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Abstract - This paper proposes a fast and practical decoupling 
capacitor (decap) budgeting algorithm to optimize the power 
ground (P/G) network design. The new method adopts a 
modified random walk process to partition the circuit. Then, by 
utilizing the isolation property of decaps, this new method 
avoids solving the large nonlinear programming problem in 
traditional decap optimization process. Also, this method 
integrates leakage currents optimization algorithm using a 
refined leakage model. Experimental results demonstrate that 
our proposed method achieves approximate a 10X speed up 
over the heuristic method based on sensitivity and only about 
6% decap area deviation from the optimal budget using the 
programming method. 

I Introduction 

According to the roadmap of ITRS-2005 [1], robust P/G 
delivery network is considered as one of the grand 
challenges as technology scales down to 90nm and below. 
The improper design of power distribution system can 
degrade the circuit reliability and cause functional failures 
due to excessive IR drops, Ldi/dt noise, electro-migration 
and resonance effects. Power problems that are caused by 
rising frequency and continuing pushing for more device 
integrations will lead to exponential growth of the design 
and verification complexity of P/G networks.  

Driven by the importance of the robust P/G delivery 
network, many methods have been proposed to guide the 
design of the P/G networks. Excessive IR drops and the 
increasing dynamic voltage fluctuations can be captured by 
many circuit simulation methods, such as hierarchical and 
macro-modeling based method [2], subspace projection 
based approach [3], random walk based approach [5] and etc. 
In order to remove excessive IR drops, wire sizing is 
typically employed in [7], however dynamic voltage 
fluctuations may still occur even if the wire sizing strategy is 
performed. In this case, adding decoupling capacitors is a 
suitable way to reduce dynamic noise. According to the 
modeling of P/G network shown in Fig.1, decap provides 
reservoir capacitor between power and ground. 

However, decap budgeting of the P/G network is a 
difficult task because of the unbearable run time of the 
whole chip transient simulation. In [8] [9], the authors use 
nonlinear optimization program and conjugate gradient  

algorithm to acquire the optimal decap allocation under 
given constraints. In each step of conjugate gradient 
algorithm, numerical analysis should be applied to compute 
the sensitivity of the P/G network, which makes the time 
efficiency of the nonlinear optimization to be a big problem. 
As the experiment results shown in [9], the optimization 
process of a one million node circuit lasts more than 8 hours 
on a high performance workstation. Partitioning-based 
conjugate gradient method [10] has been proposed to 
optimize several small circuits instead of the whole circuit. 
But the partitioning-based method also has to solve the 
nonlinear programming problem by carrying out the linear 
system simulation in each step. On the other hand, the 
possible deviation from optimal result of budgeting may be 
significant. It is still far away from practical use for industry 
application due to its complexity. If leakage effect is 
considered, over-adding decaps may increase power 
consumption significantly. Therefore, in [11], leakage effects 

of the decap was considered, but the leakage model it use 
was a little bit over-simplified for practical use. 

In this paper, we propose a fast and practical decap 
budgeting algorithm to optimize the dynamic performance 
of P/G network. The new method uses a modified random 
walk process to partition the circuit, and utilizes the isolation 
property of the decaps. First, decaps are planted at the 
boundary of each sub-circuit, which can isolate each sub 
area very well. Then instead of solving the global 
programming problem, we use preconditioned conjugate 
gradient approach (PCG) method to get the near optimal 
solution in each sub area. Because the random walk method 
gives out very good boundaries to plant the decaps, global 
dynamic performance highly relies on the performance of 
each individual sub area. On the other hand, the PCG 
method is efficient in finding out the optimal solution 
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especially when problem size is small. Thus, the quality of 
local solution is improved. Finally, considering the overhead 
of decap planting at the boundary and the improvement of 
decap usages in local area together, we find that the design 
quality can be improved a lot within a few run time.   

Our contributions are: (1) Special random walk method is 
used to find out an optimal partition boundary to plant 
decaps. (2) We find out that trying to improve the local 
solution quality and sacrifice the design quality at the 
boundary will improve the time efficiency a lot than trying 
to improve the global solution quality. (3) A more accurate 
leakage model of decaps is integrated in our optimization 
flow to make the method more practical for application. 

This paper is organized as follows: Section II gives a 
basic review of random walk principle. Section III presents 
how to use random walk principle in our proposed 
optimization method according to the localization property. 
Section IV gives out the refined model of the decap leakage 
current. Finally, Section V concludes the paper. 

II. Review of Random Walk Process 

In [5], random walk process was introduced to P/G 
network analysis. Distinguished from the traditional 
simulation methods via solving the matrix equation, random 
walk principle is a statistical winning process. The circuit 
illustrated in Fig.2 can be written as the following formula 
(1) according to Kirchoff current law and nodal equation. 

x i i i sV g g V I               (1) 

Then we will have, 

i s
x i

i i

g I
V V

g g
             (2) 

If we define the coefficient i ig / g  to be x,ip , then we 

can get , 1x ip . Thus, x,ip can be treated as the 

probability of walking from node x to node i. This means 

that the constant s i-I / g  can be treated as the cost we 

should pay at node x. When achieving the home nodes (pad 
nodes in P/G network) at the end of winning process, we can 
calculate the total cost by summing the cost paid at each step. 
It has been proved that the average cost from one node to the 
home node in random walk process is equal to the node 
voltage calculated by traditional P/G network analysis 
process [4]. Thus, we can play the walking-game for a 
certain number of rounds, then calculate the average cost to 

calculate node voltage in a statistical way.  
We have implemented the random walk algorithm [6]. As 

shown in Table I, for a specific node of the test circuits, we 
compare the accuracy and run time from random walk 
algorithm (RW) with that of standard PCG method. Here the 

PCG results are considered as the correct solution to do the 
comparison. The results for different test cases show that the 
performance in terms of CPU time of RW is much higher 
than PCG approach. Also, for RW, the max absolute error 
margin is just about 11 mv, and the max relative error is 
approximately 0.6%. That is to say, using random walk 
approach can gain one order of magnitude speedup over 
PCG. method. 

More importantly, comparing with the flat PCG, which is 
used for solving the whole network, the random walk 
process only obtains the specific node voltage. The obvious 
advantage is that it gets solutions for a portion of the large 
P/G networks without solving the whole circuit, but the 
speedup only suits for a single node or a small number. If we 
use random walk to calculate the whole circuit with few Vdd 
pads, the performance may be poor. And it is also difficult to 
use it to solve the transient analysis problem, because the 
linear model of dynamic elements deduced by Norton 
Companion model should be updated in each simulation step. 
In other words, if we use random walk approach to solve all 
the nodes in transient analysis, it may not be very effective 
on analyzing the voltage variation for decoupling capacitor 
budgeting. 

III. Random Walk based Approach for Decap Allocation 

In this section, we mainly explain the idea of isolation 
decap planting strategy, the employ of random walk process 
to partition the whole network, and the iterative method to 
budget decaps in P/G network. 

TABLE I Comparison with PCG in Terms of Speed and Accuracy. 

Run  Time Accuracy 
Circuit  Size 

PCG (s) Random Walk 
(s) PCG (v) Random walk 

(v) 
Absolute 

Error(mv) 
Relative 
Error 

100 0.001 <0.001 1.998032 1.998423 0.391 0.02% 

1600 0.021 0.002 1.944538 1.940454 4.084 0.21% 

6400 0.146 0.015 1.901242 1.907516 6.274 0.33% 

25600 1.224 0.108 1.853241 1.861951 8.710 0.47% 

102400 10.816 1.140 1.740406 1.751299 10.893 0.63% 

Fig. 2. A representative part of P/G networks. 
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A. Isolation Decap Planting  

Usually, the frequency of noises in P/G network is high. 
Therefore, enough decaps will provide good fast return paths 
for noise current, this is why adding enough decaps can 
reduce noise level. On the other hand, under a special noise 
frequency, we can calculate how many decaps is enough to 
provide good isolation in P/G network even in time domain.    

Our decap planting technique is based on the following 
observation. Due to high via density in M1, the noise current 
inside local area usually not propagate along with the rail but 
trends to go up to M2 first from the vias. Then if no decaps 
is planted to provide fast current return path, it will go to up 
layers until the pad is reached. This usually causes long 
current paths and makes the dynamic drop obvious. 
However, the higher metal layer the noise current goes, the 
smaller voltage drop it can causes due to small metal 
resistance. So, if we can reduce the path length in M1 and 
M2, it is enough to reduce the noise level obviously.  

Definitely, the worst case is the current sources inside the 
local area turn on simultaneously. In this case, we should 
find out some boundary nodes that do not consume large 
dynamic current during this time period and plant enough 
decaps to provide fast current return path. Later we will 
introduce our method to find out such kinds of boundary. 
Here we just suppose all the boundary nodes are given.  

Then we can calculate the average current per each node 
inside the local area according to the piece wise liner (PWL) 
model of all the current sources. Suppose the internal node 

i  contains a switching current whose average current is iI ,

we will plant a decap at the boundary node with its capacity  
Ci satisfying equation (3).  

( )2
0dci

i i

C
I V

h
                 (3) 

In equation (3) above, iI  is the average current of 

internal node I during a time period h , and ( )dc
iV is the 

voltage of node i in DC analysis.  
If the boundary condition is good enough, the planted 

decaps will isolate every sub-area perfectly and each of them 
can be taken into consideration independently.  

Here we use a transient simulation tool to compare the IR 
drops of each node inside the sub area before and after 
planting process. The results are shown in Table II. 

In Table II, columns 1, 2, 3, 4 represent the sub area ID, 
the internal node number of each sub area, the total node 
number of the P/G network, and the maximum voltage drop 
before planting boundary decaps respectively. The last two 
columns represent the maximum voltage drop after planting, 
and the number of nodes in the sub-circuit whose IR drops 
have been improved. From these results, we can observe that, 
after planting decaps, the maximum dynamic IR drop in the 
sub-circuit has been reduced obviously and nearly all the 
nodes’ voltage drops have been improved. In other words, 
even if we only plant decaps at the boundary, the dynamic 
performance of each sub area can be improved.  

.

TABLE II The Voltage Drop Comparison before/after Using the 
Boundary Allocation Strategy  

Optimized Boundary

Sub
area

Node
Num

Total Node 
Number

Max Vol 
Drop(mv) Max Vol

Drop(mv)

Improved
Node
Num

1 11 744 203.62 30.83 10 

5 46 7492 260.47 72.06 46 

14 124 32112 315.71 135.19 122 

B. Partition Based on Random Walk Process  

As we mentioned in above section, the planting decaps at 
the boundary node can improve the dynamic performance of 
internal nodes. However, if unluckily the violation node 
(whose voltage is below the threshold) locates at the 
boundary, it will be hard to optimize because the planted 
decaps will not get enough charge. So in this part, we use a 
modified random walk process to partition the circuit which 
makes the violation nodes locate inside the sub-circuits. 

Firstly, we adopt the conjugate gradient (CG) solver based 
on incomplete cholesky decomposition as the transient 
analysis simulation tool. So the nodes with excessive 
dynamic drop violation are gained. 

Then the modified random walk process is applied from 
each violation node. In our new method, the violation node 
is considered as the beginning node, and the probability in 
the walking process is also treated according to Section II. 
But differently, the cost of every node mentioned in the 
random walk analysis is ignored. In the modified walking 
process, our brief target is to achieve the boundary of 
walking process. After performing the walk process several 
times, the nodes accessed from beginning node have been 
recorded so that the boundary for each violation node can be 
gained by the recorded nodes. Fig. 3 gives out the example 
of the boundary by our proposed method. We observe that 

Fig. 3. The Boundary Gained by the Modified 
Random Walk Process
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node 8 and 21 are violation nodes and the boundaries are 
given by dashed lines. From node 21, we may achieve the 
partition containing 11 nodes through the walking process. 

After we finish the walking process from each violation 
node, the boundary of each violation node is gained. But in 
the circuit, the violation nodes always lay close to each other. 
As shown in Fig. 3, the partitions, acquired by node 8 and 21, 
are not separated. So it is essential to merge the partitions 
that intersect each other and calculate a new boundary.  

At last, intersected sub-circuits are merged together. For 
each sub-circuit generated from the partitioning, we use 
localization property to solve decaps budgeting separately. 

C. Decap Budgeting Flow Based on Random Walk Process. 

The whole decaps budgeting flow based on modified 
random walk process is shown in Fig. 4. 

Fig. 4. Decaps flow based on random walk process. 

In the optimization flow, we only apply transient 
simulation at two places. One is at the very beginning to 
solve the circuit, and get all the violation nodes. The other is 
at the end of every optimization step to check the updated 
circuits and verify the optimization result. Comparing with 
the decaps budgeting methods which need to carry out long 
time to construct the adjoint network, compute the 
sensitivity of object function and solve the nonlinear 
programming, the method proposed in this paper make use 
of random walk process, but avoids complex computation 
for adjoint network etc. And also the decap budgeting 
problem using random walk process has smaller iterative 
times that demonstrated by experimental results. 

By using this decaps budget flow, we did experiment on a 
744 node circuit named u_cnt100. Results in Fig. 6 are very 
similar to Fig. 5 using a heuristic method based on 
sensitivity which is also mentioned in [9]. Further 
discussions on our proposed method are given in Session V. 

IV. Refined Leakage Current Model for Decaps 

Usually, decaps in different levels (on-board, on-package 
and on-die) are used together to reduce dynamic voltage 
noise of different frequencies [12]. Since large on-chip 
poly-insulator-poly or metal-insulator-metal decaps tend to 
consume large die area, in power/ground designs, on-chip 
decaps are usually made of MOS transistors with source and 

drain connected together [11]. Since the oxide thickness Tox

is smaller than 20Å in nanometer design, the gate leakage of 
MOS-based decaps will become more significant. As a result, 

adding decaps will hurt power consumption, which in turn 
will make the added decaps less effective to reduce the 
voltage drops. The leakage current of the MOS-based decap 
can be formulated as [11] [13]:  

2 /( ) Tox V
gate

V
I k e w

Tox
        (4) 

where  and k are parameters related to specific technology ,
w is the gate width of NMOS (or PMOS) while Tox is oxide 
thickness and V is the supply voltage. 

It is shown in the formula that the value of gateI is the 

exponential function of the supply voltage V. To consider the 
leakage current of decaps, as shown in Fig. 7(a), the leakage 
model used in [11] is a little bit over-simplified which only 
contains a constant resistor besides the decap, but the 
exponential effect is not considered. 

In this section, we use an approximate leaky decap model 
to analyze gate leakage current for MOS-based decaps. As 
shown in Fig. 7(b), we propose a more accurate leakage 
decap model containing a resistor, a capacitor and a 
time-variant current source, which uses the piece wise liner 
model, to capture the main leakage current. 

Fig. 6. Decap Allocation Result of the Proposed Method

Decaps flow based on Random Walk Process 
1. Solve the circuit, and identify the violation nodes; 
2. While (violations) { 
3.  For each violation node { 
4.    Apply modified random walk process; 
5.    Form the partition in the walking process} 
6.  Merge the partitions that intersect each other; 
7.  Use boundary allocation strategy for each partition; 
8.  Update all the decaps and solve the new circuits} 
9. Optimization Successful. 

Fig. 5. Decap Allocation Result of the Heuristic Method

Fig. 7. Two Equivalent Models for Decaps Leakage
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TABLE IV  
Experimental Results Compared to Existing Heuristic Budget and Optimal Budget Method. 

Heuristic Budget Optimal Budget Random Walk Based 
Circuit
Name

#Node #violation 
Time 

(s)
Aera of 

Decap(um2)
Time (s)

Aera of 
Decap(um2)

Time 
(s)

Aera of 
Decap(um2)

Speedup
On

Heuristic

Deviation
from

Optimal

u_cnt100 744 96 37.34 7182.58 117.08 6779.66 7.81 7190.24 4.8  6.06% 

u_cnt500 3741 665 223.59 44938.03 961.42 42372.17 33.14 45072.39 6.7  6.37% 

U05614 32112 3682 2812.04 176975.84 8709.37 169491.63 370.96 178290.51 7.6  5.19% 

U19649 112392 10755 11834.1 728931.47 39257.62 677966.08 958.63 721091.26 12.3  6.36% 

U28070 1618026 612132 28596.4 8922309.20 NA NA 1606.54 9142708.72 17.8  NA 

TABLE III Violation Node Statistics Comparison to the Simplified 
Model when our New Model is Considered. VN = Violation Node 

Circuit
Name

Node
Num

Eliminated 
VN Num 

VN
Num

Newly VN Num 
Using Our Model

U_cnt100 744 102 0 2 

U_cnt500 3741 679 0 9 

u05614 32112 3977 0 26 

After the circuits are optimized with the simplified 
leakage model, we introduce our leaky model to P/G grid 
and apply transient simulation to verify whether the 
violation nodes still exist. The analysis results are shown in 
Table III. From the results, we can observe that, although the 
optimization process with the simplified leakage model, 
reduces the violation node (VN) number to zero, new 
violation nodes still appear when our new leakage model is 
considered since the over-simplified model did not consider 
the exponential relation between the leakage current and the 
supply voltage. In order to maintain a robust optimization 
for P/G network, the decap leakage current model must be 
sufficiently accurate. 

We still use the two-stage P/G optimization method [11] 
to do with our modeling. First, it optimizes the dynamic 
voltage noise assuming all decaps are leakage free, and then 
in the second stage, in order to compensate the IR drops 
caused by leakage currents, it performs a wire sizing strategy 
using a branch and bound method to minimize the added 
wire area. 

V. Experiment 

We implement our presented algorithm in C++ 
programming languages. All the experimental results are 
obtained on a SUN UltraSparc workstation V880 with 1GHz 
CPU and 4GB memory. All test cases are real industry 
standard-cell circuits with pre-placement information in 
LEF/DEF format. Those circuits have complexities ranging 
from 744 nodes to 1.6 million nodes. 

To demonstrate the efficiency of our proposed 

optimization algorithm in Section III, we compare it with the 
existing sensitivity-based heuristic method and optimal 
budget method using nonlinear programming [9]. To make 
comparison possible, we test on the same circuits with same 
parameters and constraints. Table IV summarizes the 
comparison, where columns 1, 2, 3 represent circuit name, 
total node number, and violation node number respectively. 
And the last two columns, compares the random walk based 
method with the heuristic method in terms of CPU times and 
the optimal budgeting in the decap area. From Table IV, we 
can find that our proposed method is usually 10 times faster 
than the heuristic method which is considered as an 
extremely fast approach, and it only has about 6% decap 
area deviation with the optimal budgeting. 

Then we introduce both the simplified leakage model and 
our proposed model to the test cases after they are optimized 
by the random walk based flow. In the second stage, we try 
to detect the most sensitive nodes to perform the wire sizing 
strategy. In [11] it has been proved that the wire sizing 
strategy is not very time consuming. So the extra run time in 
the second stage may be ignored. We compare the 
optimization results between the simplified leakage model 
and our newly proposed accurate model. The comparison 
about the routing resource increase is shown in Table V. 
From the result, we can see that our proposed leakage model, 
which considers the exponential effect, occupies a little more 
routing resource than the simplified model, and the relative 
deviation is within 1%. But our proposed model makes the 
optimization process more practical for use.  

VI. Conclusion 

This paper propose an extremely fast decap optimization 
based on the idea of using random walk approach to find out 
the best partitions which utilize the localization property and 
then adding decaps on these boundary of partitions. The 
experimental results on the industry test cases demonstrate 
that the proposed method based on random walk process 
achieves approximate a 10X speed up over the heuristic 
approach, and a test circuit with 1.6 million nodes can be 
carried out within half an hour on the Sun Workstation. Then 
the paper considers a refined leakage current model for 
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decap. The combination of the proposed optimization 
process and two-stage method for accurate leakage current 
can efficiently optimize power/ground network in real 
industry design.  

TABLE V 
Optimization Result Comparison between Two Leakage Models 

using the Two-Stage Method 

Ratio of Routing Resources 
Increases Circuit

Name
#Node

Added
Decap
without
Leakage 

(um2)
Simplified 

Model
Our Accurate 

Model

u_cnt100 744 7190.24 1.85% 1.88% 

u_cnt500 3741 45072.39 5.83% 5.86% 

u05614 32112 178290.51 3.00% 3.25% 

u19649 112392 721091.26 4.91% 5.14% 
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