
Effective OpenMP Implementation and Translation 
For Multiprocessor System-On-Chip without Using OS 

Abstract - It is attractive to use the OpenMP as a parallel 
programming model on a Multiprocessor System-On-Chip 
(MPSoC) because it is easy to write a parallel program in the 
OpenMP and there is no standard method for parallel 
programming on an MPSoC. In this paper, we propose an 
effective OpenMP implementation and translation for major 
OpenMP directives on an MPSoC with physical  shared 
memories, hardware semaphores, and no operating system. 

I Introduction 

Two major models for parallel programming are the 
message-passing model and the shared address space model. 
In the message-passing model, each processor has a private 
memory and communicates data to other processors by a 
message. Though programmers can get high performance with 
this model, it is difficult to write a program to optimize data 
distribution and data movement for the performance. The 
Message Passing Interface (MPI)[1] is a de facto standard 
interface of this model. It is mainly used for a cluster that has 
physically distributed memories. In the shared address space 
model, all processors share a memory and communicate data 
through the access to the shared memory. Though this model 
needs a memory consistency model to keep a memory 
consistency, it is easy to write a program and to port a serial 
program to a parallel program. The OpenMP [2] is a de facto 
standard interface of this model. It is mainly used for a shared 
memory multiprocessor (SMP) machine [3][4]. Because it is 
easy to write a parallel program, there are some attempts to 
use the OpenMP as a parallel programming model on other 
parallel-processing platforms such as System-On-Chips and 
clusters [5][6][7][8]. 

An OpenMP implementation and an OpenMP translator are 
necessary to use the OpenMP on a target platform. The 
OpenMP interface is a specification standard to represent a 
programmer’s intension with compiler directives. The 
standard does not define how to make an OpenMP 
implementation on a parallel-processing platform. When we 
choose a target platform, available Application Programming 
Interface (API) on the platform is different from API on other 
platforms. So, an OpenMP implementation varies from 
platform to platform. There can be several different OpenMP 
implementations on the same target platform. Then, a 

customized OpenMP translator for a target platform is 
necessary to translate an OpenMP program into a parallel 
program with API of the target platform. There are many 
works to translate an OpenMP program into a parallel 
program on various platforms [3][4][5][6][7][8][9][10]. 

Though a Multiprocessor System-On-Chip (MPSoC) 
platform can vary with a target application program, previous 
works do not cover these various platforms. A platform can 
have a shared memory or a distributed memory and use an 
operating system or not. When we customize an OpenMP 
implementation and an OpenMP translation to a target 
platform, we can get high performance on the platform. There 
are some attempts to use the OpenMP on an MPSoC because 
there is no standard method for parallel programming on an 
MPSoC and it is easy to write a parallel program in the 
OpenMP [7][8][9]. When a platform uses an operating system 
(OS) such as an SMP Linux Kernel and a thread library such 
as the POSIX thread library on an MPSoC board, the OpenMP 
implementation and translation on the platform are similar to 
those on an ordinary SMP machine [8]. However, when a 
platform does not use an operating system, we need different 
approach. Though there are previous works without using an 
OS, they mainly focused on OpenMP directive extension and 
OpenMP implementations using special hardware to improve 
the performance on the board [7][9]. Moreover, their 
implementations of the synchronization directive have the 
possibility that the synchronization directives work wrong. 

This paper proposes an effective OpenMP implementation 
and translation for major OpenMP directives on a target 
MPSoC with physically shared memories, hardware 
semaphores, and no operating system and analyzes the 
performance. We focus on effective translation of global 
‘shared’ variables and effective implementation of the 
‘reduction’ clause to improve the performance without using 
special hardware and OpenMP directive extension. We 
improved the implementation of synchronization directives 
and removed the possibility that the synchronization directives 
work wrong. We made the proposed OpenMP implementation 
and OpenMP translator. Then, we translated and ran some 
OpenMP programs. Experiment results show that the proposed 
OpenMP implementation and translation improve the 
performance of OpenMP programs. 

This paper is organized as follows. In Section 2, we briefly 
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introduce a target MPSoC board and explain the OpenMP 
overview. We propose an effective OpenMP implementation 
and OpenMP translation for major OpenMP directives on the 
target MPSoC board in Section 3. Then, we present the 
experimental results in Section 4. Finally, we draw a 
conclusion with some idea of future research direction. 

II. Background

A. CT3400: Cradle MPSoC Board 

The CT3400 [11] is our target MPSoC board made by 
Cradle Technologies, Inc. Fig.1 shows the simplified block 
diagram of the board. In the figure, we only present some 
components that our OpenMP implementation uses. The 
architecture of the board mainly consists of an MPSoC chip 
and a 256MB global data memory. The chip has 64 global 
hardware semaphores, four 230MHz RISC-like processors, 32 
local hardware semaphores, 32KB instruction cache, and 
64KB local data memory. Processors can share variables in 
the local data memory and the global data memory. Each 
processor can access the memory exclusively. 

The C language is a programming language for the 
processors and the ‘cragcc’ [12] is GNU-based C-compiler. 
Each processor communicates data to other processors with 
the shared memory. 

B. OpenMP Overview 

The OpenMP defines a specification for the C/C++ 
language and the FORTRAN language and uses compiler 
directives. It is easy to write a parallel program and to port a 
serial program to a parallel program with inserting OpenMP 
directives into code segments that we wish to run in parallel. 
Fig.2 shows an example OpenMP code to sum from 0 to 9999. 
The runtime execution model of an OpenMP program is the 
fork/join model. The program executes serially with a single 
thread, referred to as the ‘master thread’. When the master 
thread encounters the ‘parallel’ directive, the ‘master thread’
creates some additional child threads and each child thread 
divides and executes the computation workload. After all child 
threads complete their own workload and the synchronization 
procedure, all child threads join the ‘master thread’. The 
‘master thread’ resumes the execution again. 

III. OpenMP Implementation and Translation for MPSoC 

Because an OpenMP implementation and translation are 
dependent on a target platform, we present an OpenMP 
implementation and translation for our target platform, the 
CT3400. 

A. The Clause determining attributes of variables 

In the OpenMP, the variables in a parallel region have 
attributes such as ‘shared’ and ‘private’. We can determine the 
attributes with the ‘clause’ of the OpenMP such as ‘private 
(var)’, ‘shared (var)’, and ‘default (shared)’. The ‘shared’
variable means that all threads can directly access the variable. 
The ‘private’ variable means that each thread has its own copy 
of the variable. The ‘default’ clause sets the default attributes 

of variables. Because these attributes are only specification, 
we have to implement these attributes. For the ‘private’ clause, 
we declare a variable that has the same name of the variable in 
the parallel region, again. Newly declared variable hides the 
original variable. 

B. Global ‘Shared’ Variables 

When we declare a ‘shared' variable as a global variable, all 
processors can access the variable. There are two approaches 
to allocate variables: static memory allocation and dynamic 
memory allocation. For the static memory allocation, we 
declare global variables like ‘int data[10000]’ and the 
variables reside in the global data area. For the dynamic 
memory allocation, we declare a global pointer variable like 
‘int *data’ and allocate memory to the pointer with a memory 
allocation function such as ‘malloc()’. Though the pointer, 
‘data’, resides in global data area, real array resides in the 
heap area. 

Though the memory allocation approach on PC does not 
cause large difference in the performance, the static memory 
allocation on the CT3400 can improve the performance. The 
‘cragcc’ compiler can efficiently process global variables 
when the global variables reside in global data area on the 
CT3400 [12]. Because this performance improvement depends 
on the compiler, the static memory allocation for global 
‘shared’ variables cannot always improve the performance for 
all application programs. However, when we use the dynamic 
memory allocation, we cannot inform the compiler that the 
variable is the global variable. Then the compiler cannot even 
get the opportunity to improve the performance. 

C. Non-global ‘Shared’ Variables 

If we do not declare a ‘shared’ variable as a global ‘shared’
variable, processors cannot directly share the variable on the 
CT3400. Each processor has its own copy of the ‘shared’
variable similar to the ‘private’ variable. So, our OpenMP 
implementation uses the shared memory as a communication 
channel. When one processor writes a value to its own copy of 

Fig. 1. Simplified block diagram of CT3400 board. 
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#pragma omp parallel default(shared) private(i) 
{

#pragma omp for reduction(+:sum) 
for(i=0;i<10000;i++) 

  { 
 sum += i; 

}
}

Fig. 2. Example OpenMP code to sum from 0 to 9999. 
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the ‘shared’ variable, our OpenMP implementation copies the 
value to a structure-type variable of the C language in the 
shared memory. The member variables of the structure-type 
variable are ‘shared’ variables used in the parallel region. 
After our OpenMP implementation makes other processors 
copy the value of the structure-type variable to their own 
copies of the ‘shared’ variable, other processors can read the 
value of the ‘shared’ variable from their own copy of the 
‘shared’ variable. 

D. ‘Parallel’ Directive 

Programmers can denote a parallel region by inserting 
‘parallel’ directive into the code segment that we wish to run 
in parallel. If a platform supports a thread library, the OpenMP 
implementation of the ‘parallel’ directive is to use the thread 
library. However, we cannot use the fork/join model for the 
‘parallel’ directive because the CT3400 has no OS and no 
thread library. The master processor has to load other 
processors with an executable image and to invoke them at the 
beginning of the program. The master processor has to 
complete this procedure before the main function of the 
application program starts. So, our OpenMP translator 
changes the name of original main function to ‘app_main’ and 
inserts the initialization procedure before calling the original 
main function, ‘app_main’. Previous works chose this 
approach on other parallel-processing platforms [6][7][9][10]. 
The master processor executes the program and other 
processors wait until the master thread arrives at a parallel 
region. All processors divide and execute the computation 
workload in the parallel region. After a synchronization step at 
the end of the parallel region, the master processor resumes 
the execution and other processors wait for a parallel region 
again [3][6][10]. 

Our OpenMP translator moves a parallel region to another 
place and defines a function including the parallel region code. 
The translator inserts a code calling the function instead of the 
original parallel region. This translation method has an 
advantage to make an OpenMP translator with small effort by 
reusing prior OpenMP translators for a platform that support a 
thread library. 

E. Synchronization Directive 

The synchronization directives are critical’, ‘atomic’, and 
‘barrier’. The ‘barrier’ directive is a representative directive 
of the synchronization directives. Programmers can use the 
directive like ‘#pragma omp barrier’. This directive means 
that all processors have to wait here until all processors arrive 
at this synchronization point. Other synchronization directives 
are based on the ‘barrier’ directive. Then, we present our 
implementation of the ‘barrier’ directive and compare our 
implementation and previous implementation. 

Fig.3(a) is the previous implementation [7][9] of the 
‘barrier’ directive and Fig.3(b) is our proposed 
implementation of the ‘barrier’ directive. Both use hardware 
semaphores on the CT3400 to implement the synchronization 
directives. The ‘PES’ means the total number of processors. 
The ‘my_peid’ means unique processor ID from 0 to n-1 when 
there are n processors. The ‘done_pe’ is a counter of 
processors that arrive at the synchronization point. The basic 
algorithm of the ‘barrier’ implementation is that each 

processor gets the lock and increases the counter by one and 
releases the lock. When the counter equals the total number of 
processors, it means that all processors arrive at the 
synchronization point. Then, we have to initialize the counter 
to reuse it at next synchronization point. There is a problem 
related with this initialization step in the previous 
implementation. In Fig.3(a), the master processor initializes 
the counter to 0 at the end of the ‘barrier’. Assume that the 
master processor is not the last processor that arrives at the 
synchronization point. Until the last processor gets the lock 
and executes the statement of ‘done_pe++’, other processors 
wait at the statement of ‘while(done_pe < PES)’. When the 
last processor completes the statement of ‘done_pe++’, the 
master processor can escape the statement of ‘while(done_pe 
< PES)’ and execute the statement of ‘done_pe = 0’ before the 
last processor releases the lock. Then, the counter is initialized 
to 0 before the last processor evaluates the counter at the 
statement of ‘while(done_pe < PES)’. Then, the last processor 
cannot escape the statement of ‘while(done_pe < PES)’.
Though we cannot always encounter this wrong execution 
result, there is a possibility for the program to work wrong 
because the execution result of multiprocessors is 
non-deterministic. 

We propose our new implementation in Fig.3(b) to solve the 
problem. We introduce a ‘phase’ variable and toggle the value 
of the variable at each ‘barrier’ directive. With the ‘phase’
variable, we can initialize the counter for the next ‘barrier’
and keep the value of the counter for the present ‘barrier’. We 
use two counter variables, ‘done_pe[2]’. One is for the present 
‘barrier’ and another is for the next ‘barrier’. The last 
processor initializes the counter for the next ‘barrier’ before 
the last processor increases the counter for the present 
‘barrier’. Then, other processors cannot escape the statement 
of ‘while(done_pe[phase]<(PES))’ until the last processor 
increases the counter for the present ‘barrier’. Because the 
‘phase’ of the present ‘barrier’ is different from the ‘phase’ of 
the next ‘barrier’, the last processor can escape the statement 
of ‘while(done_pe < PES)’ even when other processors arrive 
at the next ‘barrier’. 

F. Work-sharing Directive 

The for’ directive is a work sharing directive. 
Programmers can use this directive with a target for-loop as 
presented in Fig.2. This directive distributes the iterations of 
the target for-loop to processors. The ‘reduction’ clause can be 
used with the ‘for’ directive. If we set a variable and a 
reduction operation with the ‘reduction’ clause, each processor 
computes a partial result for the reduction operation on the 
variable and the OpenMP implementation integrates all partial 
results into a total result. Fig.4 shows a translation example of 

done_pe++; 
semaphoer_unlock(Sem.p); 
while(done_pe<(PES)) 
    _pe_delay(1); 
if(my_peid == 0) 
    done_pe = 0;

(a) Previous ‘barrier’ implementation (b) Proposed ‘barrier’ implmentation

Fig. 3. OpenMP implementations of the ‘barrier’ directive. 

semaphore_lock(Sem.p); 

    _pe_delay(1); 
while(done_pe[phase]<(PES)) 
semaphoer_unlock(Sem.p); 
done_pe[phase]++; 
    done_pe[(phase+1)%2] = 0; 
if(done_pe[phase]+1 == PES) 
phase = (phase + 1) % 2; 

semaphore_lock(Sem.p); 
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the ‘for’ directive and the ‘reduction’ clause presented in Fig.2. 
Because processors divide the iterations of the target for-loop, 
each processor has a different loop condition from loop 
conditions of other processors. Then, each processor declares 
some variables for own loop condition and own loop index 
and executes some procedure to determine the loop condition 
for the processor. After then, each processor runs the original 
for-loop region and gets a partial sum. For example, if there 
are four processors, the first processor gets a partial sum from 
0 to 2499 and the second processor gets a partial sum from 
2500 to 4999. Each processor saves the partial sum to the 
reduction structure-type variable, ‘_t_red’ as presented in 
Fig.4. The ‘reduce()’ function gathers all partial results and 
integrates them into a total result. In this example, the total 
result is the total sum of partial sums. 

We can use two methods to implement the ‘reduce()’
function. One method is to use a temporary variable in the 
shared memory. It is similar to the previous reduction 
implementation [7][9]. Fig.5 shows the code of ‘reduce()’
function implementation using the method. Each processor 
gets a lock and directly accesses the temporary variable, 
‘reduction_buffer’ in the figure. The ‘reduce’ function gets the 
information of the partial sum, ‘_t_red’ presented in Fig.4, as 
function parameters, ‘buf’ and ‘size’. If a processor is the first 
processor that executes the ‘reduce()’ function, the processor 
saves its partial sum to the temporary variable. After then, 
other processors update the temporary variable with the 
reduction function, ‘function’ as presented in the figure. After 
all processors execute the ‘reduce()’ function, the temporary 
variable, ‘reduction_buffer’, is the final result. The 
disadvantage of this method is that while a processor gets a 
lock and executes a reduction operation, other processors wait 
to get the lock. 

Another method is to use a temporary buffer array as a 
message queue. Fig.6 shows the code of ‘reduce()’ function 
implementation using the method. We declare a temporary 
buffer array as ‘char reduction_buffer[PES][4096]’ in the 
shared memory. Each processor writes its own partial sum to 
the fixed position for the processor, ‘reduction_buffer 
[my_peid]’, in the buffer array without a lock. The ‘barrier’
part in this implementation makes sure that all processors 
write their partial sums to the buffer array. After then, each 
processor can add all partial sums from the fixed positions in 
the buffer array and get the final result without a lock. 
Because we just use a lock for the synchronization, we can run 
the reduction operation in parallel and reduce the waiting time 
for a lock. 

IV. Experiments 

We customized the Omni C compiler [5] to our OpenMP 
implementation and our OpenMP translation. Then, we 
translated and ran some OpenMP programs on the CT3400 
board. 

The ‘Inspector’ is a cycle accurate simulator that the Cradle 
Technologies, Inc. made for the CT3400 board. Like previous 
works [7][9], we present results on the simulator as it provides 
detailed profiling information. 

We used a program to sum from 0 to 9999 shown in Fig.2 
and an N*N matrix multiplication program that the CT3400 

development kit provides. Though there are only a serial 
program and a hand-written parallel program of N*N matrix 
multiplication in the kit, we wrote an OpenMP program from 
the serial program. As there is no standard OpenMP 
benchmark for an MPSoC, previous works used the matrix 
multiplication program, too [7][9]. Because the matrix 
multiplication program has no ‘reduction’ clause, we used the 
‘sum’ program for the experiment of the ‘reduction’ clause. 
We replaced the statement of ‘sum += i’ with the statement of 
‘sum += data[i]’ to test the effect of memory allocation 
method for the global shared array, ‘data[]’. We allocate all 
variables on the global data memory in this paper. We used the 

Fig. 6. ‘reduce’ implementation using a temporary buffer array. 

Fig. 4. Translation for a ‘for’ directive and a ‘reduction’ clause. 

Fig. 5. ‘reduce’ implementation using a temporary variable. 
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EPCC benchmark [13] to measure the overhead of OpenMP 
directives. 

Table I shows a result of 24*24 matrix multiplication. As 
the number of processors increases, the execution time is 
reduced. The static memory allocation for global shared 
variables shows better performance than the dynamic memory 
allocation. Both the serial program and the hand-written 
program use the static memory allocation. Then, our OpenMP 
implementation shows similar performance to the 
hand-written code when we used the static memory allocation 
for the global shared variables. On the other hand, the serial 
program spends 5,207,562 cycles in another experiment when 
we modify the serial program to use the dynamic memory 
allocation. Table II and Table III show the execution time of 
the matrix multiplication with various size of matrix. In all 
cases except for 4*4, the static memory allocation is about 
21%~31% better than the dynamic memory allocation. For 
4*4, the computation workload is small enough to equal the 
overhead of OpenMP directives and the difference of the 
execution time between two allocation methods is much 
smaller than other cases. 

Table IV shows the overhead of major OpenMP directives 
that we measured with the EPCC benchmark. The overhead of 
OpenMP directives in the matrix multiplication program is 
about 20,000 cycles. This overhead is constant, regardless of 
the size of matrix and the number of processors. Our ‘barrier’
implementation needs additional 200~700 cycles compared to 
previous implementation. However, we removed the problem 
of previous implementation and the additional overhead is 
much smaller than the overhead of other directives. For the 
‘reduction’ clause, we implemented and compared our two 
methods. The method using a temporary buffer array as a 
message queue is about 10% better than the method using a 
temporary variable in the shared memory. 

Table V shows the execution time of the ‘sum’ program. 
The program spends about 350,000 cycles in serial part, 
regardless of the number of processors. However, as the 
number of processors increases, the execution time for the 
parallel part is reduced. The ‘variable’ and ‘array’ mean two 
methods to implement the ‘reduction’ clause. In this program, 
the static memory allocation is 2% worse than the dynamic 
memory allocation. Though the OpenMP translator gives the 
compiler the hint that the variable is a global variable, the 
compiler does not efficiently use the hint. The method using a 
temporary buffer array as a message queue reduced the 
execution time by about 1000~2700 cycles, compared to the 
method using a temporary variable in the shared memory. 
Because this program executes the ‘reduction’ clause once, the 
benefit is small. 

IV. Summary and Conclusions 

In this paper, we proposed effective OpenMP 
implementation and translation for major OpenMP directives 
without special hardware or OpenMP directive extension on 
an MPSoC with physically shared memories, hardware 
semaphores, and no operating system. We made our proposed 
OpenMP implementation and OpenMP translator. OpenMP 
directives work well on the MPSoC board simulator. 

When we translate the global variable declaration into static 

TABLE IV 
Overhead of major OpenMP directives (cycles) 

Processors 1 2 4 
Previous ‘barrier’ implementation 1,136 1,698 2,848 

Our ‘barrier’ implementation 1,404 2,128 3,581 
‘parallel’ directive 1,645 5,094 8,109 

‘for’ directive 7,340 8,933 12,039 
‘reduction’, temporary variable 1,713 8,790 14,028 

‘reduction’, temporary buffer array 1,713 7,805 12,631 

TABLE III 
Execution time of the matrix multiplication program with 

static memory allocation (cycles) 

The number of processors 
Processors 

1 2 4 
4*4 41,314 32,756 29,233 
8*8 164,922 92,587 56,983 

16*16 1,118,376 566,935 294,333 
32*32 8,650,047 4,332,926 2,177,484 
64*64 68,346,647 34,181,382 17,101,868 

TABLE II 
Execution time of the matrix multiplication program with 

dynamic memory allocation (cycles) 

The number of processors 
Processors 

1 2 4 
4*4 38,291 31,120 25,413 
8*8 208,399 116,330 68,174 

16*16 1,564,136 794,121 409,248 
32*32 12,373,765 6,198,865 3,108,500 
64*64 98,731,357 49,375,560 24,698,132 

TABLE I 
Execution time of 24*24 matrix multiplication (cycles) 

OpenMP 
Processors Serial 

Parallel 
(hand-written) Dynamic Static 

1 3,664,513 3,653,761 5,221,225 3,674,336 
2 N/A 1,827,537 2,622,901 1,845,050 
4 N/A 914,127 1,320,474 933,549 

TABLE 
Execution time of the program to sum from 0 to 9999 

(cycles) 

Dynamic allocation Static allocation 
Processors 

Variable Array Variable Array 
1 1,678,840 1,706,669 1,678,740 1,707,169 
2 1,014,402 1,028,935 1,013,134 1,027,983 
4 680,179 694,081 677,409 692,457 
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memory allocation instead of dynamic memory allocation, a 
compiler can know whether the shared variables are global 
variables. It is possible to make a compiler that can efficiently 
process the global variable region at a platform. Even though 
the compiler cannot always improve the performance of all 
kinds of applications with this information, this information 
gives the compiler the opportunity of performance 
improvement. When the computation workload is sufficiently 
larger than the overhead of OpenMP directives and a compiler 
efficiently process the global shared variables, the matrix 
multiplication results show that static memory allocation for 
global shared variables can reduce the execution time by 
21%~31% compared to dynamic memory allocation. The 
‘sum’ program result shows that the performance degradation 
is about 2% even when the compiler does not efficiently 
process the global shared variables. 

For the reduction implementation, the EPCC benchmark 
and the ‘sum’ program results show that using a temporary 
buffer array as a message queue is 10% better than using a 
temporary variable in the shared memory. 

We improved the implementation of synchronization 
directives and removed the possibility that the synchronization 
directives work wrong. The EPCC benchmark result shows 
that our implementation needs about additional 200~700 
cycles compared to the implementation of the previous work. 
However, the overhead is smaller than the overhead of other 
directives. 

We plan to make the OpenMP translator support for 
OpenMP 2.0[14] and to research about an OpenMP 
implementation and translation for an MPSoC with physically 
distributed memory. 
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