
Runtime leakage power estimation technique for combinational circuits

Yu-Shiang Lin Dennis Sylvester
EECS EECS

University of Michigan University of Michigan
1301 Beal Ave. MI 48109 1301 Beal Ave. MI 48109

Tel: 734-709-6551 Tel: 734-615-8783
e-mail: yushiang@umich.edu e-mail:dennis@eecs.umich.edu

Abstract— This paper carefully examines subthreshold leak-
age during circuit operation (runtime) and develops a novel anal-
ysis technique to capture this important effect, which is cur-
rently ignored in traditional steady-state leakage calculation ap-
proaches. We implement novel dynamic and static estimation
methods that provide significant speed improvements over full
SPICE simulations and yield estimation errors of approximately
12% on average compared to more than 2X errors in steady-state
based subthreshold leakage analysis.

I. INTRODUCTION

Rapid technology advancement in VLSI of recent years has
resulted in high performance and high density designs. How-
ever, the increasing power dissipation and tight power budgets
are now leading designer concerns. Though dynamic power
has long been studied, its contribution to total power has di-
minished because the shrinking of physical dimension leads to
the growth of leakage power[1].

Early works have shown that standby (or static) leakage
power is strongly dependent on the input vectors[2, 3]. By
modeling transistor stacks in CMOS circuits, subthreshold
leakage can be computed using analytical expressions[4]. Ana-
lytical equations have been derived for simple transistor stacks
and used to accurately measure the gate level leakage behav-
ior. To reduce the complexity of transistor modeling, transis-
tor states are solved by the Newton-Raphson method through
a 3D lookup table[5]. The authors of that work also show
that circuit-level estimation can be simplified by adopting the
notion of dominant leakage states. As an alternative to the
stack transistor approximation, effective transistor stacks were
applied for different functional Unit Blocks (FUB) together
with an effective width for total leakage power estimation[6].
Recently, the loading effect of CMOS logic circuits were
investigated[7]. It was shown that fan-in and fan-out transis-
tors can interact with the leakage component within a gate.

To obtain an early estimate of leakage power dissipation for
RTL level synthesis, regression analysis based on gate count
and width has been presented[8]. Another approach[9] shows
a static estimation method that can calculate average leakage
power efficiently.

Transient leakage behavior was discussed in [10] and it was
shown that internal nodes of a transistor stack take on the or-
der of µs to settle. Fig. 1 shows the subthreshold leakage of a
NAND2 gate in a 90nm technology over time after the transi-
tion is completed. The first case is when the input of the top

A = 1->0, B=0

B = 1->0, A=0

time (s)

su
pp

ly
 c

ur
re

nt
 (A

)

Fig. 1. Transient behavior of a NAND2 gate.

NMOS transistor A goes from Vdd to Gnd and the input of
the bottom transistor B remains at Gnd. Since the top transis-
tor turns off rapidly, the internal voltage is still higher than its
steady state immediately after the transition. Thus, Vgs for the
top transistor becomes negative and contributes far less leak-
age compared to the steady state. The opposite case happens
when a remains unchanged and b undergoes a high to low tran-
sition. The coupled voltage will pull the internal node suffi-
ciently below Gnd momentarily and cause orders of magnitude
more current than Ioff through the top transistor. Tradition-
ally, this part of power loss is not included in either dynamic
or leakage power estimation. It will be shown in this paper
that the contribution of the dynamic leakage power cannot be
neglected for modern combinational circuits.

The following sections are organized as follows. Section
2 demonstrates that runtime leakage cannot be well approxi-
mated by its steady state value. Gate-level characterization and
circuit-level estimation will be covered in Section 3 for the pro-
posed dynamic and static approaches to runtime leakage esti-
mation. Section 4 will present and discuss simulation results of
the approaches and the last section will draw conclusions.

II. LEAKAGE AS A FUNCTION OF TIME

Switching power is commonly estimated based on knowl-
edge of switching capacitance [11] while short circuit current
is analytically formulated [12, 13]. The impact of charging in-
ternal nodes has been considered in previous work [14], how-

1-4244-0630-7/07/$20.00 ©2007 IEEE.

7A-2

660

5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

NAND2

P
leak,NAND2

NAND3

P
leak,NAND3

Simulation period (ns)

A
ve

ra
ge

 le
ak

ag
e

(n
A

)

Fig. 2. Average leakage power with respect to simulation period with a fixed
number of switching events.

ever, it is very difficult to accurately compute all internal volt-
ages. More importantly, an active circuit may not allow full
transitions at its internal nodes before the next input switching
event, such that this is difficult to classify as traditional dy-
namic power dissipation.

Due to the above considerations it is hard to cleanly separate
the contributions of leakage power and other power dissipation
components even using an industry standard library characteri-
zation tool such as Star-MTB[15]. In Star-MTB, both dynamic
energy due to an input event and the leakage for that state are
independent of time. Since switching power and short circuit
power are consumed during the output switching event, length-
ening the time elapsed between switching events should not
impact their magnitudes. In this case, the difference in en-
ergy when running the same hardware with different frequency
should solely come from the leakage. We will show that the
difference is larger than steady state leakage and also decreases
with time. In the following simulations, the reference period
(period between input switchings) is set to 1ns and no explicit
output loading is used to ensure fast transitions. 50 random in-
put patterns are simulated for both NAND2 and NAND3 gates.
Running at different period, the difference in total energy from
reference period is computed and then divided by the differ-
ence in period to obtain the average (leakage) power of the ad-
ditional period. Fig. 2 shows the average leakage power of the
additional period converges to its steady state value when the
period becomes large. This experiment shows that steady state
analysis greatly underestimates the actual leakage result and
also that NAND3 leakage is actually worse than NAND2 in
practice, despite the fact that its steady state leakage is smaller.
While more stacked transistors help in reducing steady state
leakage, it also makes it more likely to produce higher leakage
transient patterns. Further discussion of this effect is included
in the next session when several characteristics of runtime leak-
age are discussed.

III. PROPOSED DYNAMIC LEAKAGE ANALYSIS APPROACH

As mentioned previously, the transient leakage component is
not properly modeled in conventional library characterization

time (s)

Vint

B

C

B

BA

A
Vint

C

C

Fig. 3. Leakage power depending on history patterns for a NAND3 gate.

flows. In order to more accurately estimate this component of
power consumption, it is necessary to further investigate circuit
parameters that have an impact on runtime leakage.

A. Gate-level characteristics of runtime leakage

Unlike its standby counterpart, runtime leakage depends not
only on the current input vector S0 but also on past input pat-
terns S−1, S−2, S−3 The reason is that when any internal
node is floating, VGS and thus the subthreshold leakage can
not determined by the input vectors alone. The information
from the previous state is helpful to identify the internal volt-
age. Fig. 3 demonstrates the condition when the top transistor
of the stack is off and other transistors are on. When input C
switches low, internal node Vint will be pulled below 0 due to
capacitive coupling. If this is followed by another high-to-low
transition by input B, Vint while already being floated previ-
ously will drop even lower because of another capacitive cou-
pling event. This will momentarily increase the subthreshold
leakage of the top transistor in order to recharge Vint. In this
case, we need two past input patterns in addition to present state
to precisely describe the behavior of such gate.

Runtime leakage is a function of time and input vectors as
described in the above experiments, but is also impacted by
input arrival times. Consider a case when both inputs of a
NAND2 gate switch from high to low. If the top transistor in-
put A switches slightly earlier than the bottom transistor input
B, the resulting behavior is similar to the case where only B has
transitioned while A remains at 1 (and vice versa). However,
estimating the gate behavior becomes more complex when both
inputs arrive nearly simultaneously. As shown in Fig. 4, the
average leakage over the 5ns time period following a transi-
tion of input A at 1ns varies significantly when B leads A by
<50ps. In this work, the subtle dependence on arrival time for
multiple-input switching event will not be parameterized. All
input transitions other than the latest one will be assumed to
be happened at the previous cycle. This simplification can be
justified by the fact that these scenario is relatively unlikely.

Glitches also contribute to power dissipation in a parasitic
fashion. In addition to their previously studied impact on short-
circuit and dynamic power consumption, glitches can change

7A-2

661

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.8 0.9 1 1.1 1.2
input b switching time (ns)

A
ve

ra
ge

 le
ak

ag
e

(n
A

)

a=1->0, b=1 a=1, b=1->0

Fig. 4. Input arrival time dependent transient leakage for NAND2.

the internal node voltages as well as the past state of the gate.
In a complex circuit with large logic depth or unbalanced logic
paths, glitches can appear frequently and propagate inaccurate
state information if it is not carefully tracked. Since we will not
analytically calculate node voltage in this work, glitches will be
determined by arrival time of the inputs. Ignoring glitch detec-
tion can cause an estimation error of approximately 5-20% in
this work depending on circuit topology.

To characterize the runtime leakage behavior, it is difficult
to find a simple yet accurate analytical expression that mod-
els most input patterns. However, it is helpful to simplify
the problem to be solved and obtain an approximate analyti-
cal form for better understanding of the waveform. Consider
two NMOS transistors in a stack where both are in the off
state while the internal voltage connecting these transistors is
lower than its steady state because of capacitive coupling (i.e.,
a high-to-low transition at one of the inputs has recently oc-
curred which pulled down the internal voltage due to gate to
source/drain overlap capacitance) . The top transistor will start
to inject current into the internal node to pull up the voltage.
At the beginning of this process, the current contribution of the
bottom transistor can be neglected compared to the top transis-
tor. Thus the following equation can be used to represent the
charging process:

Isub = µ · COX · W

L
· exp[

−V (t) − Vth

nVT
] = Cint · dV (t)

dt
(1)

where Cint is the internal capacitance, V(t) is the internal volt-
age, VT = kt/q is the thermal voltage, W and L are transistor
width and length, COX is the gate oxide per unit area, and µ is
the electron mobility. The effects of drain-induced barrier low-
ering (DIBL) and therefore VDS are neglected for simplicity.
Eq. 1 can be further simplified as

dV (t)

dt
= K · exp[

−V (t)

nVT
] (2)

where K is given by µ · (COX/Cint) · (W/L) ·exp[−Vth/nVT]
and is treated as a constant here. Solving for this differential
equation, it is found that V (t) is a logarithmic function of time

V (t) = nVT · ln[
k

nVT
· t] (3)

which also implies that subthreshold leakage is proportional to
t−1.

Read

Benchmark

Circuits

Reordering

gate netlist

from PI’s

HSPICE simulations

on basic gates

Curve-fitting using

MATLAB

Find glitch pattern

and correct past

states

Obtain gate

power &

timing from

HSPICE

Timing library

(t
rise/fall

,t
d
) =

F(trise/fall, Cload)

Propagate logic

from PI’s

Increment t

Glitch

Multi-input

switching

no

yes

Find latest

transition &

estimate timing

yes

End of

estimation

no

Show total

power

yes no

state[i] i=0:3

Itotal=Itotal+Ileak

Ta,N=td+ta,N-1

Leakage power Library

Ileak=LUT(S0,S-1,S-2,S-3)

Fig. 5. Estimation flow for circuit level leakage estimation.

B. Dynamic leakage estimation

Fig. 5 demonstrates the flow we use to estimate subthreshold
leakage during runtime.In a worst-case scenario, the number of
patterns required to be characterized will grow exponentially
with the number of inputs. For three input gates, there are a to-
tal of 4096 SPICE runs if four states are used. In this work, we
consider three history states as a reasonable tradeoff between
speed and accuracy. Using only two history states will intro-
duce averagely another 10% of error to the final results.

Logic states for each node in the circuit are propagated from
the primary inputs along with arrival times. If a multi-input
switching event occurs (not at a primary input), only the latest
transition in the clock cycle will be used to determine the cur-
rent leakage pattern. Glitch events are also determined using
the signal arrival times at the gate inputs. Since the algorithm
goes through each gate exactly once for each clock period, the
complexity of the dynamic estimation is O(Ng · Nt), where
Ng is the number of gates in the circuit and Nt is the number
of periods being simulated. To further reduce the computation
time, we will develope a static estimation method to eliminate
time dependence term so that the algorithm will be only lin-
early proportional to the circuit size.

C. Static estimation for leakage

Although dynamic estimation provides good accuracy by
tracking cycle-by-cycle behavior of signals in a circuit, a static
estimation technique may be preferable in many cases. In
high level synthesis, an input independent analysis for leakage
power is helpful to reduce runtime. Correlation between logic
signals will be ignored in our work for simplicity.

From the previous discussion, runtime leakage is highly de-
pendent on the logic state and activity rate of each input. Thus,
the state probability and transition probability of each node has
to be computed in the first step. Input state at time t is de-
noted as xt

i where the superscript t will be ignored when only
the present states are considered. Consider the case that the
input state probability P (xi = 1) and the input probability of
switching states P (xt

i, x
t+1
i) are given for input i. The output

7A-2

662

state probability of being 1 can be written as

P (xo = 1) =
X

oi∈min(o)

P (x = oi) (4)

where x = x1x2x3 . . ., xo is the logic output of the gate, and
min(o) is the set of minterm expressions of the output logic. It
is noted that due to the input independent assumption, the state
probability of oi can be written as

P (oi) = P (x1, x2, . . . xn) = P (x1) · P (x2) . . . P (xn) (5)

where n is the total number of inputs. The switching probability
of the output can be expressed using the conditional probability
of previous state

P (xt
o, x

t−1
o : xt

o �= xt−1
o) =

X

oi∈min(o)

P (xt−1 = oi)·

P (xt
o �= xt−1

o |xt−1)

(6)

where xt
o is the logic output at time t. Again, to simplify the

above equation we assume independence of input switching
probabilities. Then Pr(xt

o �= xt−1
o |xt−1

o) can be expressed as

P (xt
o �= xt−1

o |xt−1) =
Y

i

P (xt
o �= xt−1

o |xt−1
i) (7)

Pr(xt
o �= xt−1

o |xt−1
i) can be easily determined given the gate

function and switching probability of input i. Finally, total
leakage power can be estimated as

X

t

X

g∈G

Leak(P (xt, xt−1)) (8)

G is the set of gates in the circuit, and Leak(P (xt, xt−1)) is
the input switching probability rate dependent leakage power.
Leak(P (xt, xt−1)) can be computed using the previously dis-
cussed dynamic approach. 100000 random input patterns
are applied to generate each data point of Leak(P (xt, xt−1))
lookup table for more equal probability patterns.

Fig. 6 shows the leakage power with respect to the activ-
ity rate of both inputs (αa for the top transistor and αb for the
bottom transistor) of a NAND2 gate, in the case of a medium-
Vt implementation and a low-Vt implementation. The leak-
age rises uniformly with αb while increasing αa slightly de-
creases leakage. These trends can be explained by two dif-
ferent leakage behaviors originally shown in Fig. 1. Compar-
ing the different Vt devices, since low Vt devices have larger
steady state leakage they will also stabilize their internal volt-
ages much faster compared to medium Vt devices. Noting the
z-axis values in fig. 6(b), there is only a 15% deviation from the
steady state leakage estimation for low Vt devices. Therefore,
for dual-Vt designs that are generally dominated by medium Vt
devices [16], the runtime leakage contributed by low Vt devices
can be neglected with limited error.

IV. SIMULATION SETUP AND RESULTS

To validate the results of our proposed estimation methods,
HSPICE simulations are used as the golden reference. With
many potential glitches in a complex circuit, it is difficult to
accurately separate runtime leakage power from other power
dissipation sources based on a straightforward current measure-
ment. We therefore define a current measurement method that
can be realized in HSPICE simulation and reflects the nature of
runtime leakage power.

0.1
0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α
a

α
b

Le
ak

ag
e

cu
rr

en
et

 (
nA

)

0.1
0.2

0.3

0.1

0.2

0.3

3.5

3.6

3.7

3.8

α
a

α
b

Le
ak

ag
e

cu
rr

en
et

 (
nA

)

(a) (b)

Fig. 6. Average leakage current as a function of input activities for a NAND2
gate using (a) medium Vt devices (b) low Vt devices.

Tleak

End of cycle

Tsw

Begin of cycle

Tsimulate

0.95 * VDD

Tcouple

Fig. 7. Demonstration of current measurement setup in HSPICE simulation.

A. Current measurement

Fig. 7 shows the basics of the current measurement scheme.
First, leakage current is measured as the current through the
first off-transistor in the stack relative to the output node. In
this way, switching power consumption will be excluded from
the measurement result. For each cycle of simulation, leakage
current is measured only after the last input transition. The
measurement threshold is taken to be 95% of the full swing to
avoid measuring short-circuit current (note that taking 100% is
not feasible since signals transition their final 5% very slowly).
However, power consumption arising from coupling between
gate and source/drain due to the remaining input signal transi-
tion will introduce unwanted current to the leakage measure-
ment. Thus, we pre-characterize this coupling-driven current
using an ideal transition (shown by the dotted line in Fig. 7)
so that it can be calibrated out from the results. Although this
approach is an indirect measurement, it separates runtime leak-
age current from the others with a reasonable approximation.
It is noted that in this setup, the leakage from the beginning of
the cycle to the end of last transition is not included. Since the
period is relatively small compared to other idling clock cycles
and the dynamic leakage is generally much lower in this period,
the contribution to the total leakage can be neglected.

B. Simulation setup

Table I summarizes the simulation setup for this work. Due
to the larger subthreshold leakage current in low Vt devices,
the difference between steady state and runtime current is a lot
smaller than in a nominal or high Vt device. Therefore high Vt
devices are used to examine the accuracy of our leakage esti-
mation methods at room temperature (temperature effects will
be discussed later). A primary input activity rate of 12.5% is
used, meaning that one rising and one falling event occurs ev-
ery eight clock cycles which is typical of VLSI circuits[17].

7A-2

663

TABLE II
SUMMARY OF SIMULATION RESULTS. (* SIMULATION RESULTS OF 250 INPUT PATTERNS)

Clock HSPICE Dynamic method Error compared Static method Error compared Steady state Error compared
period(ps) Iavg(nA) Iavg(nA) to HSPICE(%) Iavg(nA) to HSPICE(%) Iavg(nA) to HSPICE(X)

c17 1000 8.52 7.57 -11.16 8.12 -4.66 3.51 2.43
c432 1000 236.97 210.69 -11.09 255.83 7.96 80.41 2.95
c499 1000 607.14 712.14 17.29 399.90 -34.13 230.48 2.63
c880 1000 604.54 583.74 -3.44 675.75 11.78 184.17 3.28
c1355 1000 527.10 641.82 21.76 595.92 13.06 258.16 2.04
c1908 1500 461.39 424.98 -7.89 440.46 -4.54 202.72 2.28
c2670 1500 930.5 721.2 -22.49 815.74 -12.33 426.68 2.18
c3540 1500 970.87 1075.62 10.79 1179.59 21.50 450.72 2.15

c5315* 1500 1407.61 1418.52 0.78 1466.14 4.16 809.65 1.53
c6288* 2500 2058.25 1894.82 -7.94 1938.39 -5.82 1177.33 1.75
c7552* 1500 1520.35 1650.13 8.54 1796.31 18.15 992.75 1.74

|Avg.| 11.2 12.6

TABLE I
SUMMARY OF SIMULATION SETUP

Technology Industrial 90nm CMOS

Cell libraries
INV, NAND2, NAND3

NOR2, NOR3

Benchmark circuits ICSAS ’85

PI rise/fall time 50ps (0-100%)

Input pattern
Randomly generated

with activity rate of 12.5%

Number of patterns 500 or 250

500 random input samples are used in the HSPICE simulations
except for the larger benchmarks for which 250 cycles are sim-
ulated; large runtimes prevent running more than this.

C. Simulation results

Table II shows SPICE simulation results and a comparison
with our dynamic and static estimations. On average, estima-
tion error is 11.2% and 12.6% over the benchmark circuits for
the dynamic and static estimators, respectively. In Table III,
the computation time using the dynamic estimation technique
is shown to grow linearly with circuit size and handles circuit
of 10K gates reasonably well. The static estimator, which is
based on the dynamic approach results, can significantly im-
prove the runtime speed at the expense of time to character-
ize the activity rate dependent leakage for each gate. We also
show that under reasonable switching frequency (125MHz for
a clock period of 1ns), steady state leakage is >2X different
than the runtime analysis. Computation time is based on Intel
Pentium 4 3.4GHz platform.

The sources of error in our approaches are mostly con-
tributed by signal glitching, multiple input switching, and small
input variations. Our leakage library by design considers the
input pattern history on a cycle by cycle basis, which means
that only one state per cycle is assumed. So although the dy-
namic estimator can detect the correct past states caused by a
glitch, the relative timing between transitions will not match

TABLE III
RUN TIME COMPARISON IN SECOND

HSPICE dynamic method static method

c17 691.23 0.88 0.17
c432 18793.67 16.6 0.16
c499 87338.57 49.28 0.18
c880 68730.12 40.54 0.17

c1355 109726.36 57.68 0.19
c1908 87812.18 45.45 0.24
c2670 434945.44 95.20 0.22
c3540 442573.41 103.49 0.24
c5315 553214.50 92.54 0.29
c6288 1452735.07 149.81 0.38
c7552 671991.82 211.85 0.33

those characterized in the leakage library. Similar to a multiple
input switching event, there is a region during which the leak-
age is strongly sensitive to the glitch amplitude. The last reason
is due to the simulation setup. Small input disturbance within
5% of the power rails is neglected by definition as stated in
Section A. Thus, when a small input disturbance and a regular
input transition happen at nearly the same time, the coupling
current will not be calibrated out from the HSPICE simulation
results. This is a rare scenario and should not strongly impact
accuracy. Overall, it was found that glitch modeling is still the
dominant component of estimation error.

It is instructive to show average runtime leakage as a func-
tion of switching frequency. Fig. 8 shows the trend of increas-
ing leakage current as switching frequency rises for the simple
ISCAS c17 circuit with 10000 input patterns. The figure also
shows that the leakage estimated using our approach converges
to steady state when there is very low activity, as expected. In
some cases runtime leakage is slightly lower than steady state
leakage. This can be explained by a disproportionate number
of patterns being exercised that serve to lower the subthreshold
leakage from its steady state (such as the situation when B is
low and A switches low shown in Fig. 1).

Although we did not mention temperature as a factor impact-
ing runtime leakage in previous sections, its impact on leak-
age in general is well known to be significant. Fig. 9 plots the

7A-2

664

10
−3

10
−2

10
−1

3.5

4

4.5

5

5.5

6

Switching frequency (GHz)

A
ve

ra
ge

 c
ur

re
nt

 (
nA

)

Fig. 8. Switching frequency vs. leakage current.

−20 0 20 40 60 80 100 120

2

4

6

8

10

12

14

Temperature (° C)

A
ve

ra
ge

 c
ur

re
nt

 (
nA

)

Fig. 9. Leakage current as a function of temperature. (Solid line: runtime
leakage, dotted line: steady state leakage). Note the fixed difference between
the two curves throughout the temperature range.

dependence of average leakage on temperature for a NAND2
gate. Runtime leakage (solid line) closely follows the curve of
steady state leakage (dotted line) over a wide range of tem-
perature. When temperature increases subthreshold current
rises exponentially, implying that runtime current will be much
larger but also achieve steady state faster. This results in simi-
lar power consumption as at the lower temperature. This same
reasoning was observed in the low Vt and medium Vt discus-
sion in a previous section. As a result, we can analyze run-
time leakage at a single temperature point and then employ a
temperature-dependent steady state leakage to estimate runtime
leakage at different temperatures without re-characterizing it.

V. CONCLUSIONS

In this work, transient behavior of leakage due to transistor
stacks is discussed. Due to a number of effects such as capac-
itive coupling from the input to internal nodes, the actual run-
time leakage of a gate may be either much more or less than the
steady state leakage estimation depending on the pattern his-
tory. We developed a dynamic estimation method that tracks
recent pattern history and obtains leakage using table lookup
from a pre-characterized library. To further reduce computa-
tion time and enable higher level analysis, we also propose a
static method that uses expected activity rates to find the corre-
sponding leakage of a gate. Both methods show good accuracy

and significant speedups compared to HSPICE simulations.

ACKNOWLEDGEMENTS

This work was supported by Semiconductor Technology
Academic Research Center and MediaTek International Stu-
dent Fellowship.

REFERENCES

[1] S. Borkar, “Design challenges of technology scaling,” IEEE Mi-
cro, vol. 19, pp. 23–29, Jul 1999.

[2] J. P. Halter and F. N. Najm, “A gate-level leakage power reduc-
tion method for ultra-low-power cmos circuits,” Custom Inte-
grated Circuit Conf., pp. 475–478, May 1997.

[3] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of
standby leakage power in cmos circuits considering accurate
modeling of transistor stacks,” ISLPED, pp. 239–244, Aug 1998.

[4] R. X. Gu and M. I. Elmasry, “Power dissipation analysis and
optimization of deep submicron CMOS digital circuits,” Journal
of Solid State, vol. 31, pp. 707–713, May 1996.

[5] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw,
“Duet: An accurate leakage estimation and optimization tool for
dual-vt circuits,” Trans. on VLSI, vol. 10, pp. 79–90, Apr 2002.

[6] W. Jiang, V. Tiwari, E. de la Iglesia, and A. Sinha, “Topologi-
cal analysis for leakage prediction of digital circuits,” ASPDAC,
pp. 39–44, Jan 2002.

[7] S. Mukhopadhyay, S. Bhunia, and K. Roy, “Modeling and anal-
ysis of loading effect in leakage of nano-scaled bulk-cmos logic
circuits,” DATE, pp. 224–229, Mar 2005.

[8] R. Kumar and C. Ravikumar, “Leakage power estimation for
deep submicron circuits in an asic design environment,” ASP-
DAC, pp. 45–50, Jan 2002.

[9] E. Acar, A. Devgan, R. Rao, Y. Liu, H. Su, and J. B. Sani Nassif,
“Leakage and leakage sensitivity computation for combinational
circuits,” ISLPED, pp. 96–99, Aug 2003.

[10] M. C. Johnson, D. Somasekhar, and K. Roy, “Models and al-
gorithms for bounds on leakage in CMOS circuits,” Trans. on
CAD, vol. 18, pp. 714–725, June 1999.

[11] F. N. Najm, “A survey of power estimation techniques in VLSI
circuits,” Trans. on VLSI, vol. 2, pp. 446–455, Dec 1994.

[12] S. R. Vemuru and N. Scheinberg, “Short-circuit power dissipa-
tion estimation for CMOS logic gates,” Trans. on Circuit and
System, pp. 762–765, Nov 1994.

[13] S. Deng and A. J. Al-Khalili, “A technology portable analyti-
cal model for dsm cmos inverter short-circuit power estimation,”
NEWCAS, pp. 101–104, June 2004.

[14] A. Bogliolo, L. Benini, and B. Ricco, “Power estimation of cell-
based CMOS circuits,” DAC.

[15] Synopsys, Star-MTB: The most automated and accurate cell
characterization and model generation tool on the market.

[16] T. Karnik, Y. Ye, J. Tschanz, L. Wei, S. Burns, V. Govindarajulu,
V. De, and S. Borkar, “Total power optimization by simultaneous
dual-Vt allocation and device sizing in high performance micro-
processors,” DAC, pp. 486–491, June 2002.

[17] G. Gerosa, M. Alexander, J. Alvarez, C. Croxton, M. DAddeo,
A. R. Kennedy, C. Nicoletta, J. P. Nissen, R. Philip, P. Reed,
H. Sanchez, S. A. Taylor, and B. Burgess, “A 250-MHz 5-
W PowerPC microprocessor with on-chip L2 cache controller,”
Journal of Solid State, pp. 1635–1649, Nov 1997.

7A-2

665

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

