
Fast Decoupling Capacitor Budgeting for Power/Ground Network Using
Random Walk Approach*

Abstract - This paper proposes a fast and practical decoupling
capacitor (decap) budgeting algorithm to optimize the power
ground (P/G) network design. The new method adopts a
modified random walk process to partition the circuit. Then, by
utilizing the isolation property of decaps, this new method
avoids solving the large nonlinear programming problem in
traditional decap optimization process. Also, this method
integrates leakage currents optimization algorithm using a
refined leakage model. Experimental results demonstrate that
our proposed method achieves approximate a 10X speed up
over the heuristic method based on sensitivity and only about
6% decap area deviation from the optimal budget using the
programming method.

I Introduction

According to the roadmap of ITRS-2005 [1], robust P/G
delivery network is considered as one of the grand
challenges as technology scales down to 90nm and below.
The improper design of power distribution system can
degrade the circuit reliability and cause functional failures
due to excessive IR drops, Ldi/dt noise, electro-migration
and resonance effects. Power problems that are caused by
rising frequency and continuing pushing for more device
integrations will lead to exponential growth of the design
and verification complexity of P/G networks.

Driven by the importance of the robust P/G delivery
network, many methods have been proposed to guide the
design of the P/G networks. Excessive IR drops and the
increasing dynamic voltage fluctuations can be captured by
many circuit simulation methods, such as hierarchical and
macro-modeling based method [2], subspace projection
based approach [3], random walk based approach [5] and etc.
In order to remove excessive IR drops, wire sizing is
typically employed in [7], however dynamic voltage
fluctuations may still occur even if the wire sizing strategy is
performed. In this case, adding decoupling capacitors is a
suitable way to reduce dynamic noise. According to the
modeling of P/G network shown in Fig.1, decap provides
reservoir capacitor between power and ground.

However, decap budgeting of the P/G network is a
difficult task because of the unbearable run time of the
whole chip transient simulation. In [8] [9], the authors use
nonlinear optimization program and conjugate gradient

algorithm to acquire the optimal decap allocation under
given constraints. In each step of conjugate gradient
algorithm, numerical analysis should be applied to compute
the sensitivity of the P/G network, which makes the time
efficiency of the nonlinear optimization to be a big problem.
As the experiment results shown in [9], the optimization
process of a one million node circuit lasts more than 8 hours
on a high performance workstation. Partitioning-based
conjugate gradient method [10] has been proposed to
optimize several small circuits instead of the whole circuit.
But the partitioning-based method also has to solve the
nonlinear programming problem by carrying out the linear
system simulation in each step. On the other hand, the
possible deviation from optimal result of budgeting may be
significant. It is still far away from practical use for industry
application due to its complexity. If leakage effect is
considered, over-adding decaps may increase power
consumption significantly. Therefore, in [11], leakage effects

of the decap was considered, but the leakage model it use
was a little bit over-simplified for practical use.

In this paper, we propose a fast and practical decap
budgeting algorithm to optimize the dynamic performance
of P/G network. The new method uses a modified random
walk process to partition the circuit, and utilizes the isolation
property of the decaps. First, decaps are planted at the
boundary of each sub-circuit, which can isolate each sub
area very well. Then instead of solving the global
programming problem, we use preconditioned conjugate
gradient approach (PCG) method to get the near optimal
solution in each sub area. Because the random walk method
gives out very good boundaries to plant the decaps, global
dynamic performance highly relies on the performance of
each individual sub area. On the other hand, the PCG
method is efficient in finding out the optimal solution

Le Kang, Yici Cai, Yi Zou, Jin Shi, Xianlong Hong
Department of Computer Science and Technology,

Tsinghua University, Beijing, P.R.China

Sheldon X.-D. Tan
Department of Electrical Engineering, University

of California at Riverside, USA

Fig. 1. Model of Power/Ground Network

*This work is supported by NSFC No. 90307017.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

8A-1

751

especially when problem size is small. Thus, the quality of
local solution is improved. Finally, considering the overhead
of decap planting at the boundary and the improvement of
decap usages in local area together, we find that the design
quality can be improved a lot within a few run time.

Our contributions are: (1) Special random walk method is
used to find out an optimal partition boundary to plant
decaps. (2) We find out that trying to improve the local
solution quality and sacrifice the design quality at the
boundary will improve the time efficiency a lot than trying
to improve the global solution quality. (3) A more accurate
leakage model of decaps is integrated in our optimization
flow to make the method more practical for application.

This paper is organized as follows: Section II gives a
basic review of random walk principle. Section III presents
how to use random walk principle in our proposed
optimization method according to the localization property.
Section IV gives out the refined model of the decap leakage
current. Finally, Section V concludes the paper.

II. Review of Random Walk Process

In [5], random walk process was introduced to P/G
network analysis. Distinguished from the traditional
simulation methods via solving the matrix equation, random
walk principle is a statistical winning process. The circuit
illustrated in Fig.2 can be written as the following formula
(1) according to Kirchoff current law and nodal equation.

x i i i sV g g V I (1)

Then we will have,

i s
x i

i i

g I
V V

g g
 (2)

If we define the coefficient i ig / g to be x,ip , then we

can get , 1x ip . Thus, x,ip can be treated as the

probability of walking from node x to node i. This means

that the constant s i-I / g can be treated as the cost we

should pay at node x. When achieving the home nodes (pad
nodes in P/G network) at the end of winning process, we can
calculate the total cost by summing the cost paid at each step.
It has been proved that the average cost from one node to the
home node in random walk process is equal to the node
voltage calculated by traditional P/G network analysis
process [4]. Thus, we can play the walking-game for a
certain number of rounds, then calculate the average cost to

calculate node voltage in a statistical way.
We have implemented the random walk algorithm [6]. As

shown in Table I, for a specific node of the test circuits, we
compare the accuracy and run time from random walk
algorithm (RW) with that of standard PCG method. Here the

PCG results are considered as the correct solution to do the
comparison. The results for different test cases show that the
performance in terms of CPU time of RW is much higher
than PCG approach. Also, for RW, the max absolute error
margin is just about 11 mv, and the max relative error is
approximately 0.6%. That is to say, using random walk
approach can gain one order of magnitude speedup over
PCG. method.

More importantly, comparing with the flat PCG, which is
used for solving the whole network, the random walk
process only obtains the specific node voltage. The obvious
advantage is that it gets solutions for a portion of the large
P/G networks without solving the whole circuit, but the
speedup only suits for a single node or a small number. If we
use random walk to calculate the whole circuit with few Vdd
pads, the performance may be poor. And it is also difficult to
use it to solve the transient analysis problem, because the
linear model of dynamic elements deduced by Norton
Companion model should be updated in each simulation step.
In other words, if we use random walk approach to solve all
the nodes in transient analysis, it may not be very effective
on analyzing the voltage variation for decoupling capacitor
budgeting.

III. Random Walk based Approach for Decap Allocation

In this section, we mainly explain the idea of isolation
decap planting strategy, the employ of random walk process
to partition the whole network, and the iterative method to
budget decaps in P/G network.

TABLE I Comparison with PCG in Terms of Speed and Accuracy.

Run Time Accuracy
Circuit Size

PCG (s) Random Walk
(s) PCG (v) Random walk

(v)
Absolute

Error(mv)
Relative
Error

100 0.001 <0.001 1.998032 1.998423 0.391 0.02%

1600 0.021 0.002 1.944538 1.940454 4.084 0.21%

6400 0.146 0.015 1.901242 1.907516 6.274 0.33%

25600 1.224 0.108 1.853241 1.861951 8.710 0.47%

102400 10.816 1.140 1.740406 1.751299 10.893 0.63%

Fig. 2. A representative part of P/G networks.

8A-1

752

A. Isolation Decap Planting

Usually, the frequency of noises in P/G network is high.
Therefore, enough decaps will provide good fast return paths
for noise current, this is why adding enough decaps can
reduce noise level. On the other hand, under a special noise
frequency, we can calculate how many decaps is enough to
provide good isolation in P/G network even in time domain.

Our decap planting technique is based on the following
observation. Due to high via density in M1, the noise current
inside local area usually not propagate along with the rail but
trends to go up to M2 first from the vias. Then if no decaps
is planted to provide fast current return path, it will go to up
layers until the pad is reached. This usually causes long
current paths and makes the dynamic drop obvious.
However, the higher metal layer the noise current goes, the
smaller voltage drop it can causes due to small metal
resistance. So, if we can reduce the path length in M1 and
M2, it is enough to reduce the noise level obviously.

Definitely, the worst case is the current sources inside the
local area turn on simultaneously. In this case, we should
find out some boundary nodes that do not consume large
dynamic current during this time period and plant enough
decaps to provide fast current return path. Later we will
introduce our method to find out such kinds of boundary.
Here we just suppose all the boundary nodes are given.

Then we can calculate the average current per each node
inside the local area according to the piece wise liner (PWL)
model of all the current sources. Suppose the internal node

i contains a switching current whose average current is iI ,

we will plant a decap at the boundary node with its capacity
Ci satisfying equation (3).

()2
0dci

i i

C
I V

h
 (3)

In equation (3) above, iI is the average current of

internal node I during a time period h , and ()dc
iV is the

voltage of node i in DC analysis.
If the boundary condition is good enough, the planted

decaps will isolate every sub-area perfectly and each of them
can be taken into consideration independently.

Here we use a transient simulation tool to compare the IR
drops of each node inside the sub area before and after
planting process. The results are shown in Table II.

In Table II, columns 1, 2, 3, 4 represent the sub area ID,
the internal node number of each sub area, the total node
number of the P/G network, and the maximum voltage drop
before planting boundary decaps respectively. The last two
columns represent the maximum voltage drop after planting,
and the number of nodes in the sub-circuit whose IR drops
have been improved. From these results, we can observe that,
after planting decaps, the maximum dynamic IR drop in the
sub-circuit has been reduced obviously and nearly all the
nodes’ voltage drops have been improved. In other words,
even if we only plant decaps at the boundary, the dynamic
performance of each sub area can be improved.

.

TABLE II The Voltage Drop Comparison before/after Using the
Boundary Allocation Strategy

Optimized Boundary

Sub
area

Node
Num

Total Node
Number

Max Vol
Drop(mv) Max Vol

Drop(mv)

Improved
Node
Num

1 11 744 203.62 30.83 10

5 46 7492 260.47 72.06 46

14 124 32112 315.71 135.19 122

B. Partition Based on Random Walk Process

As we mentioned in above section, the planting decaps at
the boundary node can improve the dynamic performance of
internal nodes. However, if unluckily the violation node
(whose voltage is below the threshold) locates at the
boundary, it will be hard to optimize because the planted
decaps will not get enough charge. So in this part, we use a
modified random walk process to partition the circuit which
makes the violation nodes locate inside the sub-circuits.

Firstly, we adopt the conjugate gradient (CG) solver based
on incomplete cholesky decomposition as the transient
analysis simulation tool. So the nodes with excessive
dynamic drop violation are gained.

Then the modified random walk process is applied from
each violation node. In our new method, the violation node
is considered as the beginning node, and the probability in
the walking process is also treated according to Section II.
But differently, the cost of every node mentioned in the
random walk analysis is ignored. In the modified walking
process, our brief target is to achieve the boundary of
walking process. After performing the walk process several
times, the nodes accessed from beginning node have been
recorded so that the boundary for each violation node can be
gained by the recorded nodes. Fig. 3 gives out the example
of the boundary by our proposed method. We observe that

Fig. 3. The Boundary Gained by the Modified
Random Walk Process

8A-1

753

node 8 and 21 are violation nodes and the boundaries are
given by dashed lines. From node 21, we may achieve the
partition containing 11 nodes through the walking process.

After we finish the walking process from each violation
node, the boundary of each violation node is gained. But in
the circuit, the violation nodes always lay close to each other.
As shown in Fig. 3, the partitions, acquired by node 8 and 21,
are not separated. So it is essential to merge the partitions
that intersect each other and calculate a new boundary.

At last, intersected sub-circuits are merged together. For
each sub-circuit generated from the partitioning, we use
localization property to solve decaps budgeting separately.

C. Decap Budgeting Flow Based on Random Walk Process.

The whole decaps budgeting flow based on modified
random walk process is shown in Fig. 4.

Fig. 4. Decaps flow based on random walk process.

In the optimization flow, we only apply transient
simulation at two places. One is at the very beginning to
solve the circuit, and get all the violation nodes. The other is
at the end of every optimization step to check the updated
circuits and verify the optimization result. Comparing with
the decaps budgeting methods which need to carry out long
time to construct the adjoint network, compute the
sensitivity of object function and solve the nonlinear
programming, the method proposed in this paper make use
of random walk process, but avoids complex computation
for adjoint network etc. And also the decap budgeting
problem using random walk process has smaller iterative
times that demonstrated by experimental results.

By using this decaps budget flow, we did experiment on a
744 node circuit named u_cnt100. Results in Fig. 6 are very
similar to Fig. 5 using a heuristic method based on
sensitivity which is also mentioned in [9]. Further
discussions on our proposed method are given in Session V.

IV. Refined Leakage Current Model for Decaps

Usually, decaps in different levels (on-board, on-package
and on-die) are used together to reduce dynamic voltage
noise of different frequencies [12]. Since large on-chip
poly-insulator-poly or metal-insulator-metal decaps tend to
consume large die area, in power/ground designs, on-chip
decaps are usually made of MOS transistors with source and

drain connected together [11]. Since the oxide thickness Tox

is smaller than 20Å in nanometer design, the gate leakage of
MOS-based decaps will become more significant. As a result,

adding decaps will hurt power consumption, which in turn
will make the added decaps less effective to reduce the
voltage drops. The leakage current of the MOS-based decap
can be formulated as [11] [13]:

2 /() Tox V
gate

V
I k e w

Tox
 (4)

where and k are parameters related to specific technology ,
w is the gate width of NMOS (or PMOS) while Tox is oxide
thickness and V is the supply voltage.

It is shown in the formula that the value of gateI is the

exponential function of the supply voltage V. To consider the
leakage current of decaps, as shown in Fig. 7(a), the leakage
model used in [11] is a little bit over-simplified which only
contains a constant resistor besides the decap, but the
exponential effect is not considered.

In this section, we use an approximate leaky decap model
to analyze gate leakage current for MOS-based decaps. As
shown in Fig. 7(b), we propose a more accurate leakage
decap model containing a resistor, a capacitor and a
time-variant current source, which uses the piece wise liner
model, to capture the main leakage current.

Fig. 6. Decap Allocation Result of the Proposed Method

Decaps flow based on Random Walk Process
1. Solve the circuit, and identify the violation nodes;
2. While (violations) {
3. For each violation node {
4. Apply modified random walk process;
5. Form the partition in the walking process}
6. Merge the partitions that intersect each other;
7. Use boundary allocation strategy for each partition;
8. Update all the decaps and solve the new circuits}
9. Optimization Successful.

Fig. 5. Decap Allocation Result of the Heuristic Method

Fig. 7. Two Equivalent Models for Decaps Leakage

8A-1

754

TABLE IV
Experimental Results Compared to Existing Heuristic Budget and Optimal Budget Method.

Heuristic Budget Optimal Budget Random Walk Based
Circuit
Name

#Node #violation
Time

(s)
Aera of

Decap(um2)
Time (s)

Aera of
Decap(um2)

Time
(s)

Aera of
Decap(um2)

Speedup
On

Heuristic

Deviation
from

Optimal

u_cnt100 744 96 37.34 7182.58 117.08 6779.66 7.81 7190.24 4.8 6.06%

u_cnt500 3741 665 223.59 44938.03 961.42 42372.17 33.14 45072.39 6.7 6.37%

U05614 32112 3682 2812.04 176975.84 8709.37 169491.63 370.96 178290.51 7.6 5.19%

U19649 112392 10755 11834.1 728931.47 39257.62 677966.08 958.63 721091.26 12.3 6.36%

U28070 1618026 612132 28596.4 8922309.20 NA NA 1606.54 9142708.72 17.8 NA

TABLE III Violation Node Statistics Comparison to the Simplified
Model when our New Model is Considered. VN = Violation Node

Circuit
Name

Node
Num

Eliminated
VN Num

VN
Num

Newly VN Num
Using Our Model

U_cnt100 744 102 0 2

U_cnt500 3741 679 0 9

u05614 32112 3977 0 26

After the circuits are optimized with the simplified
leakage model, we introduce our leaky model to P/G grid
and apply transient simulation to verify whether the
violation nodes still exist. The analysis results are shown in
Table III. From the results, we can observe that, although the
optimization process with the simplified leakage model,
reduces the violation node (VN) number to zero, new
violation nodes still appear when our new leakage model is
considered since the over-simplified model did not consider
the exponential relation between the leakage current and the
supply voltage. In order to maintain a robust optimization
for P/G network, the decap leakage current model must be
sufficiently accurate.

We still use the two-stage P/G optimization method [11]
to do with our modeling. First, it optimizes the dynamic
voltage noise assuming all decaps are leakage free, and then
in the second stage, in order to compensate the IR drops
caused by leakage currents, it performs a wire sizing strategy
using a branch and bound method to minimize the added
wire area.

V. Experiment

We implement our presented algorithm in C++
programming languages. All the experimental results are
obtained on a SUN UltraSparc workstation V880 with 1GHz
CPU and 4GB memory. All test cases are real industry
standard-cell circuits with pre-placement information in
LEF/DEF format. Those circuits have complexities ranging
from 744 nodes to 1.6 million nodes.

To demonstrate the efficiency of our proposed

optimization algorithm in Section III, we compare it with the
existing sensitivity-based heuristic method and optimal
budget method using nonlinear programming [9]. To make
comparison possible, we test on the same circuits with same
parameters and constraints. Table IV summarizes the
comparison, where columns 1, 2, 3 represent circuit name,
total node number, and violation node number respectively.
And the last two columns, compares the random walk based
method with the heuristic method in terms of CPU times and
the optimal budgeting in the decap area. From Table IV, we
can find that our proposed method is usually 10 times faster
than the heuristic method which is considered as an
extremely fast approach, and it only has about 6% decap
area deviation with the optimal budgeting.

Then we introduce both the simplified leakage model and
our proposed model to the test cases after they are optimized
by the random walk based flow. In the second stage, we try
to detect the most sensitive nodes to perform the wire sizing
strategy. In [11] it has been proved that the wire sizing
strategy is not very time consuming. So the extra run time in
the second stage may be ignored. We compare the
optimization results between the simplified leakage model
and our newly proposed accurate model. The comparison
about the routing resource increase is shown in Table V.
From the result, we can see that our proposed leakage model,
which considers the exponential effect, occupies a little more
routing resource than the simplified model, and the relative
deviation is within 1%. But our proposed model makes the
optimization process more practical for use.

VI. Conclusion

This paper propose an extremely fast decap optimization
based on the idea of using random walk approach to find out
the best partitions which utilize the localization property and
then adding decaps on these boundary of partitions. The
experimental results on the industry test cases demonstrate
that the proposed method based on random walk process
achieves approximate a 10X speed up over the heuristic
approach, and a test circuit with 1.6 million nodes can be
carried out within half an hour on the Sun Workstation. Then
the paper considers a refined leakage current model for

8A-1

755

decap. The combination of the proposed optimization
process and two-stage method for accurate leakage current
can efficiently optimize power/ground network in real
industry design.

TABLE V
Optimization Result Comparison between Two Leakage Models

using the Two-Stage Method

Ratio of Routing Resources
Increases Circuit

Name
#Node

Added
Decap
without
Leakage

(um2)
Simplified

Model
Our Accurate

Model

u_cnt100 744 7190.24 1.85% 1.88%

u_cnt500 3741 45072.39 5.83% 5.86%

u05614 32112 178290.51 3.00% 3.25%

u19649 112392 721091.26 4.91% 5.14%

References

[1] The International Technology Roadmap for
Semiconductors (ITRS), http://public.itrs.net/, 2005 update.
[2] M.Zhao, R.V.Panda, S.S.Sapatnekar and D.Blaauw,
“Hierarchical analysis of power distribution networks”,
IEEE Trans. On Computer Aided Design, vol. 21, no. 2, pp.
159-168, Feb. 2002.
[3] Y. Cao, Y. Lee, T. Chen and C. Chen, “HiPRIME:
Hierarchical and Passivity Reserved Interconnect
Macro-modeling Engine for RLKC Power Delivery”, In
Proceeding of IEEE/ACM Design Automation Conference,
pp. 379-384, New Orleans, Jun. 2002.
[4] P.G. Doyle and J.L. Snell, “Random Walks and Electric
Networks.” arXiv: math.PR/0001057
[5] H.F. Qian, S.R. Nassif, and S.S. Sapatnekar, “Random
walks in a supply network,” in Proc. Design Automation
Conf., 2003, pp. 93–98.
[6] Le Kang, Yici Cai, Jin Shi and Xianlong Hong, “In-depth
Exprimental Study of Power Grid Network Analysis using
Random Walks Algorithm”, International Conference on
Communications, Circuits and Systems, 2006
[7] T. Mitsuhashi and E.S. Kuh, “Power and Ground
Network Topology Optimization for Cell Based VLSIs”,
Proc. 29th ACM/IEEE Design Automation Conference, pp.
524~529, 1992
[8] H. Su, S. S. Sapatnekar, S. R. Nassif. “An Algorithm for
Optimal decoupling Capacitor Sizing and Placement for
Standard Cell Layouts”. In Proc. International Symposium
on Physical Design, pages 68-73, San Diego, CA, April
2002
[9] J. Fu, Z. Luo, X. Hong, Y. Cai, S. X.-D. Tan, and Z. Pan,
“A fast decoupling capacitor budgeting algorithm for robust
on-chip power delivery,” in Proc. Asia South Pacific Design
Automation Conf. (ASPDAC), Jan. 2004, pp. 505–510.

[10] H. Li, Z. Qi, S. X-D. Tan, L. Wu, “Partitioning-based
approach to fast on-chip decap budgeting and minimization”,
Proc. IEEE/ACM Design Automation Conference
(DAC’2005), pp. 170-175, CA, 2005
[11] Jingjing Fu, Zuying Luo, Xianlong Hong, Yici Cai,
Sheldon X.-D. Tan, Zhu Pan, "VLSI On-Chip Power/Ground
Network Optimization Considering Decap Leakage
Currents", 2005.1, The 10th IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC2005),
Shanghai, China, p735-738
[12] D.J. Herrell, B. Beker. “Modeling of Power Distribution
Systems for High-Performance Microprocessors”, IEEE
Transactions On Advanced Packaging, August 1999, 22(3):
240-248
[13] Kim N.S., Austin T., Baauw D., Mudge T., Flautner K.,
Hu J.S., Irwin M.J., Kandemir M.; Narayanan V. “Leakage
current: Moore's law meets static power”, IEEE Transaction
on Computer, Volume 36, Issue 12, Dec. 2003: 68 – 75

8A-1

756

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

