
Effective OpenMP Implementation and Translation
For Multiprocessor System-On-Chip without Using OS

Abstract - It is attractive to use the OpenMP as a parallel
programming model on a Multiprocessor System-On-Chip
(MPSoC) because it is easy to write a parallel program in the
OpenMP and there is no standard method for parallel
programming on an MPSoC. In this paper, we propose an
effective OpenMP implementation and translation for major
OpenMP directives on an MPSoC with physical shared
memories, hardware semaphores, and no operating system.

I Introduction

Two major models for parallel programming are the
message-passing model and the shared address space model.
In the message-passing model, each processor has a private
memory and communicates data to other processors by a
message. Though programmers can get high performance with
this model, it is difficult to write a program to optimize data
distribution and data movement for the performance. The
Message Passing Interface (MPI)[1] is a de facto standard
interface of this model. It is mainly used for a cluster that has
physically distributed memories. In the shared address space
model, all processors share a memory and communicate data
through the access to the shared memory. Though this model
needs a memory consistency model to keep a memory
consistency, it is easy to write a program and to port a serial
program to a parallel program. The OpenMP [2] is a de facto
standard interface of this model. It is mainly used for a shared
memory multiprocessor (SMP) machine [3][4]. Because it is
easy to write a parallel program, there are some attempts to
use the OpenMP as a parallel programming model on other
parallel-processing platforms such as System-On-Chips and
clusters [5][6][7][8].

An OpenMP implementation and an OpenMP translator are
necessary to use the OpenMP on a target platform. The
OpenMP interface is a specification standard to represent a
programmer’s intension with compiler directives. The
standard does not define how to make an OpenMP
implementation on a parallel-processing platform. When we
choose a target platform, available Application Programming
Interface (API) on the platform is different from API on other
platforms. So, an OpenMP implementation varies from
platform to platform. There can be several different OpenMP
implementations on the same target platform. Then, a

customized OpenMP translator for a target platform is
necessary to translate an OpenMP program into a parallel
program with API of the target platform. There are many
works to translate an OpenMP program into a parallel
program on various platforms [3][4][5][6][7][8][9][10].

Though a Multiprocessor System-On-Chip (MPSoC)
platform can vary with a target application program, previous
works do not cover these various platforms. A platform can
have a shared memory or a distributed memory and use an
operating system or not. When we customize an OpenMP
implementation and an OpenMP translation to a target
platform, we can get high performance on the platform. There
are some attempts to use the OpenMP on an MPSoC because
there is no standard method for parallel programming on an
MPSoC and it is easy to write a parallel program in the
OpenMP [7][8][9]. When a platform uses an operating system
(OS) such as an SMP Linux Kernel and a thread library such
as the POSIX thread library on an MPSoC board, the OpenMP
implementation and translation on the platform are similar to
those on an ordinary SMP machine [8]. However, when a
platform does not use an operating system, we need different
approach. Though there are previous works without using an
OS, they mainly focused on OpenMP directive extension and
OpenMP implementations using special hardware to improve
the performance on the board [7][9]. Moreover, their
implementations of the synchronization directive have the
possibility that the synchronization directives work wrong.

This paper proposes an effective OpenMP implementation
and translation for major OpenMP directives on a target
MPSoC with physically shared memories, hardware
semaphores, and no operating system and analyzes the
performance. We focus on effective translation of global
‘shared’ variables and effective implementation of the
‘reduction’ clause to improve the performance without using
special hardware and OpenMP directive extension. We
improved the implementation of synchronization directives
and removed the possibility that the synchronization directives
work wrong. We made the proposed OpenMP implementation
and OpenMP translator. Then, we translated and ran some
OpenMP programs. Experiment results show that the proposed
OpenMP implementation and translation improve the
performance of OpenMP programs.

This paper is organized as follows. In Section 2, we briefly

Woo-Chul Jeun

Electrical Engineering and Computer Science
Seoul National University

Seoul 151-742 Korea
Tel : +82-2-880-7292
Fax : +82-2-879-1532

e-mail : wcjeun@iris.snu.ac.kr

Soonhoi Ha

Electrical Engineering and Computer Science
Seoul National University

Seoul 151-742, Korea
Tel : +82-2-880-7292
Fax : +82-2-879-1532

e-mail : sha@iris.snu.ac.kr

1-4244-0630-7/07/$20.00 ©2007 IEEE.

1B-3

44

introduce a target MPSoC board and explain the OpenMP
overview. We propose an effective OpenMP implementation
and OpenMP translation for major OpenMP directives on the
target MPSoC board in Section 3. Then, we present the
experimental results in Section 4. Finally, we draw a
conclusion with some idea of future research direction.

II. Background

A. CT3400: Cradle MPSoC Board

The CT3400 [11] is our target MPSoC board made by
Cradle Technologies, Inc. Fig.1 shows the simplified block
diagram of the board. In the figure, we only present some
components that our OpenMP implementation uses. The
architecture of the board mainly consists of an MPSoC chip
and a 256MB global data memory. The chip has 64 global
hardware semaphores, four 230MHz RISC-like processors, 32
local hardware semaphores, 32KB instruction cache, and
64KB local data memory. Processors can share variables in
the local data memory and the global data memory. Each
processor can access the memory exclusively.

The C language is a programming language for the
processors and the ‘cragcc’ [12] is GNU-based C-compiler.
Each processor communicates data to other processors with
the shared memory.

B. OpenMP Overview

The OpenMP defines a specification for the C/C++
language and the FORTRAN language and uses compiler
directives. It is easy to write a parallel program and to port a
serial program to a parallel program with inserting OpenMP
directives into code segments that we wish to run in parallel.
Fig.2 shows an example OpenMP code to sum from 0 to 9999.
The runtime execution model of an OpenMP program is the
fork/join model. The program executes serially with a single
thread, referred to as the ‘master thread’. When the master
thread encounters the ‘parallel’ directive, the ‘master thread’
creates some additional child threads and each child thread
divides and executes the computation workload. After all child
threads complete their own workload and the synchronization
procedure, all child threads join the ‘master thread’. The
‘master thread’ resumes the execution again.

III. OpenMP Implementation and Translation for MPSoC

Because an OpenMP implementation and translation are
dependent on a target platform, we present an OpenMP
implementation and translation for our target platform, the
CT3400.

A. The Clause determining attributes of variables

In the OpenMP, the variables in a parallel region have
attributes such as ‘shared’ and ‘private’. We can determine the
attributes with the ‘clause’ of the OpenMP such as ‘private
(var)’, ‘shared (var)’, and ‘default (shared)’. The ‘shared’
variable means that all threads can directly access the variable.
The ‘private’ variable means that each thread has its own copy
of the variable. The ‘default’ clause sets the default attributes

of variables. Because these attributes are only specification,
we have to implement these attributes. For the ‘private’ clause,
we declare a variable that has the same name of the variable in
the parallel region, again. Newly declared variable hides the
original variable.

B. Global ‘Shared’ Variables

When we declare a ‘shared' variable as a global variable, all
processors can access the variable. There are two approaches
to allocate variables: static memory allocation and dynamic
memory allocation. For the static memory allocation, we
declare global variables like ‘int data[10000]’ and the
variables reside in the global data area. For the dynamic
memory allocation, we declare a global pointer variable like
‘int *data’ and allocate memory to the pointer with a memory
allocation function such as ‘malloc()’. Though the pointer,
‘data’, resides in global data area, real array resides in the
heap area.

Though the memory allocation approach on PC does not
cause large difference in the performance, the static memory
allocation on the CT3400 can improve the performance. The
‘cragcc’ compiler can efficiently process global variables
when the global variables reside in global data area on the
CT3400 [12]. Because this performance improvement depends
on the compiler, the static memory allocation for global
‘shared’ variables cannot always improve the performance for
all application programs. However, when we use the dynamic
memory allocation, we cannot inform the compiler that the
variable is the global variable. Then the compiler cannot even
get the opportunity to improve the performance.

C. Non-global ‘Shared’ Variables

If we do not declare a ‘shared’ variable as a global ‘shared’
variable, processors cannot directly share the variable on the
CT3400. Each processor has its own copy of the ‘shared’
variable similar to the ‘private’ variable. So, our OpenMP
implementation uses the shared memory as a communication
channel. When one processor writes a value to its own copy of

Fig. 1. Simplified block diagram of CT3400 board.

semaphores Instruction
cache (32KB)

RISC-like
processor

Global bus
interface

Local data
memory (64KB)

Global data memory
(256MB)

Local data bus

Local instruction bus

Global bus

(chip)

Global
semaphores

RISC-like
processor

RISC-like
processor

RISC-like
processor

semaphores Instruction
cache (32KB)

RISC-like
processor
RISC-like
processor

Global bus
interface

Global bus
interface

Local data
memory (64KB)

Global data memory
(256MB)

Local data bus

Local instruction bus

Global bus

(chip)

Global
semaphores

Global
semaphores

RISC-like
processor
RISC-like
processor

RISC-like
processor
RISC-like
processor

RISC-like
processor
RISC-like
processor

#pragma omp parallel default(shared) private(i)
{

#pragma omp for reduction(+:sum)
for(i=0;i<10000;i++)

 {
 sum += i;

}
}

Fig. 2. Example OpenMP code to sum from 0 to 9999.

1B-3

45

the ‘shared’ variable, our OpenMP implementation copies the
value to a structure-type variable of the C language in the
shared memory. The member variables of the structure-type
variable are ‘shared’ variables used in the parallel region.
After our OpenMP implementation makes other processors
copy the value of the structure-type variable to their own
copies of the ‘shared’ variable, other processors can read the
value of the ‘shared’ variable from their own copy of the
‘shared’ variable.

D. ‘Parallel’ Directive

Programmers can denote a parallel region by inserting
‘parallel’ directive into the code segment that we wish to run
in parallel. If a platform supports a thread library, the OpenMP
implementation of the ‘parallel’ directive is to use the thread
library. However, we cannot use the fork/join model for the
‘parallel’ directive because the CT3400 has no OS and no
thread library. The master processor has to load other
processors with an executable image and to invoke them at the
beginning of the program. The master processor has to
complete this procedure before the main function of the
application program starts. So, our OpenMP translator
changes the name of original main function to ‘app_main’ and
inserts the initialization procedure before calling the original
main function, ‘app_main’. Previous works chose this
approach on other parallel-processing platforms [6][7][9][10].
The master processor executes the program and other
processors wait until the master thread arrives at a parallel
region. All processors divide and execute the computation
workload in the parallel region. After a synchronization step at
the end of the parallel region, the master processor resumes
the execution and other processors wait for a parallel region
again [3][6][10].

Our OpenMP translator moves a parallel region to another
place and defines a function including the parallel region code.
The translator inserts a code calling the function instead of the
original parallel region. This translation method has an
advantage to make an OpenMP translator with small effort by
reusing prior OpenMP translators for a platform that support a
thread library.

E. Synchronization Directive

The synchronization directives are critical’, ‘atomic’, and
‘barrier’. The ‘barrier’ directive is a representative directive
of the synchronization directives. Programmers can use the
directive like ‘#pragma omp barrier’. This directive means
that all processors have to wait here until all processors arrive
at this synchronization point. Other synchronization directives
are based on the ‘barrier’ directive. Then, we present our
implementation of the ‘barrier’ directive and compare our
implementation and previous implementation.

Fig.3(a) is the previous implementation [7][9] of the
‘barrier’ directive and Fig.3(b) is our proposed
implementation of the ‘barrier’ directive. Both use hardware
semaphores on the CT3400 to implement the synchronization
directives. The ‘PES’ means the total number of processors.
The ‘my_peid’ means unique processor ID from 0 to n-1 when
there are n processors. The ‘done_pe’ is a counter of
processors that arrive at the synchronization point. The basic
algorithm of the ‘barrier’ implementation is that each

processor gets the lock and increases the counter by one and
releases the lock. When the counter equals the total number of
processors, it means that all processors arrive at the
synchronization point. Then, we have to initialize the counter
to reuse it at next synchronization point. There is a problem
related with this initialization step in the previous
implementation. In Fig.3(a), the master processor initializes
the counter to 0 at the end of the ‘barrier’. Assume that the
master processor is not the last processor that arrives at the
synchronization point. Until the last processor gets the lock
and executes the statement of ‘done_pe++’, other processors
wait at the statement of ‘while(done_pe < PES)’. When the
last processor completes the statement of ‘done_pe++’, the
master processor can escape the statement of ‘while(done_pe
< PES)’ and execute the statement of ‘done_pe = 0’ before the
last processor releases the lock. Then, the counter is initialized
to 0 before the last processor evaluates the counter at the
statement of ‘while(done_pe < PES)’. Then, the last processor
cannot escape the statement of ‘while(done_pe < PES)’.
Though we cannot always encounter this wrong execution
result, there is a possibility for the program to work wrong
because the execution result of multiprocessors is
non-deterministic.

We propose our new implementation in Fig.3(b) to solve the
problem. We introduce a ‘phase’ variable and toggle the value
of the variable at each ‘barrier’ directive. With the ‘phase’
variable, we can initialize the counter for the next ‘barrier’
and keep the value of the counter for the present ‘barrier’. We
use two counter variables, ‘done_pe[2]’. One is for the present
‘barrier’ and another is for the next ‘barrier’. The last
processor initializes the counter for the next ‘barrier’ before
the last processor increases the counter for the present
‘barrier’. Then, other processors cannot escape the statement
of ‘while(done_pe[phase]<(PES))’ until the last processor
increases the counter for the present ‘barrier’. Because the
‘phase’ of the present ‘barrier’ is different from the ‘phase’ of
the next ‘barrier’, the last processor can escape the statement
of ‘while(done_pe < PES)’ even when other processors arrive
at the next ‘barrier’.

F. Work-sharing Directive

The for’ directive is a work sharing directive.
Programmers can use this directive with a target for-loop as
presented in Fig.2. This directive distributes the iterations of
the target for-loop to processors. The ‘reduction’ clause can be
used with the ‘for’ directive. If we set a variable and a
reduction operation with the ‘reduction’ clause, each processor
computes a partial result for the reduction operation on the
variable and the OpenMP implementation integrates all partial
results into a total result. Fig.4 shows a translation example of

done_pe++;
semaphoer_unlock(Sem.p);
while(done_pe<(PES))
 _pe_delay(1);
if(my_peid == 0)
 done_pe = 0;

(a) Previous ‘barrier’ implementation (b) Proposed ‘barrier’ implmentation

Fig. 3. OpenMP implementations of the ‘barrier’ directive.

semaphore_lock(Sem.p);

 _pe_delay(1);
while(done_pe[phase]<(PES))
semaphoer_unlock(Sem.p);
done_pe[phase]++;
 done_pe[(phase+1)%2] = 0;
if(done_pe[phase]+1 == PES)
phase = (phase + 1) % 2;

semaphore_lock(Sem.p);

1B-3

46

the ‘for’ directive and the ‘reduction’ clause presented in Fig.2.
Because processors divide the iterations of the target for-loop,
each processor has a different loop condition from loop
conditions of other processors. Then, each processor declares
some variables for own loop condition and own loop index
and executes some procedure to determine the loop condition
for the processor. After then, each processor runs the original
for-loop region and gets a partial sum. For example, if there
are four processors, the first processor gets a partial sum from
0 to 2499 and the second processor gets a partial sum from
2500 to 4999. Each processor saves the partial sum to the
reduction structure-type variable, ‘_t_red’ as presented in
Fig.4. The ‘reduce()’ function gathers all partial results and
integrates them into a total result. In this example, the total
result is the total sum of partial sums.

We can use two methods to implement the ‘reduce()’
function. One method is to use a temporary variable in the
shared memory. It is similar to the previous reduction
implementation [7][9]. Fig.5 shows the code of ‘reduce()’
function implementation using the method. Each processor
gets a lock and directly accesses the temporary variable,
‘reduction_buffer’ in the figure. The ‘reduce’ function gets the
information of the partial sum, ‘_t_red’ presented in Fig.4, as
function parameters, ‘buf’ and ‘size’. If a processor is the first
processor that executes the ‘reduce()’ function, the processor
saves its partial sum to the temporary variable. After then,
other processors update the temporary variable with the
reduction function, ‘function’ as presented in the figure. After
all processors execute the ‘reduce()’ function, the temporary
variable, ‘reduction_buffer’, is the final result. The
disadvantage of this method is that while a processor gets a
lock and executes a reduction operation, other processors wait
to get the lock.

Another method is to use a temporary buffer array as a
message queue. Fig.6 shows the code of ‘reduce()’ function
implementation using the method. We declare a temporary
buffer array as ‘char reduction_buffer[PES][4096]’ in the
shared memory. Each processor writes its own partial sum to
the fixed position for the processor, ‘reduction_buffer
[my_peid]’, in the buffer array without a lock. The ‘barrier’
part in this implementation makes sure that all processors
write their partial sums to the buffer array. After then, each
processor can add all partial sums from the fixed positions in
the buffer array and get the final result without a lock.
Because we just use a lock for the synchronization, we can run
the reduction operation in parallel and reduce the waiting time
for a lock.

IV. Experiments

We customized the Omni C compiler [5] to our OpenMP
implementation and our OpenMP translation. Then, we
translated and ran some OpenMP programs on the CT3400
board.

The ‘Inspector’ is a cycle accurate simulator that the Cradle
Technologies, Inc. made for the CT3400 board. Like previous
works [7][9], we present results on the simulator as it provides
detailed profiling information.

We used a program to sum from 0 to 9999 shown in Fig.2
and an N*N matrix multiplication program that the CT3400

development kit provides. Though there are only a serial
program and a hand-written parallel program of N*N matrix
multiplication in the kit, we wrote an OpenMP program from
the serial program. As there is no standard OpenMP
benchmark for an MPSoC, previous works used the matrix
multiplication program, too [7][9]. Because the matrix
multiplication program has no ‘reduction’ clause, we used the
‘sum’ program for the experiment of the ‘reduction’ clause.
We replaced the statement of ‘sum += i’ with the statement of
‘sum += data[i]’ to test the effect of memory allocation
method for the global shared array, ‘data[]’. We allocate all
variables on the global data memory in this paper. We used the

Fig. 6. ‘reduce’ implementation using a temporary buffer array.

Fig. 4. Translation for a ‘for’ directive and a ‘reduction’ clause.

Fig. 5. ‘reduce’ implementation using a temporary variable.

1B-3

47

EPCC benchmark [13] to measure the overhead of OpenMP
directives.

Table I shows a result of 24*24 matrix multiplication. As
the number of processors increases, the execution time is
reduced. The static memory allocation for global shared
variables shows better performance than the dynamic memory
allocation. Both the serial program and the hand-written
program use the static memory allocation. Then, our OpenMP
implementation shows similar performance to the
hand-written code when we used the static memory allocation
for the global shared variables. On the other hand, the serial
program spends 5,207,562 cycles in another experiment when
we modify the serial program to use the dynamic memory
allocation. Table II and Table III show the execution time of
the matrix multiplication with various size of matrix. In all
cases except for 4*4, the static memory allocation is about
21%~31% better than the dynamic memory allocation. For
4*4, the computation workload is small enough to equal the
overhead of OpenMP directives and the difference of the
execution time between two allocation methods is much
smaller than other cases.

Table IV shows the overhead of major OpenMP directives
that we measured with the EPCC benchmark. The overhead of
OpenMP directives in the matrix multiplication program is
about 20,000 cycles. This overhead is constant, regardless of
the size of matrix and the number of processors. Our ‘barrier’
implementation needs additional 200~700 cycles compared to
previous implementation. However, we removed the problem
of previous implementation and the additional overhead is
much smaller than the overhead of other directives. For the
‘reduction’ clause, we implemented and compared our two
methods. The method using a temporary buffer array as a
message queue is about 10% better than the method using a
temporary variable in the shared memory.

Table V shows the execution time of the ‘sum’ program.
The program spends about 350,000 cycles in serial part,
regardless of the number of processors. However, as the
number of processors increases, the execution time for the
parallel part is reduced. The ‘variable’ and ‘array’ mean two
methods to implement the ‘reduction’ clause. In this program,
the static memory allocation is 2% worse than the dynamic
memory allocation. Though the OpenMP translator gives the
compiler the hint that the variable is a global variable, the
compiler does not efficiently use the hint. The method using a
temporary buffer array as a message queue reduced the
execution time by about 1000~2700 cycles, compared to the
method using a temporary variable in the shared memory.
Because this program executes the ‘reduction’ clause once, the
benefit is small.

IV. Summary and Conclusions

In this paper, we proposed effective OpenMP
implementation and translation for major OpenMP directives
without special hardware or OpenMP directive extension on
an MPSoC with physically shared memories, hardware
semaphores, and no operating system. We made our proposed
OpenMP implementation and OpenMP translator. OpenMP
directives work well on the MPSoC board simulator.

When we translate the global variable declaration into static

TABLE IV
Overhead of major OpenMP directives (cycles)

Processors 1 2 4
Previous ‘barrier’ implementation 1,136 1,698 2,848

Our ‘barrier’ implementation 1,404 2,128 3,581
‘parallel’ directive 1,645 5,094 8,109

‘for’ directive 7,340 8,933 12,039
‘reduction’, temporary variable 1,713 8,790 14,028

‘reduction’, temporary buffer array 1,713 7,805 12,631

TABLE III
Execution time of the matrix multiplication program with

static memory allocation (cycles)

The number of processors
Processors

1 2 4
4*4 41,314 32,756 29,233
8*8 164,922 92,587 56,983

16*16 1,118,376 566,935 294,333
32*32 8,650,047 4,332,926 2,177,484
64*64 68,346,647 34,181,382 17,101,868

TABLE II
Execution time of the matrix multiplication program with

dynamic memory allocation (cycles)

The number of processors
Processors

1 2 4
4*4 38,291 31,120 25,413
8*8 208,399 116,330 68,174

16*16 1,564,136 794,121 409,248
32*32 12,373,765 6,198,865 3,108,500
64*64 98,731,357 49,375,560 24,698,132

TABLE I
Execution time of 24*24 matrix multiplication (cycles)

OpenMP
Processors Serial

Parallel
(hand-written) Dynamic Static

1 3,664,513 3,653,761 5,221,225 3,674,336
2 N/A 1,827,537 2,622,901 1,845,050
4 N/A 914,127 1,320,474 933,549

TABLE
Execution time of the program to sum from 0 to 9999

(cycles)

Dynamic allocation Static allocation
Processors

Variable Array Variable Array
1 1,678,840 1,706,669 1,678,740 1,707,169
2 1,014,402 1,028,935 1,013,134 1,027,983
4 680,179 694,081 677,409 692,457

1B-3

48

memory allocation instead of dynamic memory allocation, a
compiler can know whether the shared variables are global
variables. It is possible to make a compiler that can efficiently
process the global variable region at a platform. Even though
the compiler cannot always improve the performance of all
kinds of applications with this information, this information
gives the compiler the opportunity of performance
improvement. When the computation workload is sufficiently
larger than the overhead of OpenMP directives and a compiler
efficiently process the global shared variables, the matrix
multiplication results show that static memory allocation for
global shared variables can reduce the execution time by
21%~31% compared to dynamic memory allocation. The
‘sum’ program result shows that the performance degradation
is about 2% even when the compiler does not efficiently
process the global shared variables.

For the reduction implementation, the EPCC benchmark
and the ‘sum’ program results show that using a temporary
buffer array as a message queue is 10% better than using a
temporary variable in the shared memory.

We improved the implementation of synchronization
directives and removed the possibility that the synchronization
directives work wrong. The EPCC benchmark result shows
that our implementation needs about additional 200~700
cycles compared to the implementation of the previous work.
However, the overhead is smaller than the overhead of other
directives.

We plan to make the OpenMP translator support for
OpenMP 2.0[14] and to research about an OpenMP
implementation and translation for an MPSoC with physically
distributed memory.

Acknowledgements

This work was supported by National Research Laboratory
Program (No.M1-104-00-0015), Brain Korea 21 Project,
SystemIC 2010, IT-SoC, and IT leading R&D Project funded
by Korean MIC. The ICT and ISRC at Seoul National
University and IDEC provide research facilities for this study.

References

[1] Message Passing Interface Forum, “MPI: A message-passing
interface standard”, International Journal of Supercomputer
Applications and High Performance Computing, Vol.8, No.3/4,
pp159-416, 1994.

[2] OpenMP Architecture Review Board, “OpenMP C and C++
application program interface,” http://www.openmp.org, Version
1.0, Oct. 1998.

[3] Christian Brunschen and Mats Brorsson, “OdinMP/CCp – a
portable implementation of OpenMP for C,” EWOMP’1999,
Lund, Sweden, Sept. 1999, pp.21-26.

[4] Vassilios V. Dimakopoulos and Elias Leontiadis, “A portable C
compiler for OpenMP V.2.0”, EWOMP’2003, Aachen, Germany,
Sept. 2003, pp.5—11.

[5] Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio
Tanaka, “Design of OpenMP compiler for an SMP cluster,”
EWOMP’99, Lund, Sweden, Sept. 1999, pp.32-39.

[6] Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha, “ParADE: An

OpenMP programming environment for SMP cluster systems,”
ACM/IEEE Supercomputing (SC’03), Nov 12-15, 2003.

[7] Feng Liu and Vipin Chaudhary, “A practical OpenMP compiler
for system on chips,” WOMPAT 2003, LNCS 2716, pp. 54-68,
2003.

[8] Yoshihiko Hotta, Mitsuhisa Sato, Yoshihiro Nakajima, Yoshinori
Ojima, “OpenMP implementation and performance on embedded
renesas M32R chip multiprocessor,” EWOMP 2004, Stockholm,
Sweden, Oct. 2004, pp. 37-42.

[9] Feng Liu and Vipin Chudhary, “Extending OpenMP for
Heterogeneous Chip Multiprocessors,” ICPP’2003, Kaohsiung,
Taiwan, Oct. 2003, pp.161-.

[10] Woo-Chul Jeun, Yang-Suk Kee, and Soonhoi Ha, “Improving
performance of OpenMP for SMP clusters through overlapped
page migrations,” International Workshop on OpenMP
(IWOMP’06), Reims, France, 2006, in press.

[11] Cradle Technologies, Inc., CT3400 Multi-core DSP datasheet,
http://www.cradle.com

[12] Cradle Technologies,Inc., CRAGCC Compiler Addendum,
http://www.cradle.com

[13] EPCC OpenMP Microbenchmarks 1.0,
http://www.epcc.ed.ac.uk/research/openmpbench

[14] OpenMP Architecture Review Board, “OpenMP C and C++
application program interface,” http://www.openmp.org, Version
2.0, Mar. 2002.

1B-3

49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

