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Abstract— While the covering algorithm has been perfected
recently by the iterative approaches, such as DAOmap and IMap,
its application has been limited to technology mapping. The main
factor preventing the covering problem’s migration to other logic
transformations, such as elimination and resynthesis region iden-
tification found in SIS and FBDD, is the exponential number of
alternative cuts that have to be evaluated. Traditional methods
of cut generation do not scale beyond a cut size of 6. In this pa-
per, a symbolic method that can enumerate all cuts is proposed
without any pruning, up to a cut size of 10. We show that it can
outperform traditional methods by an order of magnitude and, as
a result, scales to 100K gate benchmarks. As a practical driver,
the covering problem applied to elimination is shown where it can
not only produce competitive area, but also provide more than
6x average runtime reduction of the total runtime in FBDD, a
BDD based logic synthesis tool with a reported order of magni-
tude faster runtime than SIS and commercial tools with negligible
impact on area.

I. INTRODUCTION

In CAD, the network covering problem has been success-

fully leveraged by technology mapping for K-LUTs to produce

extremely good solutions in terms of area and delay [1, 2]. The

covering problem attempts to find a set of cones to cover a net-

work such that a given optimization goal is satisfied. For ex-

ample, when applied to K-LUT technology mapping, the cov-

ering problem attempts to minimize the number of cones in its

solution to reduce area of the LUT network. This process is

illustrated in Fig. 1.
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Fig. 1. Treating technology mapping as a covering problem. (a) Initial

network. (b) Possible covering. (c) Final mapping to LUTs.

One important step during the covering problem is the gen-

eration of all cuts in the network that are used to derive a set

of cones to cover the network. The cut generation step is the

primary bottleneck of the covering problem and has limited the

application of the covering problem framework to technology

mapping for K-LUTs with small values of K (4 or 5), even

though many other problems in CAD can be represented as

a covering problem. One such problem is elimination [3, 4],

which is found in gate-level synthesis.

Elimination [3, 4] is one of the first area optimizations in the

synthesis flow that collapses redundant nodes into their transi-

tive fanouts. Nodes are considered redundant if their removal

through resynthesis operations does not change the functional-

ity of the circuit. Elimination also defines regions for succeed-

ing logic optimizations to be applied on since collapsed nodes

form large resynthesis regions. Current methods for elimina-

tion rely on trial-and-error to define resynthesis regions and,

hence, will not scale as circuits reach and surpass the 100K

gate mark. In particular, in a binary decision diagram (BDD)

based synthesis engine called FBDD, where logic transforma-

tions were sped up significantly [4], elimination emerged as the

primary bottleneck for scalability and has been reported to take

up to 70% of the runtime [4]. Being able to solve elimination

as a covering problem would treat elimination as a global op-

timization problem rather than a greedy based heuristic and,

more importantly, dramatically reduce the runtime of the elim-

ination step. However, since each elimination region is rela-

tively large (8 or more inputs), migrating the covering prob-

lem to elimination is not feasible due to the exponentially large

number of cuts that need to be generated and stored. Thus, for

applications that require large values of K , traditional methods

for cut generation cannot be used.
As a solution, we propose a novel scalable symbolic cut

generation method using BDDs that, unlike previous methods,
scales to cut sizes of up to 10 without the need of pruning. The
primary benefits of our symbolic approach are summarized as
follows:

• Subcuts are shared between larger cuts and do not need to be duplicated

in different cut sets. This dramatically reduces time to produce cuts and

the storage requirements to hold cut sets.

• Subcut sharing allows cuts to be evaluated simultaneously. This in-

creases efficiency by removing the need to evaluate all cuts indepen-

dently.

• Redundant cuts are automatically removed from the cut set which further

reduces the complexity to generate cuts.

We will show that our symbolic cut generation method is

more than 20x faster than traditional cut generation techniques.

Also, we will show that our approach scales better than current
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cut generation methods found in ABC, the fastest technology

mapper reported recently. As a result, we can generate large

cut sizes sizes up to 10 and can successfully apply the cover-

ing problem to elimination in FBDD: a BDD based synthesis

engine that has been shown to produce an order of magnitude

speedup over SIS [4] with little impact to area. As a conse-

quence of replacing elimination in FBDD with our cover-based

elimination algorithm, we get an average 6x speedup in total

runtime with no penalty to area when technology mapped to

standard cells or 4-LUTs.

The rest of the paper is organized as follows: section II

discusses the cut generation in more detail along with previ-

ous work; section III describes our symbolic cut generation

method; section IV describes our cover-based elimination; sec-

tion V shows the results of our approach; and section VI con-

cludes with a brief summary of our work and future directions.

II. BACKGROUND AND PREVIOUS WORK

A. Terminology

A circuit, as a DAG G = (V, E), represents functions, pri-

mary inputs and outputs (PIs, POs) as nodes, u ∈ G(V ). Each

directed edge, e ∈ G(E), with head, u = head(e), and tail

v = tail(e), represents a signal output from node v and enter-

ing node u. A cone, Cv , rooted at node v is a subgraph in a

circuit where all nodes, u, in Cv have a path from u to v. Addi-

tionally, if Cv is found in the final cover of a mapping solution,

the root node v is known to be visible. For example, in Fig. 1b,

the bottom right cover forms a cone and the OR-gate is the vis-

ible root node of the cone. The fanins of a cone (node) are

the set of nodes feeding the cone (node) and fanouts of a cone

(node) are the nodes fed by the cone (node). PIs are nodes

with no fanins and POs are nodes with no fanouts. A fanout

free cone (FFC), Cv, is a cone that has a fanout only at the root

node v, such as the cones in Fig. 1b. A maximum FFC (MFFC)

of node v is the largest possible FFC rooted at v. The cut of a

cone Cv is the set of cone fanin nodes, u ∈ fanin(Cv), and

the cut size, ‖fanin(Cv)‖, of a cone is known as the number

of distinct nodes feeding the cone. For example, looking at the

bottom right cone in Fig. 1b, the nodes feeding the NOT-gate

and AND-gate are the cone fanins and also form the cut for the

cone with a cut size of 2. A cone is derived from a cut by tak-

ing the subgraph rooted at a single node whose fanin nodes are

identical to the cut nodes. A cone (cut) is thought as K-feasible
if it has K or less distinct fanin nodes (cut nodes). Traversing

a graph in topological order implies a node’s fanins will be

visited before itself.

B. Cut Generation

One of the first works to use cut generation was presented

in [5]. Here, the authors define the set relation to generate all

K-feasible cuts shown in Equation 1. For a detailed explana-

tion of Equation 1, please refer to [5]. This contrasts with in-

cremental cut generation methods based on network flow [6, 7]

and has proven to be much faster.

Φ(v) = {cu ∗ cw | cu ∈ {{u} ∪ Φ(u)|u ∈ fanin(v)}, (1)

cw ∈ {{w} ∪ Φ(w)|w ∈ fanin(v)}, u �= w, ‖cu ∗ cw‖ ≤ K}
In Equation 1, Φ(v) represents the cut set for node v; {u}

represent the trivial cut (contains u only); cu represents a cut

from the cut set {{u} ∪Φ(u)}; and Φ(u) represents the cut set

for fanin node u. Traditional methods generate cuts by visiting

each node in topological order from PIs to POs and merging

cut sets as defined by Equation 1. Two cut sets are merged by

performing a concatenation (cu ∗ cw) of all cuts found in each

fanin cut set, and removing any newly formed cuts that are no

longer K-feasible (‖cu ∗ cw‖ ≤ K). Generating cuts this way

is not scalable to large cut sizes (K ≥ 6) and for circuits con-

taining a large degree of reconvergent paths. For example, in

IMap [2], which utilizes a popular technology mapping frame-

work, cut generation takes more than 99% of the runtime for

K = 7. In [8], the authors address this problem by selectively

pruning cuts that they deem to be wasteful. However, for large

cut sizes, pruning tends to remove too many cuts that may be

valuable in the final mapping solution.

Fig. 2. Example of two cuts in a netlist where c2 dominates c1.

A side effect of Equation 1 is the generation of redundant

cuts. A cut, c2, is redundant if it completely contains all the

input nodes of another cut, c1, in which case c2 is known as a

dominator cut. Fig. 2 illustrates this relation. These cuts can

be removed because they will not affect the final quality of a

mapping solution. In ABC [9], the authors address this prob-

lem by assigning all cuts a signature such that dominator cuts

can be quickly identified and removed. This, along with sev-

eral other optimization, results in an order of magnitude run-

time reduction over previous techniques. As a consequence,

ABC is currently the fastest LUT technology mapper available

with competitive depth and area results. However, even with

its clever heuristics, ABC cut generation time slows down sig-

nificantly for cuts sizes of 8 or larger. Although this is not a

problem for commercial FPGAs that restrict their LUT size to

6 or less [10], migrating the covering problem to elimination

requires a more scalable cut generation solution.

C. FBDD

As stated previously, the primary motivation of solving elim-

ination as a covering problem is to remove the elimination bot-

tleneck experienced by FBDD [4]. FBDD is BDD based syn-

thesis engine [11] which has proven to be an order of mag-

nitude faster than SIS with competitive area results. Remov-

ing the elimination bottleneck will further increase the speedup

experienced by FBDD. FBDD currently adopts an elimination

scheme similar to SIS. In FBDD elimination, regions are grown

from a given seed node where its fanins are successively col-

lapsed into the node in a greedy fashion. If the new logic rep-

resentation simplifies after the collapse operation, the collapse

is committed into the netlist, otherwise the collapse is undone.

This greedy approach to elimination in FBDD is very slow and

as a result, elimination in FBDD takes up more than 70% of the
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runtime. As we show later, we solve this problem by treating

elimination as a covering problem which results in a significant

speedup in FBDD with no sacrifice to area.

III. SCALABLE SYMBOLIC CUT GENERATION

Before we can treat elimination in FBDD as a covering prob-

lem, a scalable cut generation approach is required. Traditional

methods for cut generation cannot be used as they do not scale

to cut sizes of 6 or more without pruning [8]. We want to avoid

pruning since this may remove valuable cuts, particularly when

K becomes large (8 to 10). As described in Equation 1, cuts

are generated by concatenating subcuts in every possible way.

This is extremely inefficient since subcuts are duplicated every

time they are used to generate a new cut. Our symbolic ap-

proach solves this problem by sharing subcuts between larger

cuts. Referring back to our original cut expression in Equa-

tion 1, we can rewrite our equation in symbolic form.

fv = Πu∈fanin(v)(u + fu) (2)

Equation 2 is very similar to the set relation shown in Equa-

tion 1; however, in contrast with previous approaches, we

maintain cut set representations as a Boolean function, fv. In

our approach, we map a unique Boolean variable to each node

v found in our netlist and represent cuts by the conjunction of

the fanin node variables. Thus, our cut set fv will be a Boolean

expression in SOP form where each cube will represent a cut.

To join cut sets, we use the Π operation that can be thought

as the logical AND of all clauses (u + fu). Here, fu is the

Boolean function cut set representation for fanin node u, and

u is the trivial cut. For example, consider Fig. 3a. Here, each

cb
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c
=egf

b
=de

f
a
=bc+deg+cde+beg

d e g

f
a
=bc+deg+cde+beg

c

g

d

e

b

1 0

c

e

g

(a) Boolean expressions (b) BDD representation

Fig. 3. Symbolic representation of cut sets.

node is represented by a Boolean variable. Also, notice that the

cut set fa is the conjunction between the clauses (c + fc) and

(b + fb).
A problem with using cubes to represent our cut set is that it

suffers from similar scalability problems as traditional cut gen-

eration methods since each cut needs to be stored separately

as a cube and no subcut sharing occurs. A solution to this is

to represent our cut set as a reduced order binary decision di-

agram, which we will simply refer as a BDD for convenience

(for a detailed description of the BDD data structure, please re-

fer to [12, 13]). BDDs are DAGs which represent a Boolean

function where each node in the DAG represents one variable.

Node edges represent positive (1) or negative (0) assignments

to the variable where each edge points to the associated co-

factor. For example, referring back to Fig. 3a, the BDD used

to represent the cut set fa is shown in Fig. 3b. Here, positive

edges are represented by a solid line and negative edges are

represented by a dotted line.

Notice that representing cut sets as a BDD allows subcuts to

be shared as cofactors. Thus, subcuts can be reused in express-

ing larger cuts. For example, consider Fig. 4. Notice that in the
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Fig. 4. BDD representation of cuts c1, c2, and c3.

BDD representation, the subcut c1 = de is a positive cofactor

for variable c and g, and is shared by two larger cuts c3 = cde
and c2 = deg. Thus, instead of requiring 8 BDD nodes to store

cuts c1 to c3, only 4 BDD nodes are required.

Another benefit of using BDDs is that redundant cuts, such

as dominator cuts, are automatically removed. For example,

consider Fig. 5a containing the cut c1 and the dominator cut c2.

As a BDD, c1 and c2 are shown in Fig. 5b. Since BDD node c is

now redundant, it can be removed as in Fig. 5c which removes

the dominator cut c2. This example illustrates how redundant

cuts are automatically removed in BDD representations. This,

along with the subcut sharing, substantially reduces the runtime

and storage requirements of cut generation.
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Fig. 5. BDD representation of cuts c1 and c3.

A. Symbolic Cut Generation Algorithm

Fig. 6 illustrates our cut generation algorithm. First, the

netlist is sorted in topological order (line 1). Next, the cut set

function, fv, for each node in the graph is initialized to a con-

stant 1 (empties the cut set) and is assigned a unique variable

for cut representation (line 2-5). Finally, for each node, v, its

cut set is formed following Equation 2 (line 7-10). When form-

ing the cut set for node v, each fanin node, u = fanin(v), is

visited (line 7) and a temporary cut set is formed by the logical

OR of the trivial cut u and its cut set fu, ( fx = (u+fu), where

fx, u, and fu are represented as BDDs ). Next, the temporary

cut set is conjoined to the cut set of v using the logical AND op-

eration (line 9, fv = fv ·fx.). This merges the cut sets of all the
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fanin nodes to form new cuts. When forming larger cuts with

the logical AND operation, it is possible to form cuts larger

than K , thus BDDANDPRUNE is also responsible for pruning

cuts that are not K-feasible.

CutGeneration()
1 G ← SORTt()
2 foreach v ∈ G
3 fv ← 1
4 bv ← CREATENEWBDDVARIABLE()
5 end foreach
6 foreach v ∈ G
7 foreach u ∈ fanin(v)
8 fx ← BDDOR(bu, fu)
9 fv ← BDDANDPRUNE(fv, fx, K)

10 end foreach
11 end foreach

Fig. 6. High-level overview of symbolic cut generation algorithm.

B. Ensuring K-Feasibility and Finding Minimum Cost Cut

When conjoining two cut sets together using the logical

AND operation, we must ensure that all cuts remaining in the

new cut set are K-feasible. We achieve this by modifying the

BDD AND operation to remove cubes with more than K liter-

als. This recursive algorithm is illustrated in Fig. 7. Notice that

〈fz〉 BDDANDPRUNE(fx, fy, K,n)
1 if ISCONSTANT(fx) AND ISCONSTANT(fy)
2 return 〈fxANDfy〉
3 b ← GETTOPVAR(fx, fy)
4 fnb ← BDDANDPRUNE(fx(b = 0), fy(b = 0), K,n)
5 if n ≤ K
6 fpb ← BDDANDPRUNE(fx(b = 1), fy(b = 1), K,n + 1)
7 else
8 fpb ← 0
9 return 〈CREATEBDD(b, fnb, fpb)〉

Fig. 7. High-level overview of BDD AND operation with pruning for K .

the only difference in this algorithm compared to the recursive

definition of a BDD AND operation is the check in line 5. It is

recommended that those not experienced with BDD operations

please refer to [12, 13]. The algorithm starts off by checking

the trivial case where both BDD cut sets are constant functions

(line 1). If not the trivial case, the top most variable of both cut

sets is retrieved (line 3). This is followed by recursive calls to

find the negative and positive cofactors of the new cut set fz

(line 4-6). When constructing the positive cofactor, we make

sure that the number of positive edges seen is less than or equal

to K (line 5-8). If not, we prune out all cubes that form due to

that branch in the BDD. This works since our cut sets, fx and

fy , only contain positive literals and n is initialized to zero in

the first call to BDDANDPRUNE. Thus, we can assume n is

equivalent to the size of the cube in the current branch of the

BDD. Finally, we join the cofactors and form a new cut set and

return (line 9).

Fig. 8 is a simplified algorithm to find the minimum cost cut

from our BDD cut set. In MINCUTCOSTRECUR, the minimum

cost cut, cmin, and its cost, cost, from the cut set fv is returned.

Notice that cmin is returned as a cube where each positive lit-

eral in the cube represents a fanin node to the cut. Lines 1-4 are

the trivial cases when a trivial cut (line 1) or invalid cut (line 3)

is encountered. If the cut set is not an empty set, the algorithm

< cmin, cost > MinCutCostRecur(fv)
1 if fv ≡ 1
2 return < 1, 0 >
3 else if fv ≡ 0
4 return < φ, φ >
5 if VISITED(fv)
6 return < fx, cost >
7 b ← TOPVAR(fv)
8 < cnmin, costn >← MINCUTCOSTRECUR(fv(b = 0))
9 < cpmin, costp >← MINCUTCOSTRECUR(fv(b = 1))

10 costp ← costp + GETNODECOST(b)
11 if costn < costp
12 return < cnmin, costn >
13 else
14 fx ← BDDAND(cpmin, b)
15 return < fx, costp >

Fig. 8. Find the minimum cost cut in a given cut set.

checks if this cut set has been visited already, and if so, re-

turns the cached information (line 6-7). This step prevents the

need to explicitly enumerate all cuts and dramatically reduces

the runtime. If not visited, the algorithm recursively finds the

minimum cost cut for the positive and negative cofactors (line

8-10) and returns the cube representing the minimum cost cut

(although not shown, the algorithm should also check if the cut

is a valid cut).

IV. COVERING PROBLEM APPLIED TO ELIMINATION

Applying the covering problem to elimination allows us to

treat elimination as a global optimization problem and can dra-

matically reduce the runtime of elimination in BDD based syn-

thesis engines. As illustrated in Fig. 1, the covering problem

attempts to cover a given graph with a set of cones such that

the covering minimizes a cost metric. A common framework

to solve the covering problem is described in [2] and is not

described here. When applied to elimination, each cover is col-

lapsed into a single node to remove any redundancies. Since

each cover is fairly large (up to 10 inputs), without our scal-

able cut generation approach, applying the covering problem

to elimination would not be practical.

V. RESULTS

TABLE I

DETAILED COMPARISON OF BDDCUT CUT GENERATION TIME AGAINST
ABC.

K=8 (sec) K=9 (sec) K=10 (sec)

Circuit BddCut ABC BddCut ABC BddCut ABC
C6288 2.5 14.5 9.9 150.1 41.9 1758.4

des 9.1 10.7 74.7 105.2 828.4 1126.5

i10 2.8 6.1 11.4 57.2 50.8 581.1

b20 42.0 73.5 200.3 889.9 895.6 n/a

b21 44.0 80.3 205.2 942.8 920.2 n/a

b22 1 41.2 84.3 180.5 924.3 766.6 n/a

s15850.1 1.0 7.6 4.1 16.6 17.9 192.7

s38417 4.3 6.2 14.2 58.1 48.0 536.8

s4863 1.5 5.0 6.5 50.7 30.8 555.6

s6669 1.2 3.5 5.9 32.6 31.6 295.4

Ratio
Geomean 2.5x 4.9x 10x

We evaluate the proposed method in two aspects. Since Bd-

4C-2

411



dCut can be plugged into any iterative technology mapper to

generate cuts and achieve exactly the same area and delay, our

first evaluation focuses on its scalability against two represen-

tative, state-of-the-art mappers: IMap, one of the earliest map-

pers to use an iterative strategy; and ABC, the most recently

reported iterative mapper that employs a scalable cut genera-

tion algorithm. Our second evaluation attempts to measure the

benefits of the proposed method under the context of a com-

plete logic synthesis flow. To this end, we embed BddCut as a

replacement of the elimination procedure in FBDD, and eval-

uate its impact on runtime and area. All of our experiments

were run on a Pentium D 3.2 GHz machine with 2GB of RAM.

We used the Somenzi’s CUDD BDD package [15] and applied

our algorithms to the MCNC [16] and IWLS [17] benchmark

(includes ISCAS89, ITC, and several large circuits) suite.

A. Cut Generation

To investigate our symbolic approach to cut generation, we

compare the cut generation time of BddCut against IMap’s [2]

and ABC’s [9] cut generation time. Note that all technology

mappers were set to generate all possible cuts (i.e. no prun-

ing) and there was no sacrifice to solution quality, hence final

mapping results are omitted. Table I shows detailed results for

select circuits, followed by Table II and III with summarized

results for the entire ITC and ISCAS89 benchmark suite. In

cases that the technology mapper ran out of memory, the cir-

cuit time is marked as n/a.

TABLE II

AVERAGE RATIO OF IMap
BddCut

CUT GENERATION TIMES. IMAP COULD NOT
BE RUN FOR K ≥ 8.

Benchmark K=6 K=7

ITC 27.8x 46.5x

ISCAS89 12.2x 26.5x

TABLE III

AVERAGE RATIO OF ABC
BddCut

CUT GENERATION TIMES.

Benchmark K=6 K=7 K=8 K=9 K=10

ITC 0.512x 1.07x 1.77x 4.25x 11.2x

ISCAS89 0.781 1.08x 1.59x 2.39x 4.87x

The results in the previous table clearly indicate that due to

subcut sharing and redundant cut removal, our symbolic ap-

proach scales better than traditional techniques where IMap

is more than an order of magnitude slower. When compared

against ABC, our technique scales much better where our av-

erage speedup improves as K gets larger. Also, for K=10, be-

cause ABC does not share any subcuts, it runs out of memory

for a few of the larger benchmark circuits. Fortunately, ABC

supports cut dropping which has proven to reduce the memory

usage by several fold, but, from our experience, cut dropping

increases the cut computation time so we did not turn on this

feature. For example, with cut dropping enabled, ABC took

more than 12 hours to generate 10-input cuts for circuit b20,

whereas BddCut takes less than 15 minutes.

Although ABC outperforms BddCut for small cut sizes, the

longest 6-input cut generation time in BddCut was 2.8 sec-

onds. For small cut sizes, the overhead in storing and gener-

ating BDDs is not amortized when generating cut sets symbol-

ically, thus ABC is still the better approach for smaller values

of K . The exception to this trend occurs for circuits with a high

degree of reconvergence such as for circuit C6288 (C6288 is

a multiplier). For these circuits, our relative speedup is much

larger for all values of K because reconvergent paths dramat-

ically increase the number of cut duplications in conventional

cut generation methods.

One concern one could raise with our symbolic approach is

the effect of BDD representation of cuts on the cache. Since

the CUDD package represents BDDs as a set of pointers, the

nodes in each BDD may potentially be scattered throughout

memory. Thus, any BDD traversal would lead to cache thrash-

ing, which would dramatically hurt the performance of our al-

gorithm. However, CUDD allocates BDD nodes from a con-

tinuous memory pool leading to BDDs that exhibit good spatial

locality. Our competitive results support this claim and indicate

that good cache behaviour is maintained with CUDD.

B. Elimination

B.1 Area and Runtime Impact

After ensuring our symbolic cut generation approach suited our

needs for elimination, we evaluated our elimination scheme

against greedy based elimination schemes. To compare the two

approaches, we replaced the folded elimination step in FBDD

with our covering-based elimination algorithm and compared

both the area and runtime of the original FBDD flow against

our new flow. As mentioned in section C, logic folding has

a huge impact on runtime where it has been shown to re-

duce the number of elimination operations by 60% on aver-

age. Thus, comparing against the folded version of elimina-

tion has much more value. We also compare against SIS for

a common reference point. For ease of readability, we will

refer to our flow which uses covering-based elimination as

FBDDnew. Starting with unoptimized benchmark circuits,

we optimized the circuits with FBDDnew, FBDD, and SIS.

To compare their area results, we technology mapped our opti-

mized circuits to two technologies: the SIS standard cell library

(map) [3] and 4-LUTs using the technology mapping algorithm

described in [2]. When optimizing the circuits in SIS, we used

script.rugged [3]. Table IV illustrates detailed results for a

few benchmark circuits. Column Circuit lists the circuit name,

column Time lists the total runtime in seconds, column Std Cell
lists the standard cell area when mapped to SIS’ default stan-

dard cell library, and column 4-LUT lists the 4-LUT count.

Note a few circuits caused SIS to run out of memory and are

marked as n/a. The final row lists the geometric mean of the

ratio when compared against FBDDnew.

For the circuits shown in Table IV, our new flow is signifi-

cantly faster than the original FBDD with an average speedup

of over 5x and an order of magnitude speedup over SIS. The

results also show that this speedup comes with no area penalty.

We also explored the effect of the maximum cut size used in

our elimination algorithm on runtime and area where we varied

the cut size from 4 to 10. This is shown in Table V where we

applied our new flow to the entire ITC benchmarks and take

the geometric mean ratio of the FBDD result over FBDDnew.

Column K lists the cut size used in FBDDnew when gener-

ating resynthesis regions, column Time is the time ratio, col-

umn Std Cell is the final standard cell area ratio, and column 4-
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TABLE IV

DETAILED COMPARISON OF AREA AND RUNTIME OF FBDDnew AGAINST FBDD AND SIS FOR K = 8.

Time (sec) Std Cell Area 4-LUT Area
Circuit FBDDnew FBDD SIS FBDDnew FBDD SIS FBDDnew FBDD SIS
s38417 1.9 7.2 58.0 15992 15711 18617 3560 3559 4052

s38584 3.0 13.7 3927.3 17388 17783 16846 4289 4152 4174

s35932 3.9 4.1 n/a 18630 17806 n/a 3264 3360 n/a

s15850 0.8 9.1 68.8 5707 5605 5735 1282 1270 1329

b20 5.5 44.8 154.5 20280 20002 20776 4514 4324 4773

b22 1 6.2 38.4 202.4 26402 29725 25265 5788 6505 5664

b17 8.9 102.8 583.1 44355 41115 46701 10722 9896 11574

systemcdes 3.1 11.3 123.1 5582 5683 5276 1152 1207 1143

vga lcd 38.9 585.2 n/a 18435 178033 n/a 40680 40676 n/a

wb conmax 18.6 104.2 1313.5 76719 82514 77329 19135 19479 19726

Ratio Geomean 5.7x 70x 1.00 1.01 1.00 1.03

LUT is the final 4-LUT area ratio. Each ratio column is given

a benchmark heading indicating the benchmark suite used. As

TABLE V

COMPARISON OF AREA AND RUNTIME OF FBDD AGAINST FBDDnew

FOR VARIOUS VALUES OF K ON THE ITC BENCHMARKS.

K Time Std Cell 4-LUT
4 12.4x 0.978 1.001

6 8.76x 1.00 1.00

8 6.16x 0.995 1.00

10 2.55x 1.02 0.991

Table V shows, it appears that using a cut size of 4 or 6 has

a substantial speedup of more than 10x in many cases; how-

ever, this comes with an area penalty, particularly in the IWLS

benchmarks. This implies that the elimination regions created

with these cut sizes are too small and does not capture large

enough resynthesis regions in a single cone. In contrast, a cut

size of 8 still maintains a significant average speedup of more

than 6x for all benchmarks with negligible impact on the final

area when compared to the original FBDD.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a scalable symbolic ap-

proach to cut generation using BDDs. We have shown that

using BDDs to generate and store cut sets for K-LUT tech-

nology mappers has a significant speedup in terms of runtime

when compared against current methods and thus is scalable

to large cut sizes. As a result, we have been able to apply the

covering problem to elimination and we have shown that our

approach is competitive with current synthesis tools in terms

of both area and runtime where we get a more than 6x speedup

with no area penalty when applied to FBDD and an order of

magnitude speedup over SIS.

As an additional step, we would like to explore resynthe-

sis region identification for timing driven synthesis using our

cover-based elimination. The hope is that we could adapt the

elimination algorithm to optimize for circuit delay, rather than

solely optimize for area. In conclusion, we have found a scal-

able approach to cut generation and as a result have found an

interesting and useful application of the covering problem to

synthesis elimination.
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