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Abstract – The storage requirements in data-dominant sig-
nal processing systems, whose behavior is described by array-
based, loop-organized algorithmic specifications, have an im-
portant impact on the overall energy consumption, data access
latency, and chip area. Finding the optimal storage of the usu-
ally large arrays from these behavioral specifications is an im-
portant step during memory allocation. This paper proposes
more efficient algorithms for the intra-array storage mapping
models of De Greef [5] and Tronçon [11], resulting in an im-
plementation several time faster than the original ones.

1 Introduction

In many signal processing systems, particularly in the multimedia
and telecom domains, data transfer and storage have a significant
impact on both the system performance and the major cost pa-
rameters – power consumption and chip area. During the system
development process, the designer must often focus first on the
exploration of the memory subsystem in order to achieve a cost
optimized end product [1, 2].

The behavior of these targeted VLSI systems, synthesized to
execute mainly data-dominant applications, is described in a high-
level programming language, where the code is typically orga-
nized in sequences of loop nests having as boundaries (usually
affine) functions of loop iterators, conditional instructions where
the arguments may be data-dependent and/or data-independent
(relational and/or logic expressions of affine functions of loop
iterators). In our target domain, the data structures are multi-
dimensional arrays whose indices in the code are affine functions
of loop iterators. The class of specifications with these character-
istics are often called affine specifications [1].

The optimal mapping to memory of the multi-dimensional sig-
nals from these behavioral specifications is an important step dur-
ing memory allocation.

1.1 Models of signal-to-memory mapping

De Greef et al. choose one of the canonical linearizations of the ar-
ray (a permutation of its dimensions), followed by a modulo opera-
tion that wraps the set of “virtual” memory locations into a smaller
set of actual physical locations [5]. Instead of a 1-dimensional
window in the linearized space of addresses as in [5], Tronçon
et al. proposed to compute an m-dimensional bounding box in
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the original m-dimensional index space of the array [11]. This is
achieved by finding m modulo operands, computed separately as
the maximal index differences in each dimension. See also Section
1.2 for more details on these two models.

Lefebvre and Feautrier, addressing parallelization of static con-
trol programs, developed in [6] an intra-array storage approach
based on modular mapping, as well. They first compute the lexi-
cographically maximal “time delay” between the write and the last
read operations, which is a super-approximation of the distance
between conflicting index vectors (i.e., whose corresponding array
elements are simultaneously alive). Then, the modulo operands
are computed successively as follows: the modulo operand b1, ap-
plied on the first array index, is set to 1 plus the maximal differ-
ence between the first indices over the conflicting index vectors;
the modulo operand b2 of the second index is set to 1 plus the
maximal difference between the second indices over the conflict-
ing index vector, when the first indices are equal; and so on.

Quilleré and Rajopadhye studied the problem of memory reuse
for systems of recurrence equations, a computation model used
to represent algorithms to be compiled into circuits [8]. In their
model, the loop iterators first undergo an affine mapping (into a
linear space of smallest dimension – what they call a “projection”)
before modulo operations are applied to the array indices.

Darte et al. proposed a lattice-based mathematical framework
for intra-array mapping, establishing a correspondence between
valid linear storage allocations and integer lattices called strictly
admissible relative to the set of differences of the conflicting in-
dices [4]. They proposed two heuristic techniques for building
strictly admissible integer lattices, hence building valid storage al-
locations.

1.2 Context and motivation of this research

Since De Greef’s and Tronçon’s models [5, 11] for signal-to-
memory mapping1 play an important part in this paper, they will
be better explained and illustrated below.

To reduce the size of a multi-dimensional array mapped to mem-
ory, De Greef et al. consider all the possible linearizations of the
array and, for any linearization, they compute the largest distance
at any time between two live elements in the linearized array [5].
This distance plus 1 is then the storage required for the mapping

1This paper focuses on intra-array mapping, whereas the inter-array in-place
mapping (i.e., the optimization of the memory sharing between different arrays)
[1] is outside the scope of the paper. Note that we addressed this latter problem
in [13], since that algorithm computes the minimum storage requirement of an en-
tire algorithmic specification containing an arbitrary number of multi-dimensional
signals.
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of the array into the data memory. Note that for an m-dimensional
array there are m! orderings of the indices. For instance, a 2-
dimensional array can be typically linearized concatenating the
rows, or concatenating the columns. In addition, the elements in
a given dimension can be mapped in the increasing or decreasing
order of the respective index. De Greef et al. consider in their
model all these 2m · m! possible linearizations. (For m ≥ 6, an
heuristic is proposed [5] to limit the search.)

In the illustrative example from Fig. 1(a), the elements of the
array A are produced column by column from left to right, in-
side each column being produced bottom-up. If we consider
the array linearization by column concatenation in the increas-
ing order of the columns ((A[index1][index2], index1=0,18),
index2=0,9), the two elements simultaneously alive and placed
the farthest apart from each other are A[9][0] and A[9][9]. The dis-
tance between their positions in the linearization is 9×19=171. If
the columns are concatenated decreasingly ((A[index1][index2],
index1=0,18), index2=9,0), there are 9 pairs of elements simulta-
neously alive, mapped at a maximum distance. Two such elements
are, for instance, A[18][0] – produced in the iteration (i , j) = (18 ,
0) and consumed in (28 , 0), and A[8][9] – produced in the iteration
(8 , 9) and consumed in (18 , 9), the distance between them in the
linearization being 9×19+10=181.

Now, if we consider the array linearization by row concate-
nation in the increasing order of the rows ((A[index1][index2],
index2=0,9), index1=0,18), there are 9 pairs of elements simul-
taneously alive, maximally distanced from each other. Two such
elements are, for instance, A[0][9] – produced in the iteration (i , j)
= (0 , 9) and consumed in (10 , 9), and A[10][8] – produced in the
iteration (10 , 8) and consumed in (20 , 8). The distance between
them in the linearization is 10×10-1=99. Finally, if the rows
are concatenated decreasingly ((A[index1][index2], index2=0,9),
index1=18,0), there are 9 pairs of elements simultaneously alive,
as well (e.g., A[18][0] and A[8][9]), placed at the maximum dis-
tance 10×10+9=109.

For the other 4 linearizations, the maximum distances obtained
have the same values, since the array elements are stored in reverse
order relative to one of the 4 linearizations analyzed above.

According to De Greef’s model [5], the best linearization
(among those considered) for the array A in this illustrative ex-
ample is the concatenation row by row increasingly. A window of
99+1=100 successive memory locations (relative to a certain base
address) is sufficient to store the array. Indeed, this linearization
can be wrapped modulo 100, which is correct because two values
simultaneously alive can never be mapped to the same location.

In order to avoid the inconvenience of analyzing different lin-
earization schemes, Tronçon et al. proposed [11] to reduce the
size of an m-dimensional array A mapped to the data memory,
computing a window W = (w1, . . . , wm), whose elements can be
used as operands in modulo operations that redirect all accesses to
the array A. An access to the element A[exp1] . . . [expm] is redi-
rected to A[exp1 mod w1] . . . [expm mod wm] (relative to a base
address in the data memory). Since the mapping has to ensure a
correct execution of the code, two distinct array elements simul-

taneously alive should not be mapped by the modulo operations
to the same location. Each window element wi is the maximum
difference (in absolute value) between the i-th indices of any two
A-elements simultaneously alive, plus 1. The window W deter-
mines the memory size required for storing the array.

In the illustrative example shown in Fig. 1(a), the window cor-
responding to the signal A is W = (11 , 10). Indeed, the ele-
ments A[0][9] – consumed in the iteration (10 , 9) – and A[10][0]
to A[10][8] are simultaneously alive; the maximum difference be-
tween the first indices is 10, which yields a window element
w1 = 10 + 1 = 11. Similarly, w2 = 10 since the elements
A[9][0], . . . , A[9][9] are simultaneously alive. Note that there is
no difference between the two models for 1-dimensional arrays.

This paper proposes more efficient algorithms for the intra-array
storage mapping models of De Greef [5] and Tronçon [11], result-
ing in an implementation several time faster than the ones given
by their authors. In addition, this paper better evaluates the two
models using a software tool [13] able to compute the minimum
linear window for any multi-dimensional array from an affine al-
gorithmic specification.

The rest of the paper is organized as follows. Section 2 de-
scribes the global flow of the intra-array mapping, focusing on
the more significant algorithmic aspects. Section 3 presents ba-
sic implementation aspects and discusses the experimental results.
Section 4 summarizes the main conclusions of this work.

2 The array mapping methodology

2.1 Definitions and concepts

Definitions A polyhedron is a set of points P ⊂ �n sat-
isfying a finite set of linear inequalities: P = { x ∈
�n | A · x ≥ b }, where A∈ �m×n and b∈ �m. If P
is a bounded set, then P is called a polytope. If x ∈ Zn,
then P is called a Z-polyhedron/polytope. Each array reference
M [x1(i1, . . . , in)] · · · [xm(i1, . . . , in)] of an m-dimensional sig-
nal M , in the scope of a nest of n loops having the iterators
i1, . . . , in , is characterized by an iterator space and an index (or
array) space. The iterator space signifies the set of all iterator vec-
tors i = (i1, . . . , in) ∈ Zn in the scope of the array reference. The
index space is the set of all index vectors x = (x1, . . . , xm) ∈ Zm

of the array reference. When the indices of an array reference are
linear mappings with integer coefficients of the loop iterators, the
index space consists of one or several lattices linearly bounded
[10], that is, the image of an affine vector function over the itera-
tor polytope { i ∈ Zn | A · i ≥ b }:

{ x = T · i + u ∈ Zm | A · i ≥ b , i ∈ Zn} (1)

where x∈ Zm is the index vector of the m-dimensional signal
and i∈ Zn is an n-dimensional iterator vector. In our context, the
elements of the matrices T, A and of the vectors u, b are integers.

Example 1: for (i = 0; i ≤ 3; i + +)
for (j = 0; j ≤ 2; j + +)

if( 3i ≥ 2j ) · · ·A[2i + 3j][5i + j] · · ·
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int A[19][10];
                                           //   All the A-elements are
for (i=0; i<29; i++)           //   consumed in this loop nest 
    for (j=0; j<10; j++)  { 
        if ( i+j >=  9   &&  i+j <= 18 )   A[i][j] = ... 
        if ( i+j >= 19  &&  i+j <= 28 )   ... = A[i-10][j] ;
    }

0

9

9 18

index2

index1(a) (b)

Figure 1: (a) Illustrative example. (b) The array space of signal A. The points represent the A-elements A[index1][index2] which are
produced in the loop nest. The black points to the left of the dashed line are all alive, representing the A-elements produced till the
beginning of the iteration (i , j) = (10 , 9), when the first array element is going to be consumed (which is A[0][9]).

The iterator space (see Fig. 2) of the array reference A[2i +
3j][5i + j] is the Z-polytope P = { i ∈ Z2 | A · i ≥ b } =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
i
j

]
∈ Z2

⎡
⎢⎢⎢⎢⎣

1 0
−1 0

0 1
0 −1
3 −2

⎤
⎥⎥⎥⎥⎦

[
i
j

]
≥

⎡
⎢⎢⎢⎢⎣

0
−3

0
−2

0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

or, in non-matrix format: P = {0 ≤ i ≤ 3 , 0 ≤ j ≤ 2 , 2j ≤
3i, i, j ∈ Z}. The index space of the array reference can be
expressed in this case as the bounded lattice:{[

x
y

]
=

[
2 3
5 1

] [
i
j

]
+

[
0
0

] [
i
j

]
∈ P

}

where x and y are the indices of the array reference. The (black)
points of the index space (see Fig. 2) lie inside the Z-polytope
{ 26 ≥ 5x − 2y ≥ 0 , 39 ≥ −x + 3y , y ≥ x , x, y ∈ Z}, the
image of the boundary of the iterator space. In this example, each
point in the iterator space is mapped to a distinct point of the index
space, which is not always the case. �

2.2 Computing a 1D window for a lattice of signals

The computation method employed by De Greef et al. consists
of a sequence of integer linear programming (ILP) optimizations
for each array linearization [5]. Tronçon et al. use, basically,
sequences of emptiness checks for Z-polytopes derived from the
code [11].

We are using a different methodology based on the decomposi-
tion of the array references in disjoint bounded lattices (1) (see the
next subsection). This framework is common to both models. The
specific difference is the computation of the 1-dimensional win-
dows for the lattices of signals, which is going to be explained in
this section.

Given an array reference or, more general, a bounded lattice (1)
whose elements are all alive:

(a) In Tronçon’s model [11], the problem is to compute a 1-

dimensional window for every index of the array reference (or lat-
tice), that is, the extreme points of the projection of the lattice on
every axis. The idea of the algorithm is to find a transformation
S such that the extreme values of some iterator correspond to the
extreme values of some index. In this way, the problem reduces to
computing the projection of a Z-polytope, which is well-studied
[7, 12].

Algorithm 1
Suppose we study the projection on the k-th axis. The k-th

index has the expression: xk = tk · i + uk, where tk is the k-
th row of the matrix T in (1).

Step 1 Let S be a unimodular matrix2 bringing tk to the Hermite
Normal Form [9]: [h1 0 · · · 0] = tk · S. (If the row tk is null,
then the window reduces to one point: xmin

k = xmax
k = uk.)

Step 2 After applying the unimodular transformation S, the new
iterator polytope becomes: P̄ = { ī ∈ Zn | A · S · ī ≥ b }.

Step 3 Compute the extreme values of ī1 (denoted īmin
1 and īmax

1 )
by projecting the polytope P̄ on the first axis [7]. Then, xmin

k =
h1ī

min
1 + uk and xmax

k = h1ī
max
1 + uk. �

The algorithm will be illustrated projecting the array reference
from Example 1 on the first axis and finding the extreme values of
the first index x.

From Example 1, [x] =
[

2 3
] [

i
j

]
+ [0]. The unimodular

matrix S =
[ −1 3

1 −2

]
(see, e.g., [9] for building S) brings

t1 =
[

2 3
]

to the Hermite Normal Form: t1 · S =
[

1 0
]
.

Since

[
i
j

]
=

[ −1 3
1 −2

] [
ī
j̄

]
, the initial iterator space P

(see Example 1) becomes P̄ = {0 ≤ −ī+ 3j̄ ≤ 3 , 0 ≤ ī− 2j̄ ≤
2 , 5ī ≤ 13j̄, ī, j̄ ∈ Z}. Eliminating j̄ from these inequalities
with a Fourier-Motzkin technique [3], the extreme values of the ex-
act shadow [7] of P̄ on the first axis are īmin = 0 and īmax = 12,

2A square matrix whose determinant is ± 1.
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Figure 2: The mapping of the iterator space of the array reference
A[2i + 3j][5i + j] to its index space (a bounded lattice).

and those extreme points are valid projections (i.e., there exists
j̄’s such that (̄imin, j̄) and (̄imax, j̄) satisfy the inequalities defin-
ing P̄ ). Since h1 = 1 and u1 = 0, it follows immediately that
xmin = 0 and xmax = 12, which can be easily observed from
Fig. 2. Projecting the lattice on the second axis, the second row of
the affine mapping is t2 =

[
5 1

]
and the unimodular matrix

is S =
[

0 −1
1 5

]
. With a similar computation, it follows that

ymin = 0 and ymax = 17. Therefore, based only on the array
reference A[2i + 3j][5i + j] from Example 1, the window of the
array A is W=(13,18).

(b) In De Greef’s model [5], the problem is to compute a 1-
dimensional window for every canonical linearization of the array.

Take, for instance, the linearization by row concatenation (in
the increasing order of the rows) in the illustrative example from
Fig. 1. Then, it can be easily observed that in the bounded lattice of
live elements, the ones at the maximum distance from each other
are the elements with (lexicographically3) minimum and, respec-
tively, maximum indices. For instance, in the lattice of live array
elements in Fig. 1 (only the black points, to the left of the dashed
line), the elements A[0][9] and A[10][8] are mapped at the maxi-
mum distance (which is 99), as explained in Section 1.2. The index
vectors [index1 index2]=[0 9] and [10 8] are the minimum and,
resp., the maximum in lexicographic order from the entire lattice.

Similarly, in the linearization by column concatenation (in the
increasing order of the columns), the elements at the maximum
distance from each other are still the elements with (lexicograph-
ically) minimum and maximum index vectors, provided an inter-
change of the indices is applied first. In the illustrative example
from Fig. 1, the elements A[9][0] and A[9][9] are the farthest away

3Let i = [i1, . . . , in]T and j = [j1, . . . , jn]T be two vectors. The vector
j is larger lexicographically than i (written j � i) if (j1 > i1), or (j1 = i1
and j2 > i2), . . . , or (j1 = i1, . . . , jn−1 = in−1, and jn > in). The
minimum/maximum vector from a set of vectors is the smallest/largest vector
in the set relative to the lexicographic order.

from each other (at 171 unit distance) among the live elements.
It follows that finding the points in a lattice having the (lexico-

graphically) minimum and maximum index vectors is crucial for
De Greef’s model. For any canonical linearization, it is sufficient
to apply an index permutation first, followed at the end by the
inverse permutation of the resulting index vectors. If in the lin-
earization some dimension is traversed backwards, then a simple
transformation reversing the index variation must be also applied.

The idea of the algorithm resembles Algorithm 1’s idea: we find
a transformation S such that the minimum (maximum) iterator
vector in the iterator polytope is mapped to the minimum (max-
imum) index vector in the lattice. But those iterator vectors are
easier to compute by successive projections of Z-polytopes.

Algorithm 2
The index vectors are given by the affine vector mapping x =

T · i+u, the iterator vectors i satisfying the constraints A · i ≥ b.

Step 1 Let S be a unimodular matrix bringing T to the Hermite
Normal Form [9]: H = T · S.

Step 2 After applying the unimodular transformation S, the new
iterator polytope becomes: P̄ = { ī ∈ Zn | A · S · ī ≥ b }.

Step 3 Compute the maximum (minimum) value of ī1 (the first
element of ī) by projecting the polytope P̄ on the first axis [7].
Then, replacing this value in P̄ , compute the maximum (mini-
mum) value of ī2 by projection on the second axis, and so on.
The iterator vector whose elements are determined as explained
above is the maximum (minimum) iterator vector in lexicographic
order, denoted īmax (resp., īmin). Then, xmin = H · īmin +u and
xmax = H · īmax + u. �

2.3 The global flow of the mapping algorithm

The global flow of the algorithm finding the sizes of the mapping-
to-memory windows (relative to some base address which can
be decided during the memory allocation phase) for every multi-
dimensional signal in an affine behavioral specification will be ex-
plained below. Similar to [4, 5, 6, 11], the code is assumed to be
in single-assignment form, that is, each array element is written at
most once (but it can be read an arbitrary number of times). We
shall implicitly apply Tronçon’s model [11], using Algorithm 1
(see Section 2.2) in the flow. But this global algorithm can be eas-
ily switched to De Greef’s model [5], using instead Algorithm 2
and, also, taking into account the discussion on the index permu-
tation (Section 2.2) in order to test all the canonical linearizations.
To illustrate the algorithm, we shall use:

Example 2: for (k = 0; k ≤ 10; k + +) // Loop nest 1
for (l = 0; l ≤ 5; l + +) A[k][l] = · · · ;

for (j = 0; j ≤ 5; j + +) // Loop nest 2
for (i = 0; i ≤ 2j; i + +) · · · = A[i][j];

for (i = 1; i ≤ 5; i + +) // Loop nest 3
for (j = 0; j ≤ i−1; j++) · · · = A[2i][j+1];

This example is not restrictive containing only one array since
the mapping algorithm is applied independently for each multi-
dimensional array (signal) in the specification.
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Figure 3: (a) The decomposition of the array space of signal A (Example 2) in 6 disjoint lattices. All these lattices are alive after the first
loop nest. (b) The live lattices of signal A after the second loop nest. (c) The live lattices after the third loop nest.

Algorithm 3

Step 1 Decompose signal’s array references into disjoint lattices.
Figure 3(a) shows the result of this decomposition for the three

array references of signal A from Example 2. This decomposi-
tion is obtained analytically. using intersections and differences
of lattices – operations quite complex which cannot be explained
here due to lack of space. The resulting lattices have the following
expressions (in non-matrix format, in order to save space):

L1 = {x = 0, y = t | 5 ≥ t ≥ 0}
L2 = {x = t1, y = t2 | 5 ≥ t2 ≥ 1 , 2t2 − 1 ≥ t1 ≥ 1}
L3 = {x = 2t, y = t | 5 ≥ t ≥ 1}
L4 = {x = 2t1 + 2, y = t2 | 4 ≥ t1 ≥ t2 ≥ 1}
L5 = {x = 2t1 + 1, y = t2 | 4 ≥ t1 ≥ t2 ≥ 1}
L6 = {x = t, y = 0 | 10 ≥ t ≥ 1}
While the first array reference in Example 2 is the union of all

the six lattices, the second array reference is L1 ∪ L2 ∪ L3, and
the third is L3 ∪ L4. (Note that the 2nd and 3rd array references
have in common the array elements covered by the lattice L3.)
Assuming that the elements covered by L1 and L2 are consumed
(accessed as operands for the last time) in the second loop nest,
and the elements covered by L3 and L4 are consumed in the third
loop nest, we can find the elements alive at the borderline between
these blocks of code. For instance, the array elements covered by
the lattices L3, L4, L5, and L6 are still alive after the second loop
nest (see Fig. 3(b)); the elements covered by L5 and L6 are alive
after the third loop nest, as well (see Fig. 3(c)).

Step 2 Using Algorithm 1, compute the extreme values of each
signal’s index for the live elements at the boundaries between
blocks of code.

For instance, after the third loop nest, applying Algorithm 1 on
the live lattices L5 and L6, the extreme values of A’s first index
are xmin = 1 and xmax = 10; the extreme values of A’s second
index are ymin = 0 and ymax = 4, as it can be easily noticed from
Fig. 3(c). The global extreme values are, obviously, Xmin = 0,
Xmax = 10, and Y min = 0, Y max = 5 (see Fig. 3(a)), resulting
a window W=(11,6).

Steps 1 and 2 find the index windows when every block of code
either produces or consumes (but not both!) the signal’s elements.

Step 3 Update the extreme values of the signal’s indices for the

live elements within each block of code where array elements are
both produced and consumed.

In the illustrative example from Fig. 1, A-elements are both pro-
duced and consumed in the loop nest. In such a situation, the ba-
sic idea is to compute the iterator vectors when array elements
are accessed for the last time [13] and, subsequently, apply Algo-
rithm 1 to the live lattices corresponding to those iterations. For
instance, the element A[0][9] is consumed in the iteration (i , j) =
(10 , 9). The corresponding lattice produced before that iteration
is {x = i, y = j | 10 ≥ i ≥ 0, 9 ≥ j ≥ 0, 18 ≥ i+j ≥ 9} (cov-
ering the black points in Fig. 1); Algorithm 1 yields xmin = 0,
xmax = 10, and ymin = 0, ymax = 9.

3 Experimental results

A software tool performing the mapping to the data memory of
the (multi-dimensional) arrays from a given algorithmic specifica-
tion has been implemented in C++, incorporating the algorithms
described in this paper.

Table 1 summarizes the results of our experiments, carried out
on a PC with a 1.85 GHz Athlon XP processor and 512 MB mem-
ory. The benchmark tests are multimedia applications and typi-
cal algebraic kernels used in signal processing. Columns 2 and 3
display the numbers of array references and scalars in the speci-
fication code. Columns 4 and 5 show the data memory size (i.e.,
the total window sizes of the arrays) when the mapping is done
according to Tronçon’s model [11] and according to De Greef’s
model [5], respectively. The CPU times were obtained using the
algorithms described in this paper. Column 6 displays the sum
of the minimum array windows4 (optimized intra-array mapping).
Column 7 shows the minimum storage requirements of the appli-
cations, when the memory sharing between different arrays is op-
timized as well. The data in these last two columns were obtained
with another tool of ours presented in [13].

The main conclusions of these experiments are the following:

4The minimum array window of signal A from the illustrative example in Fig. 1
is 80, that is, the minimum number of memory locations enabling the code execu-
tion. Indeed, there are at most 80 A-elements simultaneously alive and this happens
when the iteration (i,j)=(14,10) is completed. Note that Tronçon’s and De Greef’s
models give window sizes of 110 and 100, respectively (see Section 1.2).
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Application # Array # Scalars Mem. size / CPU Mem. size / CPU Memory size (optimal Min. memory size (optimal
references using model [11] using model [5] intra-array mapping) inter+intra array mapping)

Motion detection 11 318,367 9,525 / 12 sec 9,636 / 20 sec 9,525 9,524
Regularity detection 19 4,752 4,353 / 3 sec 3,879 / 9 sec 2,449 2,304
2D Gaussian blur filter 20 177,167 48,646 / 34 sec 50,448 / 76 sec 48,646 16,515
SVD updating 87 386,472 17,554 / 18 sec 16,754 / 48 sec 10,204 8,725
Voice coder 232 33,619 13,104 / 14 sec 13,224 / 25 sec 12,963 11,890

Table 1: Experimental results. The computation times were obtained with our implementation. Columns 6, 7 were computed with [13].

1. Our memory exploration tools (the one described in this paper
together with the one presented in [13]) can provide an accurate
evaluation of the signal-to-memory mapping models. While [5]
and [11] compute only the size of their array windows, they are un-
able to provide any consistent information on how good their mod-
els are, that is, how large is the oversize of their array windows in
comparison to the minimal windows (col. 6) and storage require-
ments (col. 7). While a minimum array window may be difficult to
achieve in practice (in many cases, requiring a significantly more
complex hardware), a signal-to-memory mapping model actually
trades-off an excess of storage for a less complex address gener-
ation hardware. Our methodology allows to compute this amount
of extra storage, providing useful data for the system-level explo-
ration design phase. Table 1 shows that there are applications (like
the motion detection, the Gaussian blur filter) where both mapping
models give very good solutions, close (or, even, equal) to the op-
timal array windows (col. 6). On the other hand, there are also
applications where the window sizes computed according to the
models are significantly larger than the optimal ones (e.g., 72%
and 64% larger for the SVD updating); in such cases, the designer
must take the decision whether to go along with any of the models
or imagine a different solution.
2. Tronçon’s model gives, in general, smaller window sizes than
De Greef’s model. This happens especially when the array space
contains holes (see, for instance, Fig. 2) and, also, when the size
of the array can be reduced in any dimension since, in such cases,
any linearization will contain a number of unused array elements.
On the other hand, there are cases when De Greef’s model finds a
linearization yielding a smaller size window, as it happens in the
illustrative example (Fig. 1) or in the SVD updating application.
Also, De Greef’s model runs regularly slower in our implementa-
tion since there are several linearizations to be analyzed, the rest
of the computations being similar to the other model.
3. The implementation of the mapping models based on the al-
gorithms presented in this paper is several times faster than the
original implementations. The computation times reported in [5]
and [11] are typically of the order of minutes, whereas our imple-
mentation runs for the same examples or of similar complexity in
tens of seconds at most. For instance, the voice coding applica-
tion was processed by [11] in over 25 minutes (using a 300 MHz
Pentium II) and by [5] in over 27 minutes (unspecified platform);
in contrast, we did the computations in only 14 seconds on a 1.85
GHz Athlon XP and in 38 seconds on a Sun Ultra 10 workstation.
We can safely state that this implementation is several times faster.

4 Conclusions

This paper has addressed the problem of intra-array mapping of
the multi-dimensional signals to the data memory in multimedia
behavioral specifications. This paper has thoroughly analyzed two
mapping models, assessing their effectiveness and proposing more
efficient algorithms which led to an implementation several times
faster than the original ones.

References
[1] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, A.

Vandecappelle, Custom Memory Management Methodology: Ex-
ploration of Memory Organization for Embedded Multimedia Sys-
tem Design, Kluwer Academic Publishers, Boston, 1998.

[2] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. G. Kjelds-
berg, T. Van Achteren, and T. Omnes, Data Access and Storage
Management for Embedded Programmable Processors, Boston,
USA: Kluwer Acad. Publ., 2002.

[3] G.B. Dantzig, B.C. Eaves, “Fourier-Motzkin elimination and its
dual,” J. Combinatorial Theory (A), vol. 14, pp. 288-297, 1973.

[4] A. Darte, R. Schreiber, G. Villard, “Lattice-based memory alloca-
tion,” IEEE Trans. Computers, vol. 54, pp. 1242-1257, Oct. 2005.

[5] E. De Greef, F. Catthoor, H. De Man, “Memory size reduction
through storage order optimization for embedded parallel multime-
dia applications”, special issue on “Parallel Processing and Multi-
media” (ed. A. Krikelis), in Parallel Computing, Elsevier, vol. 23,
no. 12, pp. 1811-1837, Dec. 1997.

[6] V. Lefebvre, P. Feautrier, “Automatic storage management for paral-
lel programs,” Parallel Computing, vol. 24, pp. 649-671, 1998.

[7] W. Pugh, “A practical algorithm for exact array dependence analy-
sis,” Comm. of the ACM, vol. 35, no. 8, pp. 102-114, Aug. 1992.
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[11] R. Tronçon, M. Bruynooghe, G. Janssens, F. Catthoor, “Storage
size reduction by in-place mapping of arrays,” Verification, Model
Checking and Abstract Interpretation, pp. 167-181, 2002.

[12] S. Verdoolaege, K. Beyls, M. Bruynooghe, F. Catthoor, “Experiences
with enumeration of integer projections of parametric polytopes,” in
Compiler Construction: 14th Int. Conf., pp. 91-105, 2005.

[13] H. Zhu, I.I. Luican, F. Balasa, “Memory size computation for multi-
media processing applications,” Proc. Asia & South-Pacific Design
Automation Conf., pp. 802-807, Yokohama, Japan, Jan. 2006.

5B-2

491



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


