
Systematic Scan Reconfiguration

Ahmad A. Al-Yamani
Computer Engineering

KFUPM, Dhahran, Saudi Arabia
aaa@ieee.org

Narendra Devta-Prasanna
Electrical and Computer Eng.

U. of Iowa, Iowa City, IA 52242
ndevtapr@engineering.uiowa.edu

Arun Gunda
LSI Logic Corp.

Milpitas, CA 95035
arun@lsil.com

Abstract - We present a new test data compression
technique that achieves 10x to 40x compression ratios
without requiring any information from the ATPG tool
about the unspecified bits. The technique is applied to
both single-stuck as well as transition fault test sets. The
technique allows aggressive parallelization of scan
chains leading to similar reduction in test time. It also
reduces tester pins requirements by similar ratios. The
technique is implemented using a hardware overhead of
a few gates per scan chain.

I. Introduction
The quality of structural testing for digital

circuits is a function of the accessibility to the
internal nodes of the circuit. The most widely used
design for testability (DFT) technique to improve
accessibility is scan-path, which is based on
serialization of test data [1]. The main advantage of
scan is improving the controllability and
observability of the circuit under test by having direct
access to the states of the flip-flops. Scan-based
testing causes some challenges resulting in
significant increase in test cost. These challenges are:
(1) Test time and pin count trade off: every test
pattern needs to be shifted into these shift registers
before being applied. For example, a circuit with
128K flip-flops organized into 32 balanced scan
chains will have a chain length of 4,000 flip-flops.
For every pattern to be applied, 4,000 clock cycles
are spent loading that pattern into the scan chains.
Increasing the number of scan chains to reduce the
loading time causes an increase in another costly
parameter, which is the number of tester pins
available for loading and unloading the scan chains.
(2) Test power consumption and shift speed trade
off: Because all flip-flops are clocked while shifting
patterns in and out of the scan chains, the power
consumption of the circuit is much higher during test
than it is during normal operation. Since the circuit is
designed to work within the functional power budget,
power consumption during shift operations causes
major test validity concerns. One of the solutions for
this problem is reducing the frequency at which
patterns are shifted in and out but that negatively
contributes to the previous problem.

Another fundamental problem with test today is
the test data volume. The major cause for the

problem is accessibility limitations. The problem
exists both in scan and sequential test.

Existing solutions in the industry often address
some but not all of the above challenges
simultaneously. The most popular solution includes
several compression techniques used to reduce the
data volume and the tester channel requirements. In
such techniques, a compressed vector is loaded from
the tester into the decompression circuitry, which
expands the vector into a test pattern in the scan
chains. The test response is also compressed into a
smaller vector using the output compression circuitry.
To name a few, [2], [3], [4] and [5] discuss such
compression techniques.

Illinois Scan Architecture (ISA) is another class
of solutions that was introduced in [6] to reduce data
volume and test application time by splitting the scan
chain into multiple segments and broadcasting the
data to all of them as long as the segments data are
compatible.

Very recently [7], we presented a new
architecture and circuitry for significantly reducing
test data volume, test application time, test power
consumption and tester channel requirements. The
new architecture, called segmented addressable scan
(SAS), is based on ISA but it enables much more
aggressive segmentation of the scan chains by
enabling many different compatibility configurations
among multiple segments.

This paper presents Systematic Scan
Reconfiguration (SSR). SSR is a compression
solution that does not require any information about
don’t care bits. Yet, it achieves 10x to 40x reduction
in test data volume, test application time, and tester
channel requirements. With the same minimal
hardware overhead as SAS, SSR achieves this major
cost reduction through modifying the ATPG process
instead of utilizing the don’t care bits.

Section 2 of this paper briefly presents
segmented addressable scan. Section 3 explains
systematic scan reconfiguration. Section 4 gives
appropriate credit to previous work. Sections 5 shows
initial experimental results and Sec. 6 concludes the
paper.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

7C-5

738

II. Segmented Addressable Scan
This section is a review for segmented

addressable scan (SAS) architecture, which
incorporates some of the basic concepts from Illinois
scan [6] and from scan segment decoding [8] [9].
Combining these concepts with an efficient design of
a multiple-hot decoder operating based on positional
cube encoding [10], SAS addresses all challenges of
digital core testing raised in the previous sections.
The basic blocks of the SAS architecture are shown
in Figure 1.

M
ul

ti-
H

ot
 D

ec
od

er

Segment 1

Segment 2

Segment M

......

O
ut

pu
t C

op
m

re
ss

or
Segment
Address

Tester Channel or
Input Decompressor

Clock
Tree

Figure 1 Segmented Addressable Scan (SAS)

A given address is loaded into the multiple-hot
decoder (MHD) to refer to a single or multiple
segments. A regular decoder scheme like the ones in
[8] and [9] would take advantage of the compatibility
for data volume reduction only. Because of the MHD
used in the SAS architecture, test time can also be
optimized based on this compatibility since the
compatible classes will be loaded in parallel.

For regular one-hot decoders, the input to the
decoder is an address of the selected output. For the
MHD, the address can include don’t care bits (d’s)
allowing multiple outputs to be activated.

As explained in [7], positional cube encoding
scheme results in an implementation for the multiple-
hot decoder that requires the same hardware as a
regular one-hot address decoder. In general, if we
have S segments, we need S AND gates each with
2 log2S inputs for the multiple-hot decoder. For
clock gating, we need S 2-input AND gates.

As an example for SAS hardware overhead, the
number of transistors needed for the additional
hardware for 128 segments is less than 3000
transistors i.e., less than 1000 gates.

Using SAS, we reported an order of magnitude
or more of reduction in test data volume, test
application time, tester channel requirements and test
power consumption.

III. Systematic Scan Reconfiguration
As it is obvious from the previous section, we

need the information about the don’t care bits to
generate the compatibility classes needed for SAS
decoder address generation. We had two issues with
this requirement: (1) Some ATPG vendors don’t
provide don’t care bits information as they consider
them confidential. (2) A fault can be detected by
multiple patterns. With the ATPG unaware of the
SAS architecture, the selection of which patterns to
generate by the ATPG tool will not be driven by
higher compatibility but rather by ease of generation.

As a result of the above two issues, we were not
only forced to come up with an algorithm that doesn’t
require don’t care bits but we were also convinced
that we could drive the ATPG tool to generate more
highly compatible patterns that would require the
fewer addresses or configurations with SAS.

The SSR algorithm is based on the same SAS
hardware presented in Sec. 2. It works by configuring
the scan chains in the circuit such that they appear to
be tied together to the ATPG tool with multiple
configurations. The selection of which segments to
tie together is done such that the number of addresses
required to be loaded into the multiple-hot decoder is
minimized. Basically, an address corresponds to a
subset of the segments. For example, for a 2-to-4
multiple-hot decoder, the address 00 corresponds to
segment 0, and so on. Also, the address 0d (d = don’t
care) corresponds to segments 0 and 1. Finally, the
address dd corresponds to all 4 segments. Without the
SAS architecture, we could choose a multiplicity of
configurations and generate patterns with them tied
together. However, this would require many
multiplexers at the inputs and outputs of the scan
segments to reconfigure them. It would also either
cause problems with engineering changes or require
these multiplexers to be highly reconfigurable which
leads to high hardware overhead. The high flexibility
and simplicity of the SAS architecture allows for a
very large number of configurations (, where
S is the number of scan segments) with very simple
hardware that doesn’t need to be changed with
engineering changes.

S2log3

Physically, all segments in the architecture are
tied together. The decoder controls which segments
to load together by activating a subset of the clocks to
these segments based on the address loaded.

Our SSR algorithm selects a set of
configurations for combining scan segments together
and then fakes to the ATPG tool that these segments
are tied together to generate compatible patterns for
them. It continues with such configurations until
complete fault coverage is achieved.

7C-5

739

1. Classify all detectable faults as undetected
2. Start with the configuration dd…d
3. While (there are undetected faults)
4. Generate ATPG patterns
5. If the address care bit(s) are not the least significant
6. Move address care bits to lower significance
7. Else
8. Increase the number of care bits in address
9. Make the care bits the most significant
10. Endif
11.Endwhile
12.End

Algorithm 1 Systematic Scan Reconfiguration Algorithm.

The algorithm is best explained by an example.
Take a SAS architecture with 8 segments (the
addresses for the individual segments are 000 through
111). First, we tie all segments together and we call
this Category 0. There is only one configuration in
this category, which corresponds to the address ddd.
We run the ATPG tool with this configuration to
detect as many faults as it can. Notice that during test
application, all we need to do is load the address ddd
in the decoder and then start loading the patterns in
category 0. Also note that every pattern generated
with this configuration is 1/8th (generally 1/S) of the
size of the regular pattern (assuming segments are
balanced). Most of the time, there will be undetected
faults with this configuration. So, we switch to
category 1. In category 1, only one of the address bits
is specified and the remaining bits are all d’s. Notice
that there are 3 possible configurations (generally

 configurations) where only one bit is
specified. We start with the configuration cdd, where
c stands for a care bit. The care bit will take the
values 0 and 1. This means that we use the addresses
0dd and 1dd. These two addresses correspond to
tying segments 0, 1, 2, and 3 together and segments
4, 5, 6, and 7 together. We invoke the ATPG tool to
generate patterns and load only the faults that were
not detected with category 0 patterns. The next
configuration within category 1 is dcd, which
corresponds to segments 0, 1, 4, and 5 tied together
and segments 2, 3, 6, and 7 tied together. We again
invoke the ATPG tool with the undetected faults.
After the last configuration in category 1, we go to
category 2 where we have two care bits instead of
one. The first configuration will be ccd, which
corresponds to tying the segments in four groups (0
with 1, 2 with 3, 4 with 5, and 6 with 7). We continue
with these categories and configurations until all
detectable faults are detected. The general algorithm
for SSR is shown below in Algorithm 1. Experiments
show that we normally don’t need to go beyond
category 1.

S2log

By going through the
example above the reader
will feel that the ATPG
runtime will be very long
and that’s true. However,
there are multiple
solutions that could be
used for this problem.
Here are some of them:
(1) The first solution is
not to try all
configurations but to cut
the process in the middle
and jump to the

configuration ccc. This configuration will detect all
remaining detectable faults at any step.
(2) Another solution is not to start with the
configuration dd…d but rather with cd…d or ccd…d.
This will cut the runtime significantly because the
first configuration is the hardest for the ATPG tool.
(3) A third solution is to reduce the effort level with
the first few configurations to the minimum such that
the ATPG tool starts with the easily detectable faults.

Not surprisingly, the price for all of the above
solutions is reduction in the compression ratio. It’s
well-known to the reader by now that the SSR ATPG
runtime is a one time cost while the SSR compression
ratio is a recurrent saving.

Proper credit should be given to [11] in which
the idea of using multiple configurations of Illinois
Scan was presented. SSR has the following
distinguishing features: (1) The architecture in [11] is
based on mapping logic, multiplexers-based added
hardware that combines multiple subsets together.
The hardware is designed based on reducing the
number of compatibilities required because more
compatibilities will require more multiplexers and
more scan inputs. In addition to the processing time
required for these compatibilities, such information
about which faults are detectable with which is only
available to ATPG vendors. Our SSR hardware does
not require any such information and does not need
such extensive processing time. Furthermore, it
allows different configurations without any
additional overhead. For example, an SSR
configuration of 256 segments will automatically
allow more than 6500 configurations. For such
flexibility, the technique in [11] will require 256
6500-input multiplexers. SSR will require 256 8-
input AND gates and 256 2-input AND gates. (2) For
the same example above, the number of tester pins
required for SSR is 17. For their technique to allow
similar flexibility, the number of tester channels is
more than 6500 tester pins. It can be argued that not
all such configurations are needed to achieve an

S2log3

7C-5

740

acceptable compression ratio. However, these
configurations can be used to reduce runtime too (3)
Any engineering change orders may alter the
compatibilities based on which the hardware in [11]
was synthesized. With SSR, all we need is to select a
different set of compatibilities. No hardware changes
are needed. (4) SSR inherently offers power
reductions by selective activation. (5) The technique
in [11] is heavily based on broadcasting mode, which
as will be shown in the results section is very time-
consuming for the ATPG tool and it gets worse with
more aggressive parallelization. Their results show
up to 50x increase in ATPG runtime. As shown in the
experimental results, we found that it is very helpful
in terms of runtime to use configurations with fewer
chains in broadcast mode. This is something that SSR
automatically allows.

IV. Related work
Illinois Scan Architecture (ISA) was introduced

to reduce data volume and test application time [6].
Since a majority of the bits in ATPG patterns are
don’t care bits, there are chances that these segments
will have compatible vectors. In this case, all
segments of a given chain are configured in broadcast
mode to read the same vector. In case if the segments
within a given scan chain are incompatible, the test
vector needs to be loaded serially. Several
enhancements to the Illinois scan architecture have
been proposed and discussed in the literature for
multiple reasons.

Lee et. al. presented a broadcasting scheme
where ATPG patterns are broadcasted to multiple
scan chains within a core or across multiple cores
[12]. This scheme seems to have been concurrently
developed with ISA.

[13] introduced a token scan architecture to gate
the clock to different scan segments while taking
advantage of the regularity and periodicity of scan
chains. Another scheme for selective triggering of
scan segments was proposed in [14].

A novel scheme was presented in [15] to reduce
test power consumption by freezing scan segments
that don’t have care bits in the next test stimulus. By
only loading the segments that have care bits, data
volume, application time, and test power
consumption are all reduced at once.

[16] presented a scheme for resolving conflicts
between care bits in different segments of an ISA
architecture to improve the compression ratio.

The X-pand scheme presented in [17] also
presented a mapping scheme for an ISA based
compression. The paper discussed compression using
don’t care bits and using ATPG configurations. X-
pand, which was a major first step in the right
direction for compression, differs from SSR in two

major ways: (1) it doesn’t offer any power reduction.
(2) it’s a combinational compactor, so shadow
registers cannot be used for further reduction in tester
channel requirements.

A new scan architecture was proposed in [18] to
order the scan cells and connect them based on their
functional interaction.

A circular scan scheme was presented in [8] to
reduce test data volume. The basic concept is to use a
decoder to address different scan chains at different
times. This increases the number of possible scan
chains (2N–1 for an N-input decoder). Also, the output
of each scan chain is reconnected to its input. This
enables reusing the contents of the response captured
in the chain as a new test stimulus if they are
compatible.

The previous schemes are either limited in how
much they can benefit from compatibility between
some of the segments or don’t address the issue of
power consumption during scan or both.

Another attempt for using decoder-based
segmentation is available in [9]. In this scheme the
authors control the clocks to various segments
through a regular decoder. The main advantage of the
scheme is power reduction during scan and capture.
The solution doesn’t address data volume, or test
application time.

SAS hardware enhances the benefit from all scan
segmentation schemes by avoiding the limitation of
having to have all segments compatible to benefit
from the segmentation. In other words, any
combination of segments can be compatible to lead to
reduction in the test stimuli loaded. This is done with
minimal overhead due to the multiple-hot decoder.
The scheme simultaneously addresses data volume,
test time, power, and tester channel requirement.

Recently, a scan chain segmentation technique
was presented in [19]. The technique is a BIST
solution that selectively inserts inversions at some
locations in the scan path based on the ATPG
patterns to minimize the number of weights required
for weighted random patterns.

The technique in [20] is a recent attempt for test
cost reduction through scan reconfiguration. The
technique is based on finding the matches between
the test response of pattern n and the bits of pattern
n+1. This technique requires high routing overhead
just like random access scan presented in [21] and
enhanced in [22]. Although the titles are close to each
other, these two recent solutions are in essence very
different from SSR.

7C-5

741

V. Experiments and Results
SSR experiments were performed on the circuits

in TABLE I, both of which are 180 nm designs.

TABLE I
Circuit Characteristics.

flip-
flops

Gate
count

Clock
domains

Test
Patterns

Ckt1 29K 350K 10 1.5K
Ckt2 35.5K 450K 26 3.4K

It has been evident to us from our experiments in
[7] as well as these experiments that SSR achieves
better results with bigger designs.

TABLE II shows the compression ratio achieved
by SSR for stuck patterns using different
segmentations.

TABLE II
Stuck-at Tests Data Volume Compression.

Ckt1
Total data volume 40 Mb Comp

Ratio
32 Segments 3.3 Mb 12x
64 Segments 2.4 Mb 16x
128 Segments 2.0 Mb 19x

SSR
data
volume

256 Segments 1.9 Mb 21x
Ckt2

Total data volume 120 Mb Comp
Ratio

32 Segments 7.5 Mb 16x
64 Segments 5.8 Mb 20x
128 Segments 4.8 Mb 25x

SSR
data
volume

256 Segments 3.7 Mb 32x

Similar data for transition fault patterns is shown
in TABLE III. The results are slightly better. It’s
obvious that the compression ratio increases as the
number of segments increases for both single-stuck
and transition patterns. The price for increasing the
segments is the runtime, which we will discuss.

Similar reduction ratios are achieved for test
time. Furthermore, the fact that the cost for additional
scan chains is minimal (just a few gates per chain),
promises for significant reduction in test time. With
only 21 scan input pins, our technique can support
1,024 scan chains. such parallelization considers
parallel loading into the decoder without any shadow
registers. Using shadow registers allows for more
parallelization.

To give an idea about how much fault coverage
can be achieved while tying multiple segments
together, we show the fault coverage progressive
improvement of SSR together with the normal fault
coverage achieved with basic ATPG. Figure 2 shows

the fault coverage vs. the categories and
configurations used for Ckt1 with 32 segments (the
other segmentations behaved similarly). The figure
delivers 2 significant messages: (1) The first category
(all segments tied together) achieved more than 99%
of the achievable coverage (achievable = 97.3,
achieved = 96.3). (2) We don’t need more than the
first two categories to achieve the achievable
coverage. In fact, we even slightly exceeded it. Ckt2
exhibited a similar behavior.

TABLE III
Transition Data Volume Compression.

Ckt1
Total data volume 98 Mb Comp

Ratio
32 Segments 7.7 Mb 12x
64 Segments 5.3 Mb 18x
128 Segments 4.5 Mb 22x

SSR
data
volume

256 Segments 3.6 Mb 27x
Ckt2

Total data volume 300 Mb Comp
Ratio

32 Segments 21.7Mb 14x
64 Segments 14.1Mb 21x
128 Segments 11.8Mb 25x

SSR
data
volume

256 Segments 7.7Mb 39x

Figure 3 shows similar results to those in Figure
2 but for transition test instead of the single-stuck
test. The observations for transition patterns are
consistent with those for single-stuck patterns.

96

96.5

97

97.5

Category 0 Cat1-Conf1 Cat1-Conf2 Cat1-Conf3 Cat1-Conf4 Cat1-Conf5

Fa
ul

t C
ov

er
ag

e

Normal Coverage SAS Coverage

Figure 2 Progressive SSR coverage with 2 categories of
single-stuck patterns.

7C-5

742

83.7

84.2

84.7

85.2

Category 0 Cat1-Conf1 Cat1-Conf2 Cat1-Conf3 Cat1-Conf4 Cat1-Conf5

Fa
ul

t C
ov

er
ag

e
Normal Coverage SAS Coverage

Figure 3 Progressive SSR coverage with 2 categories of
transition patterns.

VI. Conclusions
“Necessity is the mother of invention”. We could

not implement our previous test data compression
solution due to the unavailability of the unspecified
bits information. This paper presents our solution to
this problem. The solution is a compression
technique that satisfies the test data and test time
reduction requirements of all of our designs without
requiring any information about the unspecified bits.
It also reduces tester pin requirements while requiring
minimal hardware overhead.

Acknowledgment
The authors acknowledge the support of LSI

Logic Corporation, King Fahd University of
Petroleum and Minerals, and the University of Iowa.

References
[1] E.J. McCluskey, Logic Design Principles with

Emphasis on Testable Semicustom Circuits, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1986.

[2] B. Koenemann “LFSR-Coded Test Patterns for Scan
Designs,” European Test Conference (ETC’91), pp.
237-242, 1991.

[3] E.J. McCluskey, D. Burek, B. Koenemann, S. Mitra, J.
Patel, J. Rajski and J. Waicukauski, “Test Data
Compression,” Design & Test of Computers, Vol. 20,
No. 2, pp. 76 – 87, March-April 2003.

[4] A. Al-Yamani and E.J. McCluskey, "Seed Encoding for
LFSRs and Cellular Automata," 40th Design
Automation Conference (DAC'03), June 2003.

[5] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee,
“Embedded Deterministic Test,” IEEE Transactions
on Computer-Aided Design (TCAD), Vol. 23 , No. 5 ,
pp. 776-792, May 2004.

[6] I. Hamzaoglu and J. Patel, “Reducing Test Application
Time for Full Scan Embedded Cores” IEEE
International Symposium on Fault Tolerant
Computing (FTC’99), pp. 260-267, 1999.

[7] A. Al-Yamani, Erik Chmelar, and Mikhail Grinchuk,
"Segmented Addressable Scan Architecture," VLSI
Test Symposium (VTS'05), May 2005.

[8] A. Arslan and A. Orailoglu, “CircularScan: A Scan
Architecture for Test Cost Reduction,” Design,
Automation and Test in Europe Conference and
Exhibition (DATE’04), Vol. 2, pp. 1290-1295, Feb.
2004.

[9] P. Rosinger, B.M. Al-Hashimi, and N. Nicolici, “Scan
Architecture With Mutually Exclusive Scan Segment
Activation for Shift- and Capture-Power Reduction,”
IEEE Transactions on Computer-Aided Design
(TCAD), Vol. 23 , No. 7 , pp. 1142-1153, July 2004

[10] G. De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994.

[11] S. Samaranayake, E. Gizdarski, N. Sitchinava, F.
Neuveux, R. Kapur and T. Williams, “A
Reconfigurable Shared Scan-in Architecture” VLSI
Test Symposium (VTS’03), Apr. 2003.

[12] K-J. Lee, J-J. Chen and C-H. Huang, “Broadcasting
Test Patterns to Multiple Circuits,” IEEE Transactions
on Computer-Aided Design (TCAD), Vol. 18, No. 12,
pp. 1793-1802, Dec. 1999.

[13] T-C. Huang and K-J. Lee, “A Token Scan Architecture
for Low Power Testing,” International Test
Conference (ITC’01), pp. 660-669, Oct. 2001.

[14] S. Sharifi, M. Hosseinabadi, P. Riahi and Z. Navabi,
“Reducing Test Power, Time and Data Volume in SoC
Testing Using Selective Trigger Scan Architecture,”
International Symposium on Defect and Fault
Tolerance (DFT’03), 2003.

[15] O. Sinanoglu and A. Orailoglu, “A Novel Scan
Architecture for Power-Efficient, Rapid Test,”
International Conference on Computer-Aided Design
(ICCAD’02), pp. 299-303, Nov. 2002.

[16] N. Oh, R. Kapur, T. Williams, and J. Sproch, “Test
Pattern Compression Using Prelude Vectors In Fan-
out Scan Chain with Feedback Architecture,” Design,
Automation, and Test in Europe Conference
(DATE’03), pp. 110-115, 2003.

[17] S. Mitra, and K. Kim, “XMAX: X-Tolerant
Architecture for MAXimal Test Compression,”
International Conference on Computer Design
(ICCD’03), pp. 326-330, Oct. 2003.

[18] D. Xiang, J. Sun, M. Chen and S Gu, “Cost-Effective
Scan Architecture and a Test Application Scheme for
Scan Testing with Non-scan Test Power and Test
Application Cost” US Patent Application
20040153978, Aug. 2004.

[19] L. Lay, J. Patel, T. Rinderknecht, and W-T. Cheng,
“Logic BIST with Scan Chain Segmentation,”
International Test Conference (ITC’04), pp. 57-66,
Nov. 2004.

[20] B. Arslan and A. Orailoglu, “Test Cost Reduction
Through a Reconfigurable Scan Architecture,”
International Test Conference (ITC’04), pp. 945-952,
Nov. 2004.

[21] H. Ando, "Testing VLSI with Random Access Scan,"
IEEE Computer Society Conference (COMPCON’80),
pp. 50-52, Feb, 1980.

[22] D. H. Baik, K. K. Saluja, and S. Kajihara, " Random
Access Scan: A solution to test power, test data
volume, and test time," International Conference on
VLSI Design (VLSID’04), pp. 883-888, Jan. 2004.

7C-5

743

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

