immediately before node 
n5 on edge e45. When we enumerate the positions for the flip-flop 
along P2 near node n5, we figure out the extra cycles needed for 
each possible position. If we insert a flip-flop on edge e56, to meet 
the clock period, d5f should be 0.1 . The extra slack for path P1
will be Extra_Slack(P1, f) =  - ( a(n5,P1) + d5f ) = 0.8  > 
Ideal_Slackcur(P1). There will be one extra cycle generated. While 
if we insert flip-flop before n5 on edge e45, though it will waste 
0.1  before node n5 along path P2, there will be No extra cycle.
Therefore, we can find that the optimal position for this flip-flop 
should be on e45 instead of on e56.

The overall algorithm dynamic_scanning () is summarized. 
Algorithm Dynamic_Scanning() 
Input: path graph with delay information: G
     Target clock period: 
Output: The detail positions for flip-flops on each edge so that the target 

clock period is meet on the path graph 
Compute Ideal_Slack for each path; 
For each Pi: a(S, Pi) = 0; 

For each node v in G in topology order: 
For each path Pi passing node v:
    Compute a(v, Pi);
    If a(v, Pi) >  then 
        For each feasible position f for a flip-flop: 

Compute extra_slack(f, Pi);
If extra_slack(f, Pi)>Ideal_Slackcur(Pi) then 

f generate one extra cycle on Pi;
Else

f generate extra cycle on Pi;
Endif; 

Endfor; 
Find an optimal position of f and update slacks; 

            Endif; 
Endfor; 

Endfor; 
END.

From Algorithm dynamic_scanning(), we can see that the 
complexity of this approach mainly depends on three loops. In the 
worst case, if all the paths pass through the same node and the 
arrival time exceeds , the worst complexity should be |Path|2|V|, 
where |Path| is the number of critical paths in the architecture and 
|V| is the number of nodes in the graph which is about the total 
number of blocks and wires. In practice, the number of paths is less 
than the number of nodes in graph G.  Even in a simple design 
with a small quantity of components, the number of nodes in G is 
more than 10 times the number of critical paths in the architecture. 
3.2.3 Near-optimal method for sequential circuits 

In sequential circuits, there are several loops and especially in 
micro-architecture, almost every component is involved in one or 
more loops as shown in Fig.1. In combinational circuits, both the 
source and target nodes are treated as flip-flops so that all the edges 
between them can be pipelined accordingly. Therefore, to avoid the 
cycles inside the graph, we transform the graph G(V,E) into a 
directed acyclic graph (DAG) G’(V’,E’) by performing a depth-first 
traversal defining a tree in G. Since there are cycles in G, when we 
traverse the graph, if a cycle is detected with a node u pointing back 
to an ancestor v of u, we call the edge euv from u to v, the back edge. 
We directly change the direction of the back edge by pointing the 
edge to the target node t. Therefore, all the cycles will be broken 
and the total lengths of the paths are remained. Then we can 
proceed with the pipelining process proposed in the previous 
section so that we can get a feasible pipelining design, but since we 
break the cycle into a path from s to t, the information of the cycles 
will be lost. In some special cases, the optimality will be lost in our 
approach for sequential circuits because of the lack of the 
configuration of loops. However, from the analysis and the 
experimental results, we found the error to be pretty small which is 
tolerable, especially in a floorplanning design stage.  

Table 1. The process of pipelining: 
”X” means “does not matter”, “-“ means “does not change”

v a
(v,P1)

Ideal
Slack
(P1) 

a
(v,P2
)

Ideal
Slack
(p2) 

Extr
a
slack

f du
f

Extra
cycle

S 0 0.2 0 0.6 -
n1 0 - -
n2 0 -  - - - - 
n3 0.5 - - - - 
n4 0.7 -  - - - - 
n5 1.1

0.9
0.2
0.2

- - 0 f1 on 
e35

0.6 0 

n6 0.6 - 1.4
0.5

0.6
0.5

0.1 f2 on 
e45

0.2 0 

n7 1.3
0.3

0.2
0.2

0 f3 on 
e67

0.4 0 

n8 0.8 - - - - - 
n9 0.8 - - - - - 
n10 1.5

0.5
0.5 0 f4 on 

e89

0.2 0 

T - - - - - - - - 

9B-5

923



4.  Throughput aware floorplanning with pipelining 
The objective of the throughput-aware floorplanner is to 

determine the positions of the blocks such that the performance of 
the architectural design, in addition to traditional objectives such as 
area and aspect ratio, is optimized. The performance of a micro 
architectural design depends on a weighted sum of latencies along 
the critical paths. Since our graph-based approach can pipeline the 
critical path efficiently and the detail pipeline results can be fed to a 
floorplanning engine, we can evaluate the performance accurately 
and provide the architectural designers with the pipelining 
information. The path-based pipelining design guides the block 
design to optimize the performance for the whole design.  

The floorplanning problem that we investigate here considers 
several components in its objective function that are important 
tradeoffs in micro architectures. Specifically, we consider the die 
area (footprint), the performance of the micro architecture in BIPS
and the wirelength. Formally, we define the problem as follows: 
Given: (1) target clock period 

(2) clocking overhead Toverhead
(3) list of blocks in the micro architecture with their area, 

dimensions and total logic delay 
(4)set of critical architectural paths with performance 

sensitivity models for the paths 
Objective: Generate a floorplan which optimizes for the die area, 
wirelength and performance, based on the pipeline design for 
blocks and wires. 

The floorplanner used in this work is based on a simulated 
annealing framework with CBL representation [14]. We integrate 
the graph based dynamic approach in floorplanning optimization. 
During floorplanning, we calculate the total latency based on our 
approach. Extra latency from the wires is used to compute the new 
IPC, and hence the performance of the processor for that floorplan. 
Our cost function uses a weighted combination of area, wirelength 
and performance, and can be represented by  

Wire*wArea*w
BIPS

*wtcos 3211

where BIPS corresponds to the performance of the micro 
architecture with that floorplan of the blocks; Area is the total area 
of the floorplan. The performance (BIPS) is calculated based on a 
pipeline design by a graph-based heuristic approach. The co- 
efficients of w1, w2 and w3 are used to control the different weight 
for each component.  In our test evaluation, the performance 
component is given a high weight and will be optimized when the 
simulated annealing engine tries to minimize the cost function. 

5.   Design driver  
In this section we present detailed evaluation results obtained for 

our design driver micro architecture. This architecture is an 
out-of-order micro-processor with detailed parameters shown in 
Table 2. We modified SimpleScalar [16] to model this architecture 
and to parameterize the different critical path latencies found 
through the floorplanning process. To perform our evaluation, 
results were collected for SPEC2000 [17] benchmarks. In order to 
consider the impact of pipelining based on interconnect delays, we 
use the critical paths in Fig.2 for this study. The area and delay of 
the blocks were derived based on [18, 19] for a 70nm process 
technology. Based on [20], we assume that the clock cycle overhead 
is 46ps, which corresponds to roughly 1.8FO4 (fan-out-of-four) for 
70nm technology. The delay of interconnects is derived using the 
IPEM models [21] which consider several optimizations such as 
wire sizing, buffer insertion and sizing, etc. 

To facilitate the insertion of repeaters, flip-flops etc., which are 
inevitable to achieve the required interconnect performance, we 
assume that 10% of each block’s area is reserved around the block 
in the floorplan. Moreover, as the L2 cache occupies more than 
50% of our die size, we allow the four L2 cache banks to be placed 

separately so that the floorplanner has more flexibility in packing 
the blocks. As we formulate the problem to a MILP, we use a 
software package GLPK (GNU Linear Programming Kit) to solve 
the MILP and get the corresponding results. We set the limited 
running time for the MILP to be in the 200s. Before we integrate 
our pipelining with floorplanning optimization, we try to 
demonstrate the efficiency of our graph-based approach. We 
compare the results with the wire-pipelining results (WP), and the 
solutions obtained from the MILP solver (MILP), the ideal upper 
bound used in [6][8](UB) and our graph-based heuristic approach 
(GH). In wire-pipelining, we assume the maximum delay from the 
input pin to any flip-flop inside the blocks (Tsu) and the maximum 
delay from any flip-flop inside the blocks to the output pin (Tco) are 
equally divided. The delays between flip-flops inside blocks equal 
to clock period .

Table 2. Baseline processor parameters 
Instruction Cache 32KB, 32B/block, 2-way 
Decode Width 8 
ROB Size 128 entries 
Issue Queue 32 entries 
Issue Width 8 
Register File 70 INT and 70 FP 
Functional Units Units 4 IntALU, 1 FPALU, 2 IntMult, 1 FPMult 
Load/Store Queue 32 entries 
L1Data Cache 16KB, 32B/block, 4-way, 2RW ports 
Unified L2 cache 1MB, 64B/block, 8-way 
5.1 Impact of frequencies 

To evaluate the accuracy of our approach, we take a fixed packing 
result and run the different pipeline approaches under the frequency 
from 2GHz to 7GHz. The corresponding BIPS values are shown in 
Fig.7. Since with the approach used in [6][8], the flip-flops are 
assumed to be ideally inserted along each path and the confliction in 
the blocks which have multiple paths passing is not considered. 
Therefore, this approach just gives an ideal upper bound of the 
performance, which is far off from the real designs in most cases. 
Compared to the optimal results obtained from the MILP solver, the 
upper bound approach is on average 20% larger. Therefore, this 
upper bound is not able to give the correct guide for the 
performance optimization. Fig.7 shows that based on the fixed 
packing, the system reaches its highest performance under 6GHz, 
but drops a lot under 7GHz. It is reasonable since the extra latency 
number for 7GHz increases a lot, which may degrade much more 
than the increase of the frequency. However, the ideal upper bound 
does not correlate with this trend, so it is not possible to evaluate 
the system performance accordingly. While the wire pipelining 
loses a lot of the flexibility to get a better design, the difference 
between the optimal design and the wire-pipelining is pretty huge, 
which is on average 27%. Therefore, the path-based pipelining will 
give about a 27% performance improvement over wire pipelining.  

Fig.7 The BIPS results under different frequencies 
Our near-optimal approach has an average of 2% error to the 

results of the MILP solver. Since our approach dynamically scans the 
path graph, our approach can achieve the solution in almost linear 
time. The running time for our approach is less than 1 second, while 
the MILP need about 200s to get a good result. Therefore, our 
approach is efficient in terms of running time and accuracy.  

9B-5

924



5.2 Different Packing results 
 To study the sensitivity of our approach to different packings, we 

randomly pick 5 packings and run the pipelining approaches under 
3GHz. The detailed information is shown in Table 3. For different 
packing with various packing configuration, the difference between 
our approach and the MILP solution is about 3%. But the error for 
upper bound in [6][8] is about 16% and the error for wire-pipelining 
results is about 24%. Therefore, our approach has the stable 
performance with different frequencies and various packings.  

Table 3 The results for different packings under 3GHz 
BIPSpacking Packing  

dimension 
(mm*mm) 

wire
UB WP GH MILP

1 4.1*7.76 98471 2.677 1.539 2.136 2.262
2 4.24*7.92 106594 2.417 1.731 2.139 2.16
3 4.9*6.35 102578 2.547 1.748 2.091 2.202
4 5.48*5.88 134051 2.654 1.563 2.319 2.346
5 6.99*4.64 135455 2.793 1.731 2.235 2.286

Average error   1.16 0.738 0.97 1 

5.3 Integrated with floorplanning optimization 
To cope with the pipeline design with floorplaning optimization, 

though the MILP approach will give an optimal result, it requires a 
lot of search which takes hundreds of seconds. We can use the MILP 
approach as a post process at the end of the floorplanning but it is not 
applicable to be integrated within the floorplanning searching stage. 
Though the upper bound used in [6][8] does not require too much 
extra effort, the large range of error may not allow for the correct 
guidance for optimization. Our near-optimal approach runs in linear 
time and it gives a pipeline design with about 2% error to the optimal 
solution. We integrate our approach with the thoughput-driven 
floorplannning. We also compare our approach to the approach using 
upper bound [6][8] as the evaluation of pipeline design and using the 
MILP approach as the post process to get the flip-flop design. Table 4 
gives the detailed results. The results show our graph-based approach 
can result in better performance since it is an accurate evaluation of 
the pipelining design, which enables the optimization process to be 
guided correctly and converge well. 

Table 4 The floorplanning with pipeline design integrated 
UB+post_MILP GH Frequency 

GHz Area
(mm2

)

Wire 
(mm) 

BIPS Area 
(mm2

)

Wire 
(mm) 

BIPS

2 32. 115.6 1.492 31.8 142 1.714 
3 34.6 103.7 2.139 33.3 108.4 2.22 
4 32.4 98.7 2.776 36.1 124.3 2.828 
5 32.8 126.2 2.885 32.6 94.17 3.35 
6 36.0 108.4 3.636 33.7 100.3 3.882 
7 35.9 112.5 3.479 36.8 129.9 3.906 

Comparison 1 1 1 1.003 1.05 1.091 

6.  Conclusions and Future Works 
In this paper, we propose the optimization methodology of 

architecture pipelining with physical design. Since we 
simultaneously optimize the pipeline design and physical packing in 
terms of system throughput, the performance of the system can be 
improved a lot over the wire-pipelining. We first formulate the 
problem as a MILP formulation. Given a packing result of a 
micro-architecture design, we can optimally figure out the 
distribution of flip-flops for both blocks and wires.  But to solve a 
MILP is time consuming, so it is not applicable to be embedded in 
the process of floorplanning iterations. Therefore, we devise a novel 
dynamic scanning heuristic to handle the pipeline design which 
can feed the floorplan engine with the actual latency informantion. 
Our algorithm enables the automated design for initial architectural 
design with the consideration of both the architectural side and the 
physical design. Our approach is a near-optimal approach which 
can pipeline all the critical paths by dynamically traversing the path 
graph. The experimental results show our heuristic gives solutions 

very close to the MILP results (2% more than MILP results on 
average) but in a much shorter runtime. Therefore, the dynamic 
scanning heuristic is stable and effective which is applicable in 
floorplanning optimization. We are currently working to refine the 
MILP formulation and attempting to handle it in a much more 
efficient way, such as a network flow approach. 

References
[1] S. Borkar, “Obeying Moore’s law beyond 0.18 micron,” in Proc. IEEE 

ASIC/SOC, pp. 26–31, Sep. 2000. 
[2] P. Cocchini, “Concurrent flip-flop and repeater insertion for high 

performance integrated circuits,” in Proc. IEEE/ACM ICCAD, pp. 
268–273, Nov. 2002. 

[3] S. Hassoun et al., “Optimal buffered routing path constructions for 
single and multiple clock domain systems,” in Proc. IEEE/ACMICCAD,
pp. 247–253, Nov. 2002. 

[4] V. Nookala and S. S. Sapatnekar, “Correcting the functionality of a 
wirepipelined circuit,” in Proc. ACM/IEEE DAC, pp. 570–575, 2004. 

[5] L. Scheffer, “Methodologies and tools for pipelined on-chip 
interconnect,” in Proc. IEEE ICCD, pp. 152–157, Oct. 2002. 

[6] A. Jagannathan et al., “Microarchitecture evaluation with floorplanning 
and interconnect pipelining,” in Proc. ASPDAC, pp. 32–35,  2005. 

[7] C. Long et al., “Floorplanning optimization with trajectory 
piecewise-linear model for pipelined interconnects,” in Proc. ACM/IEEE 
DAC, pp. 640–645, Jun. 2004. 

[8] J. Cong, G. Reinman, Y. Ma, J. Wei, Y. Zhang, “An automated design flow 
for 3D microarchitecture evaluation,” in Proc. ASPDAC , 2006. 

[9] C.E. Leiserson and J.B. Saxe, “Retiming synchronous circuitry,” 
Algorithmica, 6:5–35, 1991. 

[10] M. Ekpanyapong et al., “Profile-guided micro architectural 
floorplanning for deep submicron processor design,” in Proc. ACM/IEEE 
DAC, pp. 634–639, Jun. 2004. 

[11] V. Nookala, Y. Chen, D. J. Lilja, S. S. Sapatnekar, “Micro 
architecture-aware floorplanning using a statistical design of experiments 
approach,” In Proc. ACM/IEEE DAC, 2005. 

[12] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, "Architecture and 
synthesis for on-chip multi-cycle communication," in Proc. IEEE 
Transactions on Computer-Aided Design of Integrate d Circuits and 
Systems, pp.550 - 564, April 2004. 

[13] R. McInerney, K. Leeper, T. Hill, H. Chan, B. Basaran and L. 
McQuiddy, “Methodology for repeater insertion management in the RTL, 
floorplan and fullchip timing databases of the ItaniumTM 
microprocessor,” In Proc. International Symposium on Physical Design,
pages 99–104, 2000. 

[14] X. Hong, G. Huang, Y. Cai, et al, "Corner block list: an efficient and 
effective topological representation of non-slicing floorplan", in Proc. of 
International Conference on Computer Aided Design, pp 8-12, 2000. 

[15] E. Sprangle and D. Carmean, “Increasing processor performance by 
implementing deeper pipelines,” In Proc. 29th Annual International 
Symposium on Computer Architecture (ISCA ’02), pp. 25–34, 2002. 

[16] D. C. Burger et al., “The simplescalar tool set, Version 2.0,” Technical 
Report CS-TR-97-1342, University of Wisconsin, Madison, 1997. 

[17] The Standard Performance Evaluation Corporation, 2000. 
http://www.spec.org.

[18] S. Palacharla, N. Jouppi and J. E. Smith, “Complexity effective 
superscalar processors,” In Proc. International Symposium on Computer 
Architecture, pp. 206–218, Jun. 1997. 

[19] S. Palacharla, N. Jouppi, and J. E. Smith, “Complexity effective 
superscalar processors,” In Proc. International Symposium on Computer 
Architecture, pp. 206–218, Jun. 1997. 

[20] M. S. Hrishikesh, K. Farkas, N. P. Jouppi, D. C. Burger, S. W. Keckler, 
and P. Sivakumar, “The optimal logic depth per pipeline stage is 6 to 8 
FO4 inverter delays,” In Proc. of 29th International Symposium on 
Computer Architecture, May 2002. 

[21] J. Cong and D. Z. Pan, “Interconnect estimation and planning for deep 
submicron designs,” In Proc. 36th ACM/IEEE Conference on Design 
Automation, pp. 507–510, 1999. 

[22] P. Pan, A. K. Karandikar, and C. L. Liu, “Optimal clock period 
clustering for sequential circuits with retiming,” In Proc. IEEE TCAD,
Vol. 17 No. 6, pp. 489–498, 1998. 

[23]C. Lin, H. Zhou, “Wire retiming as fixpoint computation,” In Proc. 
IEEE Transactions on Computer-Aided Design of Integrate d Circuits 
and Systems, Vol. 13, No. 12, 2005  

[24] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis 
"Microarchitecture Evaluation with Physical Planning ", Proc. of the 
Design Automation Conference, Anaheim, pp. 32 - 36, June 2003

9B-5

925



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


