
Creating Explicit Communication in SoC Models
Using Interactive Re-Coding∗

Pramod Chandraiah, Junyu Peng, Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine
California, USA

{pramodc, pengj, doemer}@cecs.uci.edu

Abstract— Communication exploration has become a critical
step during SoC design. Researchers in the CAD community have
proposed fast and efficient techniques for comprehensive design
space exploration to expedite this critical design step. Although
these advances have been helpful in reducing the design time sig-
nificantly, the overall design time of the system is still a bottle-
neck. All these techniques assume the availability of an initial
SoC input model with explicit communication, whose quality sig-
nificantly impacts the effectiveness of the communication explo-
ration techniques. Today, these initial models need to be manu-
ally written by engineers, which is tedious, error-prone and time
consuming. In fact, our studies on industrial-size examples have
shown that about 50% of the communication exploration time is
spent on coding and re-coding of the initial specification model. In
this paper, we propose an efficient interactive approach to explicit
communication creation by automating some of the common cod-
ing tasks in specification models for communication exploration.
Our results show significant savings in designer time.

I. INTRODUCTION

The increasing popularity of MPSoC architectures has made

the task of communication exploration more significant than

ever. Researchers have proposed different communication ex-

ploration techniques to facilitate early determination of com-

munication architecture and configurations. By conducting

the exploration at higher abstraction levels, such as TLM [4],

CCATB [10], it is possible to explore, evaluate and verify dif-

ferent communication architectures early in the design cycle.

All these technological advances along with the progresses in

the area of code profiling, code refinement and accurate per-

formance and power estimation have significantly reduced the

overall development time of embedded systems. However, de-

sign time is still a bottleneck in the production of systems, and

further reduction through automation is necessary. One criti-

cal aspect neglected in optimization efforts so far is the design

specification phase, where the intended design is captured and

modeled for use in the design flow.

Each design flow expects a specific type of input model. This

model needs to be either hand-written from scratch, or adapted

from an initial reference model. While much of the research

has focused on SoC synthesis and refinement tools, little has

∗This work was supported in part by Nicholas Endowment through the

Henry T. Nicholas III Research Fellowship.

Reference Model

Behavioral Partition

Partitioned Model

Expose communication

Architectural Model

Bus Functional Model

Manual

Automatic

Communication refinement

..

Implementation Model

Localize data accesses

Make explicit connections

Establish synchronization

Manual

Fig. 1. Motivation: Extent of automation in refinement-based design flow.

been done to support the designer in forming these input mod-

els.

A. Motivation

Most of the existing communication exploration design

flows start with an initial executable model with a communica-

tion structure as supported by the tool. These models are writ-

ten by designers who need to understand the requirements and

the limitations of the tool. Given a suitable initial model, the

communication exploration is usually conducted automatically

using successive refinement steps. However, often there is little

or no tool support in creating the initial input model. Since the

quality of the communication exploration depends largely on

the quality of this model, designers have to invest considerable

time and effort in coding and re-coding the model.

A.1 Study of MP3 Decoder Design

In order to study the intricacies and complications involved in

writing a proper system specification model, we have applied a

top-down design methodology, shown in Figure 1, to the exam-

ple of a MP3 audio decoder, an industry-size application. The

figure shows the complete design flow starting from an abstract

reference model down to the implementation model. In this pa-

per, we only focus on the refinement steps that were necessary

1-4244-0630-7/07/$20.00 ©2007 IEEE.

1B-4

50

to generate the Architectural Model for communication explo-

ration.

The communication exploration is undertaken after different

hardware-software partitions in the design are identified and

mapped onto respective processing elements. During commu-

nication exploration, different bus architectures and configura-

tions are then evaluated and the most suitable communication

alternative, meeting power and performance requirement, is fi-

nalized. The other key task involved during this step is the com-

munication refinement, during which the decisions made by the

designer are implemented to generate an executable model. As

shown in Figure 1, the task of communication exploration was

automated, to the extent that model generation is fully auto-

matic, and the designer only makes the design decisions such

as bus allocation, mapping and scheduling. Due to this au-

tomation, starting from a Partitioned Model 1, we were able

to explore different communication alternatives [1] and imple-

ment the bus-functional model of the MP3 decoder in less than

1 day. However, specifying proper communication structure

in the initial Partitioned Model was the main bottleneck of the

whole process. For our MP3 design example, more than 75% of

the overall communication exploration time was spent on creat-

ing this model. Also, we need to emphasize that capturing this

model is not a one time task. Every time a change in the design

is required for a successful refinement step, it is necessary to

re-code/change the input specification, making the whole task

of coding model iterative. Such interruptions in the design flow

cause costly delays. The importance of this re-coding effort is

also emphasized in [6, 3].

In conclusion, any step toward automation of model coding and

re-coding is highly desirable and will likely improve overall de-

sign time significantly. In Section II, we discuss specification

modeling goals, and a modeling example, followed by related

work. In Section III, we present our solution to the modeling

problem, an interactive source re-coder. In Section IV we will

present the refinement tasks in our source re-coder that sim-

plify and speed-up the creation of a proper Architecture Model.

Section V lists our experimental results. Finally, we will draw

conclusions and outline future work in Section VI.

II. MODEL RE-CODING

To address the bottleneck of model re-coding, we will now

first describe the significance of having a good model for com-

munication exploration, and then analyze the various steps of

this re-coding task by use of a simple example.

A. Significance of Explicit Communication in SoC Specifica-
tion

To enable fast and efficient communication exploration, a

proper communication structure in the initial specification is

necessary for the refinement tools to function and to be effec-

tive. Separation of the computation from the communication

aspects in the specification makes automatic communication

refinement and exploration possible [2]. Figure 2 shows the

1Note that the generation of Partitioned Model from Reference Model is a

separate problem and is not discussed in this paper.

Block -2Block -1

G2G1

Block -2Block -1

Block -2
Block -1

C2

Read port Write port

MemoryPE1 PE2

Block -1

PE1 PE2

G2

G1
G1

C1

Input Model-1 Input Model-2

Architecture-1 Architecture-2

Only Option
Option-1 Option-2

Block -2

G2

Option-n…

Fig. 2. Significance of explicit SoC communication.

benefit of having a proper model by means of a simplified ex-

ample. Input Model-1 has the computation interleaved with the

communication, making analysis difficult for automatic explo-

ration tools. Architecture-1 is the only possible implementation

through automation. In contrast, the Input Model-2 captures

all the communication between the design partitions explicitly

using synchronizing channels, thus enabling multiple explo-

rations alternatives, Architecture-1, Architecture-2 and more.

Global variables in Partitioned Models, such as the first model

in Figure 2, are commonly used, especially when the Parti-

tioned model itself is re-coded from a C like reference model.

Global variables hide the communication between functions in

a program because they do not appear as function parameters or

return results of functions. Since they become globally avail-

able to all the functions in the program, programmers use this

feature for convenience. However, a good specification model

requires the communication modeled explicitly, separated from

the computation. So, the hidden communication through global

variables must be explicitly exposed.

B. Re-coding to Expose Communication

Figure 3 shows the typical refinement steps necessary to re-

code a Partitioned Model into a properly structured SoC Ar-

chitecture Model. We start with a Partitioned Model, in which

each partition represents the tasks running on different Process-

ing Elements (PEs). Each partition might in turn contain more

behaviors within them. The partitions communicate with each

other using global variables just like the way its ancestor C

reference model did. In the first step, we reduce the number

of such global variables by localizing them. During this opti-

mization step, any global variable whose usage is restricted to

just one of the behavior blocks is moved into that leaf behav-

ior in the partition. This operation does not introduce any other

changes and applies only to variables whose access is restricted

to just one behavior.

In the second step, the implicit access of data through the use

of the remaining global variables is replaced by making ac-

tual connections into each partitions. That is, the global vari-

ables that are shared across the multiple partitions or behaviors

are now made accessible only through ports. This means that

every access to the global variable is replaced with an access

to a corresponding port in all levels of structural hierarchy in

1B-4

51

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Data Flow/ Explicit

connectuivity

Implicit

Dependency

Localize

R1, R2

Make explicit data

connections RW1,

RW2

Block -2
Block -1

R1
R2

C1 C2

Establish

Synchronization

RW1, RW2

Read port Write port

Fig. 3. Re-Coding Partitioned Model into an Architecture Model.

each partition. If necessary, the changes are also propagated

into functions by introducing new function parameters and ar-

guments. The original global variable is deleted.

In the third step, the access to the variables shared across each

of these partitions are synchronized by replacing the variables

with communication channels. All the accesses to variables

in each partition are replaced with use of an appropriate inter-

face function (Send/Receive or read/write) implemented by the

channel. The resulting Architecture Model after these trans-

formations is then suitable for communication exploration be-

cause now the communication across partitions is explicitly

captured using synchronizing channels and ports which rep-

resent future bus. Since the communication to be mapped onto

the buses is completely exposed, design tools are free to ex-

plore unlimited alternatives. Most of the steps performed dur-

ing communication exploration can now be automated.

C. Automated Re-Coding

Apart from the time consuming mundane textual operations,

re-coding a model involves a lot of decision making. Many of

these decisions can only be taken by the designer. Since the

model being generated depends on the tool it will be input to,

only the designer can decide on its structure. Apart from this

reason, there are some scenarios where complete automation

cannot be possible. For example, while determining the access

information of global variables, the designer has to deal with

pointers. Since pointer analysis [5] is a problem lingering for

many years, user interaction becomes necessary to generate ef-

ficient and optimized models. Thus, decisions need to be taken

by the designer, but the tedious recoding of the model can be

automated.

To leverage the idea of effective automation, we need to distin-

guish re-coding tasks that can be automated from decision tasks

that require designer’s knowledge. Textual re-coding opera-

tions such as changing scope of variables, replacing variables

and their access with channel equivalents, changing variable

types, introducing/deleting ports through the hierarchy, can be

automated if the decision is made by the designer. By such an

automation, the designer is relieved from mundane text editing

tasks and can focus on actual modeling decisions.

Document

Object
Parser

Text

Editor

Transformation

Tools

Preproc

GUI

Code Generator

AST

Fig. 4. Conceptual Structure of the Source Re-Coder.

D. Related Work

Many of the system synthesis design flows proposed by re-

searchers in the past provide little or no support in modeling

the initial system Architecture Model. The designer has to in-

vest significant time to create this specification. For example,

[12] presents a methodology to automatically generate models

and implementations of network-oriented SoC models. But the

design flow starts from an architecture model which needs to

be provided by the designer. [10] proposes a higher model-

ing abstraction for bus-based communication exploration, but

the creation of the initial model of acceptable quality for ex-

ploration has to be performed by the designer. [8] focuses on

automating mapping of communication between system com-

ponents onto a communication architecture template, but re-

quires an initial system specification partitioned into hardware

and software from the designer.

Through our transformations we provide faster and efficient

means of creating a suitable Architecture model. Our transfor-

mations are interactive and give the designer complete control

(”designer-in-the-loop”) to code/re-code the model in order to

arrive at the most suitable design implementation.

Further, the idea of interactive transformations has been em-

ployed successfully in the parallel programming paradigm.

The ParaScope editor [7] for Fortran and SUIF explorer [9]

for C/Fortran provide program transformations to parallelize a

program relieve the programmer from tedious manual typing.

SUIF explorer, which is based on the SUIF compiler infras-

tructure, provides graphical means of setting compiler direc-

tives, but does not support editing. ParaScope provides the user

with powerful interactive program transformations and recon-

structs the dependency information, incrementally, while edit-

ing. Of all, ParaScope combines the most features. Our goal is

to build similar and more advanced capabilities into our source

re-coder, aiming at advanced features for analysis and transfor-

mations for efficient creation of effective system specifications

in SLDL. Our work will augment the existing design flows by

providing further automation.

III. INTERACTIVE SOURCE RE-CODER

To aid the designer in coding and re-coding, we propose a

source re-coder. Our source re-coder is a controlled, interac-

tive approach to implement analysis and refinement tasks. In

other words, it is an intelligent union of editor, compiler, and

powerful transformation and analysis tools. Unlike other pro-

gram transformation tools, our re-coder keeps the designer in

the loop and provides complete control to generate and modify

a model suitable for her/his design flow. By making the re-

1B-4

52

coding process interactive, we rely on the designer to concur,

augment or overrule the analysis results of the tool, and use the

combined intelligence of the re-coder and the designer for the

modeling tasks.

Our re-coder supports re-modeling of SLDL models at all lev-

els of abstraction. It can be used to re-code intermediate design

models as well as the reference C implementation to generate

the initial specification model. The conceptual structure of our

source re-coder is shown in Figure 4. It consists of 5 main

components:

• A textual editor maintaining the textual document object

• An Abstract Syntax Tree (AST) of the design model

• Preprocessor and Parser to convert the document object

into AST

• Transformation and analysis tool set

• Code generator to apply changes in the AST to the docu-

ment object

A QT [13] and Scintilla [11] based textual editor is the front-

end of our source re-coder. The editor is adapted to provide ba-

sic features like syntax highlighting, auto-completion, search,

ctags, text folding, bookmarks, undo-redo, and more, for pro-

gramming languages including C and C++, and SLDLs SpecC

[2] and SystemC.

The AST [14], maintains a comprehensive data structure of the

design needed for analyzing and transforming the program and

also provides a set of operations on each object. This AST is

created by a parser when the file is initially loaded and subse-

quently is incrementally maintained with designer’s actions.

The transformation and analysis tool set is the heart of our

source re-coder. All re-coding tasks invoked by the user are

implemented by these refinement tools. When the designer

points to an object in the source window, a node correspond-

ing to the pointed co-ordinates is located in the AST, and a list

of available and possible operations are provided in a context

menu. For example, when the designer points to a global vari-

able, then the list of possible transformations includes changing

its scope, renaming, deleting, and finding dependents. A SLDL

source code generator provides the necessary update of text in

the editor when the modifications are made to the AST by the

transformation tools.

IV. EXPOSING COMMUNICATION

We will now discuss specific transformations necessary to

create an Architecture Model suitable for communication ex-

ploration, as outlined in Figure 3. Exposing communication

means to make the communication between different hardware

software partitions explicit. This involves 3 main tasks, Lo-

calizing global accesses, establishing explicit connectivity and

introducing synchronization. These steps are discussed in de-

tail in the following sections.

A. Localize Global Accesses

In the first step, global variables, whose usage is restricted to

just one of the partitions, are made members of that partition.

Such scenarios often occur in partitioned models obtained from

a C reference implementation. Localizing such variables will

eliminate the unnecessary communication between the parti-

tions and also makes the analysis of the specification easier

which enables further optimization. Figure 5(a) shows a simple

initial model in SpecC SLDL. The modified model after local-

izing 2 of the global variables is shown in Figure 5(b). The

variables R1 and R2 are made members of the blocks in which

they are used. The procedure implementing this transformation

is given below.

• From the current cursor position, locate the global variable

pointed to by the designer

• Find the list of behaviors and functions accessing this

global variable.

• Move this variable into the only behavior accessing it and

delete the global variable

B. Explicit Connectivity

To enable automatic communication refinement, all the com-

munication between partitions need to be explicitly specified.

Global variables pose problems and need to be localized and

accessed through ports. During this step, the global variables

are removed from the global scope and moved into the lowest

parent behavior containing the accessors. Following this, each

partition accessing the global variable is modified to access the

global variable through a port. If necessary, the access is routed

through the entire structural hierarchy introducing new ports,

port maps, function arguments and more in each partition.

Figure 5(c) shows the modified model after changing the scope

of the global variables RW1 and RW2 and also the resulting

new ports. The procedure implementing this transformation is

outlined below.

• Obtain the global variable at the current cursor position

• Find the lowest common parent behavior containing the

accesses and move the variable to that level

• Provide access to the variable by recursively inserting

ports in all the behaviors accessing this variable

• Delete the original global variable

This operation is not restricted to just the global variables. De-

pending on the model being derived, designer might want to

make some variables global or move a variable to higher hier-

archical levels. This requires expanding the scope of a variable.

The procedure for such an operation is based on similar lines.

C. Introduce Synchronization

The accesses to variables that are shared between concur-

rent partitions need to be synchronized. Such accesses are re-

placed with channels of appropriate protocols to provide nec-

essary synchronization. This change in turn requires all the be-

haviors and the functions accessing the replaced variable to be

modified to access the variable through the channel interface.

Figure 5(d) shows the resulting model with the inserted channel

calls. The reading and writing of variables is replaced with the

appropriate interface function of the channel. The procedure

implementing this transformation is given below.

• Obtain the variable at the current cursor position

1B-4

53

/* Global variables */

int R1, R2;

int RW1, RW2;

/*Top level behavior */

behavior Main() {

int var1, var2, var3;

b1 B1(var1, var2);

b2 B2(var2, var3);

int main(void) {

B1.main();

B2.main();

}

};

/* Sub modules */

behavior b1(in int i1, out int o1) {

void main (void) {

o1 = R1*RW2*i1;

if(RW2) RW1 = ((R1*RW2)*i1)&1;

}

};

behavior b2(in int i1, out int o1) {

void main(void) {

o1 = R2*RW1*i1;

if(RW1) RW2 = ((R2*RW1)*i1)&1;

}

};

/* Global variables */

int RW1, RW2;

/*Top level behavior */

behavior Main() {

int var1, var2, var3;

b1 B1(var1, var2);

b2 B2(var2, var3);

int main(void) {

B1.main();

B2.main();

}

};

/* Sub modules */

behavior b1(in int i1, out int o1) {

int R1;

void main (void) {

o1 = R1*RW2*i1;

if(RW2) RW1 = ((R1*RW2)*i1)&1;

}

};

behavior b2(in int i1, out int o1) {

int R2;

void main (void) {

o1 = R2*RW1*i1;

if(RW1) RW2 = ((R2*RW1)*i1)&1;

}

};

/*Top level behavior */

behavior Main() {

int var1, var2, var3;

int RW1, RW2; /* Now moved here, no longer global*/

b1 B1(var1, var2, RW1, RW2);

b2 B2(var2, var3, RW2, RW1);

int main(void) {

B1.main();

B2.main();

}

};

/* No more Global variables */

behavior b1(in int i1, out int o1,

out int RW1, in int RW2) {

int R1;

void main (void) {

o1 = R1*RW2*i1;

if(RW2) RW1 = ((R1*RW2)*i1)&1;

}

};

behavior b2(in int i1, out int o1,

out int RW2, in int RW1) {

int R2;

void main (void) {

o1 = R2*RW1*i1;

if(RW1) RW2 = ((R2*RW1)*i1)&1;

}

};

/*Top level behavior */

behavior Main()

{

int var1, var2, var3;

c_fifo ch1; /*Channels instead of variables */

c_fifo ch2;

b1 B1(var1, var2, ch1, ch2);

b2 B2(var2, var3, ch2, ch1);

int main(void)

{

B1.main();

B2.main();

}

};

behavior b1(in int i1, out int o1, i_sender ch1,
i_receiver ch2) {

int R1;

int RW1; /*local variables*/

void main (void) {

o1 = R1*(ch2.receive(sizeof(RW2)))*i1;

if(RW2) RW1 = ((R1*RW2)*i1)&1;

ch1.send(RW1);

}

};

behavior b2(in int i1, out int o1, i_sender ch2,
i_receiver ch1) {

int R2;

int RW2;

void main (void) {

o1 = R2*(ch2.receive(sizeof(RW1)))*i1;

if(RW1) RW2 = ((R2*RW1)*i1)&1;

ch2.send(sizeof(RW2));

}

};

(a) Model-1: Initial Model (b) Model-2: After Localization (c) Model-3: Explicit connectivity (d) Model-4: Synchronized Model

Fig. 5. Re-coding transformations on an example design model.

• Create a typed synchronization channel based on the type

of the variable

• Change the type of ports of all the behaviors which were

mapped to the original variable to the type of the channel’s

interface function

• Modify each access to the original variable to use the ap-

propriate interface function of the channel

V. EXPERIMENTS AND RESULTS

We have implemented our source re-coder to support the

SpecC SLDL and the C programming language. Additional

support for SystemC is still in progress. Using our re-coder,

the modeling can start either from C or SpecC. Currently, our

re-coder provides complete support to derive an architecture

model from a partitioned model. Apart from these transfor-

mations, the re-coder also implements scope-sensitive analysis

tools to find variable dependencies to aid the designer in pro-

gram comprehension. The transformation functions makes use

of this analysis function for re-coding.

We will now assess the productivity gains resulting from our

source re-coder. We have applied our source re-coder to a

few real-life design examples to create architecture models and

measured the productivity gains over deriving the same models

manually. We considered 3 different examples, MP3 decoder,

JPEG encoder, and GSM vocoder. We have timed the individ-

ual refinement tasks for the MP3 example and the results are

shown in Table I. We started with a partitioned MP3 model

with 4 partitions and contained all the global communication

between these partitions using the transformation tools part of

our source re-coder. Note that each of these transformations

require multiple lines of code change, and these lines often are

distributed over the entire source code. Table I also gives the

number of variables changed by each refinement task and the

number of line changes in the resulting model. As shown in

the table, establishing explicit connectivity involves inserting

new ports through the structural hierarchy in the design, result-

ing in more changes than localizing operation. The Interactive

Re-coding time is obtained by implementing all the transforma-

tions using our source re-coder. The manual time is obtained

by actually realizing the transformations manually for a set of

10 variables and extrapolating the results for all the variables.

Clearly, the productivity gain achieved using our re-coder over

implementing these transformations manually is in the order of

hundreds.

Table II shows the similar productivity gains achieved for other

examples. Also provided is the statistics about the number of

variables that were affected and the number of new ports and

channels that were introduced during the process. Using our

source re-coder, the complex transformations can be realized

instantly with a click of button. Thus, exposing communica-

tion can be achieved in the order of seconds instead of hours.

VI. SUMMARY AND CONCLUSIONS

Automatic communication exploration tools require proper

input models with all the communication across the partitions

exposed explicitly. Absence of a proper communication struc-

ture significantly limits the possible exploration, if not making

it impossible. Today, designers invest significant design time

1B-4

54

TABLE I

PRODUCTIVITY GAIN ON THE INDIVIDUAL OPERATIONS ON THE MP3

DESIGN EXAMPLE

Operation Variable. Lines Interactive Manual Estimated Productivity

changes changed Re-coding time for Manual factor

time 10 Vars. time

(secs) (mins) (mins)

Localizing 26 330 90 1.7 17 11

Explicit

Connectivity 38 839 126 31 310 147

Synchronization 6 172 30 17 170 340

Total 70 1341 246 49.7 497 121

TABLE II

PRODUCTIVITY GAIN FOR DIFFERENT EXAMPLES

Properties JPEG MP3 GSM

Global Variables localized 8 70 83

New Ports added 2 146 163

New Channels added 1 6 2

Re-coding time (secs) 27 246 260

Estimated Manual time (mins) 53 497 585

Productivity factor 117 121 135

to create explicit communication in the input model. Since this

modeling task heavily relies on the designers’ knowledge and

experience, little or no tool support is typically available for

specification coding and re-coding. Usually, designers have to

edit the design model manually, using simple text-based edi-

tors, requiring significant effort and time in tedious coding.

In this paper, we have proposed a novel approach to design

specification and modeling that is based on decision making by

the designer (”designer-in-the-loop”) and automation of model

analysis and transformation tasks. Eliminating mundane and

error-prone editing tasks, our approach utilizes the precious

time and effort of the system designer efficiently.

In particular, we have introduced an interactive source re-coder

which integrates compilation, analysis and transformation tools

into a text-based editor, to assist the designer in modeling and

re-modeling of SoC designs. Our source re-coder is fully text-,

syntax-, and semantics-aware, enabling powerful model analy-

sis and transformation operations instantly.

From our experience with the system synthesis of different de-

sign examples, in this paper we presented the various tasks nec-

essary to build the communication structure in the specification

that can be used for automated tools. We have designed effec-

tive interactive re-coding tasks along with other analysis tools

to aid the designer in program comprehension, modification,

and refinement. Our experimental results clearly demonstrate

that our interactive approach is not only feasible, but also effec-

tive. Analysis results or transformed code are presented to the

user instantaneously, relieving the designer from tedious cod-

ing. Moreover, we have demonstrated tremendous productivity

gains through the reduction of modeling time.

For the future, we will extend our approach to automate also

the creation of the partitioned model from a C like reference

model. In the long term, we plan to include further analysis

and transformation tasks, including coupling with system pro-

filing and estimation tools.

REFERENCES

[1] P. Chandraiah and R. Dömer. Specification and design of an mp3 au-

dio decoder. Technical Report CECS-TR-05-04, Center for Embedded

Computer Systems, University of California, Irvine, May 2005.

[2] A. Gerstlauer, R. Dömer, J. Peng, and D. D. Gajski. System Design: A
Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[3] A. Gerstlauer, S. Zhao, D. D. Gajski, and A. M. Horak. SpecC system-

level design methodology applied to the design of a GSM vocoder. In

Proceedings of the Workshop of Synthesis and System Integration of
Mixed Information Technologies, Kyoto, Japan, April 2000.

[4] F. Ghenassia. Transaction-Level Modeling with SystemC : TLM Concepts
and Applications for Embedded Systems. Springer-Verlag, 2006.

[5] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In

PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering, 2001.

[6] A. Jerraya, H. Tenhunen, and W. Wolf. Guest editors’ introduction: Mul-

tiprocessor systems-on-chips. Computer, 38(7):36–40, 2005.

[7] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis and transfor-

mation in the ParaScope Editor. In ACM International Conference on
Supercomputing, Cologne, Germany, 1991.

[8] K. Lahiri, A. Raghunathan, and S. Dey. Efficient exploration of the soc

communication architecture design space. In ICCAD, Piscataway, NJ,

USA, 2000.

[9] S.-W. Liao, A. Diwan, R. P. B. Jr., A. M. Ghuloum, and M. S. Lam. SUIF

explorer: An interactive and interprocedural parallelizer. In Principles
Practice of Parallel Programming, pages 37–48, 1999.

[10] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Fast exploration of bus-

based on-chip communication architectures. In CODES+ISSS, New

York, NY, USA, 2004.

[11] Scintilla source code editing component. http://www.scintilla.org.

[12] D. Shin, A. Gerstlauer, R. Dömer, and D. D. Gajski. Automatic network

generation for system-on-chip communication design. In ‘CODES+ISSS,

New York, NY, USA, 2005.

[13] Trolltech Inc. Qt application development framework.

http://www.trolltech.com/products/qt/.

[14] I. Viskic and R. Dömer. A flexible, syntax independent representation

(SIR) for system level design models. In Proceedings of EuroMicro Con-
ference on Digital System Design, Dubrovnik, Croatia, August 2006.

1B-4

55

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

