
Optimization of Arithmetic Datapaths with Finite Word-Length

Operands ∗

Sivaram Gopalakrishnan1, Priyank Kalla1 and Florian Enescu2

1Electrical & Computer Engineering, University of Utah, Salt Lake City, UT-84112
2Mathematics & Statistics, Georgia State University, Atlanta, GA-30303

{sgopalak, kalla}@ece.utah.edu, fenescu@mathstat.gsu.edu

Abstract: This paper presents an approach to area optimiza-
tion of arithmetic datapaths that perform polynomial compu-
tations over bit-vectors with finite widths. Examples of such
designs abound in DSP for audio, video and multimedia compu-
tations where the input and output bit-vector sizes are dictated
by the desired precision. A bit-vector of size m represents in-
teger values reduced modulo 2m(%2m). Therefore, finite word-
length bit-vector arithmetic can be modeled as algebra over
finite integer rings, where the bit-vector size dictates the ring
cardinality. This paper demonstrates how the number-theoretic
properties of finite integer rings can be exploited for optimiza-
tion of bit-vector arithmetic. Along with an analytical model
to estimate the implementation cost at RTL, two algorithms
are presented to optimize bit-vector arithmetic. Experimental
results, conducted within practical CAD settings, demonstrate
significant area savings due to our approach.

I. Introduction
RTL descriptions of integer datapaths that implement poly-

nomial arithmetic are found in many practical applications,
such as in digital signal processing (DSP) for audio, video and
multimedia applications [1] [2]. Such designs perform a se-
quence of add, mult, shift type of algebraic computations
over bit-vectors; hence they are generally modeled at RTL or
behavioural-level as multi-variate polynomials of finite degree [2]
[3]. Initial algorithmic specifications (such as a matlab model)
of such systems involve data representation using floating-point
formats. However, they are often implemented with fixed-point
architectures in order to optimize the area, delay and power re-
lated costs of the implementation [4]. Subsequently, the fixed-
point model can be translated into an RTL description [5] -
that can be subsequently synthesized into a circuit.

Algebraic techniques and tools have been used for synthesis
and optimization of such systems. However, for their efficient
and correct modeling, it is important to account for the effect of
bit-vector size of the operands on the resulting computation. In
other words, a bit-vector of size m represents integer values from
0 to 2m - 1 (or integers reduced modulo 2m). This implies that
finite word-length (m) bit-vector arithmetic manifests itself as
algebra over finite integer rings (Z2m). Properties of such finite
rings should therefore be exploited for RTL optimization of bit-
vector arithmetic.

This paper models finite word-length bit-vector arithmetic
as polynomial functions (or polyfunctions) over f : Z2n1 ×
Z2n2 × · · · × Z2nd → Z2m . Here, (n1, n2, · · ·nd) are the sizes
of the input bit-vectors (x1, x2, . . . , xd). And, m is the size
of the output bit-vector f . In other words, the computation
is modeled as a multi-variate polynomial f(x1, . . . , xd)%2m,
where each xi ∈ Z2ni and f is computed %2m. Properties
of such polyfunctions have been analyzed in [6]. Over such fi-
nite rings, polynomials with different degrees and coefficients
(i.e. computations with different costs) can become computa-
tionally (bit-true) equivalent. Using a cost model, along with

∗This work has been supported in part by the following grants: 1) CAREER

award, NSF CCF-546859; and 2) NSF CCF-515010; and Georgia State Univer-

sity (GSU) Research Initiation Grant.

number-theoretic properties of such rings, the paper presents
two algorithms for optimization of finite word-length bit-vector
arithmetic.

Motivation: Consider a computation with three inputs: x[9 :
0], y[7 : 0] and z[12 : 0], and output F1[15 : 0] (Eqn. 1). Another
optimized implementation of the same computation is given by
F2[15 : 0] (Eqn. 2.).

F1 = 16384 ∗ x4 + x3 ∗ y + 49152 ∗ x2 + x ∗ z + 1221 (1)

F2 = x3 ∗ y + x ∗ z + 1221 (2)

It should be noted that the polynomials F1 and F2 are sym-
bolically distinct (polynomially, F1 �= F2). However, due to
the given bit-vector sizes, they are computationally equivalent
F1[15 : 0] ≡ F2[15 : 0]. It is clear that F2 is a cheaper implemen-
tation (area) than F1, since it has a lower degree (fewer MULTs)
and fewer monomial terms (fewer ADDs). So, given a finite
word-length bit-vector arithmetic computation F1[m−1 : 0], how
do we derive a bit-true equivalent computation F2[m − 1 : 0],
that has a lower implementation cost? This paper addresses
the above problem by integrating finite ring algebra and num-
ber theory within a CAD-based synthesis framework.

II. Related Work
Lately, there has been increasing interest in exploring the

use of algebraic manipulation for RTL synthesis of arithmetic
datapaths. The works of [7] [8] derive new polynomial models
of complex computational blocks for efficient synthesis. In [2],
Symbolic Computer Algebra tools are used to search for a de-
composition of a given polynomial according to available library
elements using a Groebner’s bases based approach. However,
the derived polynomial models represent the computations over
the fields of reals (R), fractions (Q) or over the integral do-
main (Z) - collectively called the unique factorization domains
(UFDs). This often results in a polynomial approximation [3],
without properly accounting for the effect of bit-vector size on
the resulting computation. While the work of [9] does account
for the datapath-size for allocation, it operates directly on the
original (given) arithmetic expression - thus limiting the degree
of freedom in searching for a better implementation.

Finite rings of the type Z2m are non-UFDs, due to the pres-
ence of nilpotent elements. (An element x of a ring is nilpotent
if xn = 0 for some positive integer n.) Unfortunetly, this dis-
allows the use of fundamental computer algebra results on Eu-
clidean division and factorization over non-UFDs. As a result,
contemporary (algebra-based) high-level synthesis frameworks
are limited in their capability to employ sophisticated algebraic
manipulations to reduce the cost of the implementation [2].

Other algebraic transforms have also been explored for ef-
ficient hardware synthesis: factorization and common sub-
expression elimination [10] [11], exploiting the structure of
arithmetic circuits [12], term re-writing [13], etc. However,
these techniques also overlook the effect of bit-vector size on
the given computation.

Note that our approach does not preclude some of the above
mentioned synthesis procedures [11] [10] [9]; it can be combined

1-4244-0630-7/07/$20.00 ©2007 IEEE.

5C-1

511

with these approaches as an additional optimization step. Mod-
ulo arithmetic has been applied to the task of circuit/RTL ver-
ification [14]. The concept of polynomial functions over finite
rings has also been applied to the equivalence verification of
arithmetic datapaths in [15] [16]. This paper demonstrates its
application to optimization of arithmetic datapaths.

The following two sections give the theoretical foundation re-
quired to derive algorithmic solutions to the problem addressed
in this paper. The proofs of some concepts (lemmas and theo-
rems) are provided in [6]; and hence not reproduced here.

III. Preliminary Concepts
Z corresponds to the set of integers, Z+ to the set of

non-negative integers and Zn to the finite set of integers
{0, 1, . . . , n − 1}. The ring of residue classes modulo 2m is de-
noted by Z2m ; where addition and multiplication are closed over
{0, 1, . . . , 2m−1}. Z2m [x] denotes the ring of univariate polyno-
mials over the variable x, with coefficients from Z2m . Similarly,
Z2m [x1, . . . , xd] corresponds to the ring of multivariate polyno-
mials in d-variables, also denoted as Zd

2m . In the context of our
work, n1, n2, . . . , nd corresponds to the bit-vector sizes of the
input variables x1, x2, . . . , xd and m represents the output bit-
vector size. Subsequently, we represent the RTL computations
as polyfunctions from Z2n1 × Z2n2 × · · · × Z2nd to Z2m . Chen
[6] defines the corresponding polyfunction as follows:

Definition III.1: A function f from Z2n1 ×Z2n2 × . . .×Z2nd

to Z2m is said to be a polynomial function (or polyfunction)
if it is represented by a polynomial F ∈ Z[x1, x2, . . . , xd]; i.e.
f(x1, x2, . . . , xd) ≡ F (x1, x2, . . . , xd) for all xi = 0, 1, . . . , 2ni −
1; i = 1, 2, . . . , d; (Refer to column 1 in table I).

It is possible for a polynomial with non-zero coefficients to
vanish on such mappings; in which case the polynomial rep-
resents a nil polyfunction or a vanishing polynomial (Refer to
column 2 in table I).

Henceforth, polynomial addition and multiplication are per-
formed %n (n = 2m). Also, we use the multi-index notation:
k =< k1, k2, . . . , kd > are the (non-negative) degrees corre-
sponding to the d input variables x =< x1, x2, . . . , xd >, re-
spectively.

IV. Identifying Vanishing Polynomials
We analyze the univariate polynomials that vanish on Z2m [x]

(for didactic purposes) and then extend the results to vanishing
polynomials from Z2n1 × Z2n2 × · · · × Z2nd to Z2m .

Number Theory Perspective: According to a fundamental re-
sult in number theory, for any n ∈ N , n! divides the product of
n consecutive numbers. For example, 4! divides any 4 consecu-
tive numbers: 99×100×101×102. Consequently, it is possible
to find the least k ∈ N such that n divides k! (denoted n|k!).
We denote this value k as k = SF (n)1. In the ring Z2m , let
SF (2m) = k, such that 2m|k!. For example, SF (23) = 4 as 8
divides 4! but 8 does not divide 3!; hence, least k = 4.

This property can be utilized to interpret the concept of van-
ishing polynomial as a divisibility issue in Z2m . If f(x)%2m ≡
0, then 2m|f(x). In Z23 [x], let 8|f(x). But, 8|4! too, as
SF (8) = 4. Therefore, if for all x, f(x) can be represented
as a product of 4 consecutive numbers, then f(x) vanishes in
Z23 . So, how can we represent a polynomial as a product of 4
consecutive numbers? The answer is: x(x − 1)(x − 2)(x − 3).
Such a product expression is referred to as a falling factorial
and is formally defined below.

Definition IV.1: Falling factorials of degree k ∈ Z are defined
according to: Y0(x) = 1, Y1(x) = x, Y2(x) = x · (x − 1), . . .,
Yk(x) = x · (x − 1) · · · (x − k + 1).(Column 1 in table II shows
the example of a univariate vanishing polynomial.)

1This is a well-studied function in number theory. It was initially studied

by Kempner [17] and was recently re-visited by Smarandache [18]. In recent

literature, it is often referred to as the Smarandache function and hence we refer

to it as SF (n).

The above concept of falling factorials can be similarly de-
fined for multi-variate expressions over Z2m [x1, . . . , xd]:

Yk =

d∏

i=1

Yki
(xi) = Yk1(x1) · Yk2(x2) · · ·Ykd

(xd) (3)

Extending the above concept, if a multivariate polynomial
in Z2m [x1, . . . , xd] can be factorized into a product of SF (2m)
consecutive numbers in at least one of the variables xi,
then it vanishes %2m. Column 2 in table II illustrates this idea
where both the input variables x1, x2, as well as the output F
are in Z22 . We wish to extend the above concepts to analyze
polynomials over Z2n1 × Z2n2 × . . . × Z2nd to Z2m . For this
purpose, we define another quantity [6]:

µi = min{2ni , SF (2m)}; i = 1, 2, . . . , d. (4)

We consider the following results from [6]:
Lemma IV.1: Let k =< k1, k2, . . . , kd >∈ (Z+)d. Then,

Yk ≡ 0 if and only if some ki ≥ µi.
Column 3 in table II gives an example illustrating the applica-
tion of this lemma.

When a polynomial cannot be factored into such Yk expres-
sions, can it still vanish? Consider the quadratic polynomial
4x2 − 4x in Z8[x]. It can be written as 4(x)(x − 1). While
4x2 −4x cannot be factorized as (x)(x−1)(x−2)(x−3), it still
vanishes in Z8. The missing factors, (x− 2)(x− 3) in this case,
are compensated for by the multiplicative constant 4; therefore,
4x2 − 4x ≡ 0%8. We now need to identify the constraints on
such multiplicative constants such that the given polynomial
would vanish. We state the following result [6]:

Lemma IV.2: The expression gk · Yk ≡ 0 if and only if
2m

gcd(2m,
∏

d

i=1
ki!)

|gk; where,

gk ∈ Z;

k =< k1, k2, . . . , kd > ∈ Zd such that ki < µi,∀i = 1, . . . , d.
In column 4 of table II, we show an example where this lemma
can be applied.

The above results can be extended to derive a unique canoni-
cal representation for a polynomial function from Z2n1 ×Z2n2 ×
. . . Z2nd to Z2m . We state the following theorem [6]:

Theorem 1: Let F be a polynomial representation for the
function f from Z2n1 × Z2n2 × . . . Z2nd to Z2m . Then, F can
be uniquely represented as:

F = ΣkckYk (5)

where, Yk is the falling factorial defined in Eqn. 3;
k =< k1, . . . , kd > for each ki = 0, 1, . . . , µi − 1;
ck ∈ Z such that 0 ≤ ck < 2m

gcd(2m,
∏

d

i=1
ki!)

.

Proof: The proof is provided in [6]. Briefly reviewing it,
any polynomial F from Z2n1 × Z2n2 × . . . Z2nd to Z2m can be
decomposed in the form

F = QµYµ + ΣkakbkYk + ΣkckYk (6)

where,
Qµ ∈ Z[x1, . . . , xd] is an arbitrary polynomial;
Yk is the falling factorial defined in Eqn. 3;
Yµ = Yk for some ki ≥ µi;
k =< k1, . . . , kd > for each ki = 0, 1, . . . , µi − 1;
ak ∈ Z is an arbitrary integer,

bk = 2m

gcd(2m,
∏

d

i=1
ki!)

and

ck ∈ Z is an arbitrary integer, such that 0 ≤ ck < bk.
It can be clearly seen from eqn. 6, that the first term (QµYµ)

is a vanishing polynomial from Lemma IV.1, and the second
term (ΣkakbkYk) is a vanishing polynomial from Lemma IV.2.
The third term (ΣkckYk) cannot be reduced any further, since

5C-1

512

TABLE I

Examples (preliminary concepts)

Example I Example II

Let f : Z21 × Z22 → Z23 be a polyfunction in two variables (x1, x2), defined as: Consider f(x1, x2) : Z2 × Z22 → Z23

f(0, 0) = 1, f(0, 1) = 3, f(0, 2) = 5, f(0, 3) = 7, f(1, 0) = 1, f(1, 1) = 4, f(1, 2) = 1, f(1, 3) = 0. represented by the polynomial F =

Then, f is a polyfunction representable by F = 1 + 2x2 + x1x2
2, 4x1x2

2 + 4x1x2. While F has non-zero

since f(x1, x2) ≡ F (x1, x2)%23 for x1 = 0, 1 and x2 = 0, 1, 2, 3. coefficients, F%8 ≡ 0, ∀x1 ∈ Z2, x2 ∈ Z4.

TABLE II

Examples illustrating the lemmas (Vanishing Polynomial)

Univar. Vanishing Poly Multivar. Vanishing Poly Lemma IV.1 Lemma IV.2

Consider F (x) over Z23 [x] Consider F (x1, x2) over Z22 [x1, x2] Consider F (x1, x2) over Consider F (x1, x2) over

where F (x) = where F (x1, x2) = Z21 × Z22 → Z23 Z21 × Z22 → Z23 where

x4 + 6x3 + 3x2 + 6x. x4
1x2 + 2x3

1x2 + 3x2
1x2 + 2x1x2. where F = x2

1x2 − x1x2. Here, F = 4x1x2
2 + 4x1x2. Here

Here SF (23) = 4. Here, SF (22) = 4, and the highest SF (23) = 4, k1 = 2, k2 = 1. 2n1 = 2, 2n2 = 4 and 2m = 8

F (x) can be factored degrees of x1 and x2 are µ1(2
1) = min{21, 4} = 2 = k1 k = < k1, k2 >=< 1, 2 >. So

as a product of 4 k1 = 4, and k2 = 1, respectively. satisfying Lemma IV.1 and
∏2

i=1
ki! = 1! · 2! = 2, SF (2m = 8) = 4;

consecutive numbers: Note that F%4 can be equivalently µ2(2
2) = min{22, 4} = 4 > k2 µ1(2) = min{2, 4} = 2,

i.e. (Y4(x)). Therefore written as F = Y<4,1>(x1, x2)%4 F can now be written as µ2(4) = min{4, 4} = 4.

F (x) is a vanishing = Y4(x1) · Y1(x2)%4 x2
1x2 − x1x2 ≡ x1(x1 − 1)x2 F ≡ 4x1x2

2 + 4x1x2 ≡ 4 · x1 · x2 · (x2 − 1)

polynomial in Z23 [x], Since F%4 can be represented as a ≡ Y<2,1>(x1, x2) ≡ g<1,2> · Y<1,2>(x1, x2) ≡ 0

or F (x) ≡ Y4(x)%23, product of 4 consecutive numbers ≡ 0 because 8
gcd(8,1!·2!)

= 4

hence F (x)%23 ≡ 0. in x1, 22|F and F ≡ 0 which divides g<1,2> = 4.

the coefficient ck < bk and hence bk cannot divide ck (for
Lemma IV.2 to hold true). Hence, eqn. 6 can simply be written
as

F = ΣkckYk (7)

The following example illustrates the above concept.
Example IV.1: Consider a polynomial F = x2

1+7x1+6x1x
2
2+

6x1x2 for f : Z2 × Z22 → Z23 . Here, µ1(2) = min{2, SF (8)} =
2; µ2(2

2) = min{22, SF (8)} = 4. F can be written as follows:

x2
1 + 7x1 + 4x1x

2
2 + 4x1x2 ≡ Y<2,0>(x1, x2) +

a<1,2>b<1,2>Y<1,2>(x1, x2) + c<1,2>Y<1,2>(x1, x2)

≡ c<1,2>Y<1,2>(x1, x2)

≡ 2x1x
2
2 + 2x1x2

Here, a<1,2> = 1, b<1,2> = 8/(8, 1! · 2!) = 4 and c<1,2> = 2.
F can be written in the form given by Theorem 1, and is the
unique canonical form representation of the polynomial.

V. Algorithms:Polynomial Reduction
In this section, we present two algorithms that use the con-

cepts described in the earlier section to optimize a polynomial
function from Z2n1 × Z2n2 × · · · × Z2nd to Z2m .

A. Algorithm I
Algorithm 1 takes the following inputs: Input polynomial F1,

number of variables d, variables x1, . . . , xd with corresponding
input bit-widths n1, . . . , nd and the output bit-width m. The
algorithm then operates as follows:
1. Assign F1 to poly and min poly. Assign Cost(F1) (refer
section VI for the cost model) to min cost.
2. Compute value of SF (2m). It has a complexity of O(n/log
n) [19]. This value is then used to obtain the µi values.
3. Find the max. degree (ki) of each variable xi in poly.
4. Divide the polynomial by the falling factorial expressions Yµ

in each of the d variables.
5. If the remainder is zero, it is a vanishing polynomial and
the cost of the poly is zero. because F = QµYµ. Else, use the
remainder as the new poly.
6. Update the degrees (ki), min cost and min poly and con-
tinue dividing from Yµ−1 (highest degree) to Y0 for each vari-
able.

7. After each division, check for the following conditions:
• If the quotient can be written as ak · bk (where bk is defined

according to Theorem 1), and the remainder is zero, return 0.
It is a vanishing polynomial.
• If the quotient can be written as ak · bk, and the remainder

is non-zero, use the remainder as the new poly.
• Check if the coefficient ck > bk. If so, perform the division

with bk*Yk, and again use the remainder as the new poly.
• Update the min poly and continue with the next iteration.
min poly gives the polynomial with the least cost implemen-

tation in this reduction procedure and min cost gives its corre-
sponding cost. The number of multi-variate divisions is bound
by O(

∏
d
µi), where µi is as defined previously and d is the

total number of variables.

B. Algorithm II
Consider a polynomial f = x6+8x3+8x, with bit vector-sizes

of {x, f} being {3, 4}, respectively. According to the previous
algorithm, the reduction starts with the highest degree mono-
mial (highest degree = 6, in this case) and proceeds further.
Using the first algorithm, the polynomial reduction results in
the following set of polynomials.
Initial Polynomial: f = x6+8x3+8x
1st Intermediate Polynomial: f = 11∗x5+x4+9∗x3+8∗x2+4∗x
2nd Intermediate Polynomial: f = x5 +11∗x4 +7∗x3 +14∗x2

Final Reduced Polynomial: f = x5 + x4 + 3 ∗ x3 + 12 ∗ x.
Using the cost model, the initial polynomial is estimated to

be the least cost polynomial (which requires only 7 multipliers,
2 constant multipliers and 2 adders). However, in this poly-
nomial, the sub-expression 8x3+8x is a vanishing polynomial
in Z24 . Thus it can be seen that if we choose to reduce this
sub-expression only, the initial polynomial f optimizes to x6.
Initial Polynomial: f = x6+8x3+8x
(Reduce only 8x3+8x and retain x6 as is)
Optimized Polynomial: f = x6.

Now, the optimized polynomial requires only 5 multipliers.
Thus, using an approach, where only sub-expressions of the
polynomial are reduced, the optimization is further enhanced.

To lend an algorithmic procedure to such an approach, in-
stead of iterating over all possible degrees (refer Alg. I), we
iterate over all combinations of all possible degrees. In other
words, consider the previous example where f = x6+8x3+8x.
The combination of all possible degrees is given by the set

5C-1

513

Algorithm 1 OPT POLY: Optimize a given polynomial.

OPT POLY(F1, d, x, m, n)

F1 = Polynomial in x; d = Number of variables;

x[1 . . . d] = List of input variables; m = Bit-width of F1;

n[1 . . . d] = List of bit-widths of input variables, x;

poly = F1; min cost = cost(poly); min poly = poly;

Compute SF(2m);

/*Compute the values for µi*/

for i = 1 to d do

µ[i] = min{SF (2m), 2n[i]}; k[i] = Max. degree of x[i] in poly;

end for

/*Check if Yµ divides poly*/

for i = 1 to d do

/*Lemma IV.1*/

if (k[i] ≥ µ[i]) then

quo, rem = poly

Y<0,...,k[i],...,0>(x1,...,xd)
;

if (rem == 0) /* rem = remainder */ then

min cost = 0; /*poly = QµYµ; a vanishing polynomial*/

min poly = 0; return 0;

else

poly = rem;

Update min poly, min cost;

break;

end if

end if

end for

/*Iterate over all possible degrees*/

for j =
∏

d

l=1
(µl) to 1 do

/*Update degrees*/

for i = 1 to d do

k[i] = Update degree of x[i] in current poly;

end for

quo, rem = poly

Y<k[0],...,k[d]>(x1,...,xd)
;

b<k[0],...,k[d]> = 2m

gcd(2m,

∏
d

i=1
k[i]!)

;

/*Lemma IV.2*/

if (b<k[0],...,k[d]>|quo) then

if (rem == 0) then

min cost = 0; min poly = 0; return 0;

else

poly = rem;

Update min poly, min cost;

end if

end if

ck = Coefficient of < k[0], . . . , k[d] >

/*Check for the range of the coefficient*/

if (ck > b<k[0],...,k[d]>) /*if coefficient > the range*/ then

quo, rem = poly

b<k[0],...,k[d]>∗Y<k[0],...,k[d]>(x1,...,xd)
;

poly = rem;

Update min poly, min cost;

end if

end for

return min poly;

{(x6+8x3+8x), (x6+8x3), (8x3+8x), (x6+8x), (x6), (8x3),
(8x)}. Each element of the set is considered as a sub-expression,
and reduced 2. It should be noted that Algorithm I is subsumed
in Algorithm II, since one of the elements of the set is the en-
tire polynomial itself. Since this is a more pervasive algorithm
than the previous one, the complexity clearly increases. In this
algorithm, the number of multi-variate divisions is bound by

O(µ) = O(2

∏
d

µi), because in the worst-case it has to iterate
through all the combinations of all degrees for every variable
to determine the optimized polynomial. Using a classic branch
and bound procedure, we can further optimize this search and
determine the least cost polynomial. Due to lack of space, we
do not provide a pseudocode for algorithm II.

2Note that, if there are k monomial terms, the combination set will have 2k

- 1 elements

VI. Modeling Area Cost at Polynomial Level
In the two algorithms, at every reduction step we get an in-

termediate polynomial equivalent to the original one. We wish
to estimate the cost (implementation area) of the original poly-
nomial, all intermediate polynomials and also the final reduced
form and select the least cost expression for implementation.

Polynomial computations correspond to additions, multipli-
cations and constant multiplication operations (where one in-
put to the multiplier is a constant). For instance, consider
f = 5 ∗ x3 ∗ y + 10 ∗ x2 ∗ y2 + 13 ∗ x ∗ y + 6 ∗ y. f can be imple-
mented with 3 adders, 7 multipliers and 4 constant multipliers.
If we can determine the cost of the implementation area of
these modules separately, their total cost would reflect the cost
of implementing the polynomial f . Hence, we model the cost of
adders, multipliers and constant multipliers (implemented with
finite input and output bit-vector sizes) at polynomial level.

Adders: We estimate the area of an adder based on the im-
plementation of a ripple-carry adder. If the input bit-vector
sizes of the adder are n1 and n2, and the output bit-vector size
is m: if Max(n1 + 1, n2 + 1) > m, then we require atleast m
Full Adder modules, else if Max(n1 + 1, n2 + 1) < m, then we
will require Max(n1 +1, n2 +1) Full Adder modules Cost(Add)
= n∗Cost(FA) where Cost(FA) is the cost of a full adder and
n is the number of Full Adder modules.

Multipliers: The estimated cost of an n1 × n2 to m-bit mul-
tiplier is modeled on an array multiplier implementation [20].

a0x0a1x0a2x0a3x0

a3x1
a0x1a1x1

a0x2a1x2

a0x3

00

FA FA

FA FA

FA FA

p0p1p2p3p4p5

FA

FA
a2x2

a1x3a2x3

0

a2x1

FA

FA

FAFA

a3x2

0

p6p7

a3x3

level 1

level 2

level 3

Fig. 1. Implementation of a 4-bit array multiplier (AX)

Consider the 4-bit array multiplier shown in Fig. 1. It is
composed of partial product generators and an array of full
adder modules. Its area can be modeled as the sum of par-
tial product cost and the array network cost. We are inter-
ested in the area occupied by the partial products and the ar-
ray network responsible for generating only the lower m out-
put bits. For instance, in Fig. 1, if the value of m is 4,
then the region of interest is to the right side of the dotted
line. Therefore, the cost of the multiplier can be estimated
as: Cost(mbit Mult) = Cost(PP (m)) + Cost(Arr(m)), where
Cost(PP (m)) is the cost of partial products (implemented with
AND gates) and Cost(Arr(m)) is the cost of the array network
(implemented with FA modules). Using the structure of the
array multiplier and the values of n1, n2 and m, we can deter-
mine the minimum number of partial products and Full adder
modules required to implement an n1 × n2 to m-bit multiplier.

Constant Multipliers: When an input to a multiplier is a
constant, then the constant can be propagated to simplify the
circuit. To model this effect, we need to analyze its bit pattern
and estimate a cost based on the simplification caused by prop-
agating these bits. We model constant multiplication using the
array multiplier model. An n1×n2 to m-bit constant multiplier
is modeled as an m×m to m-bit multiplier (by either padding

5C-1

514

0’s or truncation), to apply our constant propagation strategy.
In other words, if n1 (or n2) is smaller than m, then the remain-
ing bits (m - n1, (or m − n2)) are padded with zeroes till the
m-th bit. If n1 (or n2) is greater than m, then only the lower
order m-bits (from n1, and n2) are chosen for the implementa-
tion. In this manner, for an m × m to m-bit multiplier, only
the lower order m-bits are analyzed for constant propagation.

Simplification using Constant Propagation: In figure 1,
consider X as the constant and A as the variable. To propagate
the constant X, we analyze the bits from the least significant
position (X[0]) to the most significant one (X[m − 1]). Here
are some results that we have derived to estimate the area as a
result of constant propagation.

1. While traversing X from its LSB to MSB, until we reach
a bit position whose value is 1, the cost of the implementation
is zero due to zero propagation:

Consider the bit-pattern of X = {X[m − 1], X[m −
2],, X[i] = 1, 0, 0..., X[0] = 0}. Here, X[i] is the least sig-
nificant bit with value 1. The partial products generated using
X[k], k < i will be 0. Therefore, up to the i-th level, 0s are
fed into the full adder modules, which results in their complete
elimination (simplification) upto (i-1) levels.

2. Until we reach the second bit position with value 1 in X
while traversing from its LSB to MSB, the cost of the imple-
mentation is still zero:

Consider the bit-pattern of X = {X[m − 1], ..., X[k] =
1, 0, ..., X[i] = 1, 0, ..., X[0] = 0}. Here X[i] is least bit posi-
tion with value 1 and X[k] is the next least bit position with
value 1. We know that area cost due to the bits from X[0] to
X[i − 1] is zero from the previous result. The partial products
generated by X[i] keep propagating until the kth level because:
a) there are no carry signals generated in the ith level; and b)
every subsequent level until (k-1) performs an addition with 0
(partial products due to X[i + 1] to X[k − 1] are 0).

3. On encountering the second bit position with value 1 in
the traversal of X from its LSB to MSB, the full adder modules
in that level can be optimized to half adder modules:

Consider the bit pattern used in the previous result. The
partial products generated by X[i] and X[k] are added at the
kth level. However, the carry-signals feeding the full adder
modules in the k-th level are 0. Hence these can be optimized
to half adder modules.

4. For the subsequent levels, if the value of X[i] at any level
is 0, then the full adders in that level reduce to half adders:

Since the partial products generated due to X[i]′s = 0 are
also 0, the full adders being fed by these partial products are
simplified to half adders.

Based on the bit pattern of the constants, the above models
are employed to estimate the effect of constant propagation on
the multiplier area.

Example: Consider the effect of 3 ∗ A and 5 ∗ A in a multi-
plier with output bit-vector size m=4. Figures 2 and 3 depict
the optimization in the designs for the multiply operation with
constants 3 and 5, respectively.

a0 1a1 1a2 1a3 1

a0 1a1 1

a0 0a1 0

a0 0

00

FA FA

FA FA

FA

p0p1p2p3

FA

0

a2 1
level 1

level 2

level 3

 . . .

 . .

 .

a1a2a3

a0a1
HA HAHA

a2

HA HA

HA

a0

level 1

level 2

level 3

p0p1p2p3

Fig. 2. Implementation of 3A, X=0011

a0 1a1 1a2 1a3 1

a0 0a1 0

a0 1a1 1

a0 0

00

FA FA

FA FA

FA

p0p1p2p3

FA

0

a2 0
level 1

level 2

level 3

 . . .

 . .

 .

a1a2a3

HA HA

HA

a0

level 1

level 2

level 3

p0p1p2p3

a1 a0

Fig. 3. Implementation of 5A, X=0101

Quantifying the cost We employ the unit model cost, where
every logic gate can be implemented with a unit cost ,to quan-
titatively calculate the area of the polynomial.

VII. Experiments
The algorithms were implemented in Perl with calls to

Maple [21], along with the presented cost model, for opti-
mizing the given polynomial. The polynomial representing
the datapath and the operating bit-vector size (input/output
- n1, n2,nd/m) were given as the inputs to the tool. Step-
by-step reductions of the given polynomial were performed us-
ing our algorithms until a minimal form was obtained. For the
original, minimal and every intermediate polynomial generated,
the implementation cost was estimated. The polynomial with
the least estimated cost was selected for implementation.

We used the Synopsys Design Compiler to generate the re-
quired n1 × n2 to m-bit adders and multipliers. These units
were used, subsequently, as functional units to implement the
polynomials. To compare the area statistics, both the original
polynomial and the reduced polynomial with least estimated
cost were implemented using the Synopsys Module Compiler.

Experiments have been performed on a variety of DSP bench-
marks and the results are presented in Table III. The first four
examples are from [12]. Deg4, Janez and Cubic are polyno-
mial filters used in image processing applications [1]. IRR is an
image rejection receiver from [22]. Mibench is an automotive
application from [23]. Antialias and PSK (phase shift keying)
are from [2], and IIR-4 is a 4th order IIR computation. Col-
umn 2 lists the design characteristics: number of variables, their
highest degree and the bit-vector sizes of the inputs/output
(n1, ..nd/m). Column 3 lists the estimated cost of the origi-
nal polynomial. Column 4 and 5 list the cost of the optimized
polynomial using algorithm I (Alg1) and algorithm II (Alg2),
respectively. In columns 6 and 7, we list percentage improve-
ment obtained in the estimated cost using Alg1 (Imp1) and
Alg2 (Imp2), respectively. For the implementation cost, we
report the results of Alg2. Column 8 and 10 list the actual im-
plementation area of the original and the selected polynomial
(synthesized), respectively. Column 9 and 11 depict the critical
path delay of the original and the selected polynomial implemen-
tations respectively. These implementations have been realized
using shifters, multipliers and adders. Column 12 depicts the
improvement in the area of the implementation while column
13 depicts the improvement in the critical path delay in the im-
plementation. If the improvement in the estimated cost is less
than 1%, we choose the original polynomial for implementation.

For the first 9 benchmarks, we are able to find a reduced
implementation. There is an average improvement of approx-
imately 34% in actual implementation. For the remaining
benchmarks, our cost estimate provided an improvement of
less than 1% and hence, the original polynomial was chosen
for implementation. Considering all the benchmarks, the av-
erage improvement in the actual implementation area is still
approximately 23%.

Expression manipulations: There are many expression ma-

5C-1

515

TABLE III

Comparison of performance of the estimation and implementation costs

Benchmark Var/Deg/ Estimated Cost Implementation Cost

n1, ..nd/m Orig Alg1 Alg2 Imp.1 % Imp.2 % Original Alg2 Improv. %

Area Delay Area Delay Area Delay

Poly1 3/4/14, 14, 16/16 7581 3927 3766 48.2 50.3 37430 372.45 20628 288.63 44 22.5

Poly2 3/4/10, 8, 13/16 4820 2393 2393 50.3 50.3 28848 288.63 11684 214.35 59.49 25.73

Poly3 2/5/13, 13/16 6227 5465 5465 11.7 11.7 28840 335.32 23006 298.18 20.2 11.07

Poly unopt 1/4/12/16 5196 2994 2994 42.3 42.3 28836 335.32 14424 214.35 49.9 36.07

Deg4 3/4/16, 8, 16/16 22731 16361 16361 28 28 116684 632.44 82718 521.02 29.1 17.61

Janez 1/5/12/16 8907 6163 6154 30.8 30.9 42910 372.45 28840 335.32 32.7 9.97

Mibench 2/9/16,12/16 58510 48226 48226 17.6 17.6 249290 977.31 216772 921.07 13.04 5.75

IRR 2/4/16,8/16 10864 6943 6811 36.1 37.3 54594 400.04 37792 362.91 30.77 9.28

Antialias 1/7/11/16 15997 12011 12011 24.9 24.9 79254 540.12 59712 502.98 24.65 6.87

PSK 2/4/11,14/16 18140 18140 18140 <1% <1% 76876 - - - - -

Cubic 3/3/24,28,31/32 47595 47586 47586 <1% <1% 256388 - - - - -

IIR-4 2/4/24,29/32 49339 49333 49333 <1% <1% 213408 - - - - -

nipulation techniques that have been used to optimize arith-
metic datapaths such as factorization, tree-height reduction,
horner implementation and common-subexpression elimination.
While such techniques are commonly used in synthesis of arith-
metic polynomials, our approach can be used as a pre-processing
step, thus providing an additional scope for optimization. High-
level synthesis techniques such as scheduling and resource-
sharing can also be employed to reduce the number of compo-
nents and improve the critical path in an arithmetic expression.

All the techniques mentioned above operate on the given
data-flow graph (computation) and will still need to implement
all the operations shown in that graph. On the other hand,
the data-flow graph generated by our approach leads to a bet-
ter implementation. This graph can be further optimized by
expression manipulation, scheduling and resource-sharing.

Limitation of our approach: Given a polynomial f of degree
k, one can derive a vanishing polynomial q of higher degrees
(say, k+1) too. By computing f + q, one can create a higher
degree (k+1) polynomial equivalent to f . The cost of f + q
might be cheaper than f . Our approach cannot identify cheaper
implementations of a higher degree. Unfortunately, there can
be more than one vanishing expression of a given degree (de-
pending upon the coefficients) that can be added to f . This
makes it difficult to derive a “convergent” algorithm to search
for low-cost implementations of higher degree.

VIII. Conclusions and Future Work
This paper has presented an area optimization approach for

polynomial datapaths: where the input and output bit-vector
sizes of the operands are given as (n1, n2, ..., nd) and (m), re-
spectively. Finite word-length bit vector arithmetic is then
modeled as a polyfunction from Z2n1 × Z2n2 × · · · × Z2nd to
Z2m . Exploiting the concept of vanishing polynomials over this
mapping, we present two algorithms to optimize a given poly-
nomial to a polynomial with low cost implementation. A cost
model to estimate the area at polynomial level is also presented.
Using the optimization procedure, along with the cost model,
allows to select an equivalent lower cost expression for synthesis.
Experiments show significant area savings using our approach.
Also, it can be seen that the area savings do not worsen timing.
We are currently investigating how to extend our approach to
perform polynomial decompositions over such arithmetic.

References

[1] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing, Wiley-

Interscience, 2000.

[2] A. Peymandoust and G. DeMicheli, “Application of Symbolic Computer

Algebra in High-Level Data-Flow Synthesis”, IEEE Trans. CAD, vol. 22,

pp. 1154–11656, 2003.

[3] J. Smith and G. DeMicheli, “Polynomial circuit models for component

matching in high-level synthesis”, IEEE Trans. VLSI, vol. 9, 2001.

[4] D. Menard, D Chillet, F Charot, and O. Sentieys, “Automatic Floating-

point to Fixed-point Conversion for DSP Code Generation”, in Intl. Conf.

Compiler, Architecture, Synthesis Embedded Sys., CASES, 2002.

[5] I. A. Groute and K. Keane, “M(VH)DL: A MATLAB to VHDL Conversion

Toolbox for Digital Control”, in IFAC Symp. on Computer-Aided Control

System Design, Sept. 2000.

[6] Z. Chen, “On polynomial functions from Zn1×Zn2 × · · · ×Znr to Zm”,

Discrete Math., vol. 162, pp. 67–76, 1996.

[7] J. Smith and G. DeMicheli, “Polynomial methods for component maching

and verification”, in In Proc. ICCAD, 1998.

[8] J. Smith and G. DeMicheli, “Polynomial methods for allocating complex

components”, in Proc. DATE, 1999.

[9] G. Constantinides, P. Cheung, and W. Luk, “Heuristic Datapath Alloca-

tion for Multiple Wordlength Systems”, 2001.

[10] A. Hosangadi, F. Fallah, and R. Kastner, “Factoring and eliminating

common subexpressions in polynomial expressions”, in ICCAD, pp. 169–

174, 2004.

[11] A. Hosangadi, F. Fallah, and R. Kastner, “Energy Efficient Hardware

Synthesis of Polynomial Expressions”, in Int’l. Conf. on VLSI Design, pp.

pp. 653–658, 2005.

[12] A. K. Verma and P. Ienne, “Improved use of the Carry-save Representation

for the Synthesis of Complex Arithmetic Circuits”, in Proceedings of the

International Conference on Computer Aided Design, 2004.

[13] Arvind and X. Shen, “Using term rewriting systems to design and verify

processors”, IEEE Micro, vol. 19, pp. 36–46, 1998.

[14] C.-Y. Huang and K.-T. Cheng, “Using Word-Level ATPG and Modular

Arithmetic Constraint Solving Techniques for Assertion Property Check-

ing”, IEEE Trans. CAD, vol. 20, pp. 381–391, 2001.

[15] N. Shekhar, P. Kalla, F. Enescu, and S. Gopalakrishnan, “Equivalence

Verification of Polynomial Datapaths with Fixed-Size Bit-Vectors using

Finite Ring Algebra”, in Intl. Conf. on Computer-Aided Design, ICCAD,

2005.

[16] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence Verification of Arith-

metic Datapaths with Multiple Word-Length Operands”, in Proc. DATE,

2006.

[17] A. J. Kempner, “Polynomials and their residual systems”, Amer. Math.

Soc. Trans., vol. 22, pp. 240–288, 1921.

[18] F. Smarandache, “A function in number theory”, Analele Univ. Timisoara,

Fascicle 1, vol. XVII, pp. 79–88, 1980.

[19] D. Power, S. Tabirca, and T. Tabirca, “Java Concurrent Program for the

Smarandache Function”, Smarandache Notions Journal, vol. 13, pp. 72–84,

2002.

[20] I. Koren, Computer Arithmetic Algorithms, A. K. Peters, 2002.

[21] Maple, ”, http://www.maplesoft.com.

[22] C. Chen and C. Huang, “On the Architecture and Performance of a Hybrid

Image Rejection Receiver”, IEEE Journal on Selected Areas in Communi-

cation, vol. 19, pp. 1029–1040, Jun, 2001.

[23] M. R. Guthaus and et al., “Mibench: A Free, Commercially Representative

Embedded Benchmark Suite”, in IEEE 4th Annual Workshop on Workload

Characterization, Dec 2001.

5C-1

516

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

