
Symbolic Model Checking of Analog/Mixed-Signal Circuits ∗

David Walter, Scott Little, Nicholas Seegmiller, Chris J. Myers Tomohiro Yoneda

University of Utah National Institute of Informatics

Salt Lake City, UT 84112 Tokyo, Japan

{dwalter, little, seegmill, myers}@vlsigroup.ece.utah.edu yoneda@nii.ac.jp

Abstract— This paper presents a Boolean based symbolic
model checking algorithm for the verification of analog/mixed-
signal (AMS) circuits. The systems are modeled in VHDL-AMS,
a hardware description language for AMS circuits. The VHDL-
AMS description is compiled into labeled hybrid Petri nets (LH-
PNs) in which analog values are modeled as continuous variables
that can change at rates in a bounded range and digital values are
modeled using Boolean signals. System properties are specified
as temporal logic formulas using timed CTL (TCTL). The verifi-
cation proceeds over the structure of the formula and maps sep-
aration predicates to Boolean variables. The state space is thus
represented as a Boolean function using a binary decision diagram
(BDD) and the verification algorithm relies on the efficient use of
BDD operations.

I. INTRODUCTION

While taking up only a small portion of the chip area,

analog/mixed-signal (AMS) circuits are responsible for 50 per-

cent of the errors that result in a redesign [11]. Therefore, im-

provements in AMS circuit validation methodology are very

important. Analog circuit validation is typically achieved us-

ing SPICE simulation. Although mixed-signal validation can

be done using VHDL-AMS simulation, it is often done in a

more ad hoc way. Until recently, digital circuit validation also

utilized this simulation-only based methodology, but now for-

mal verification is often employed. Formal verification utilizes

nondeterminism and state space exploration to simultaneously

validate all possible simulations over a range of parameters and

initial conditions. While simulation has the potential to identify

any error, it is necessary to identify the particular simulation

parameters that would result in each error. Formal verification

approaches alleviate this necessity. These techniques, there-

fore, provide a promising mechanism to validate designs in the

face of noise and uncertain parameters.

Perhaps the first work in the formal verification of AMS cir-

cuits is from Kurshan and McMillan in which analog circuit

models are translated to finite state models using homomor-

phic transformations [12]. Hartong et al. verify analog cir-

cuits by dividing the continuous state space into regions that

are represented in a Boolean manner [8]. This allows them

to perform model checking using standard Boolean-based ap-

proaches though at some loss of accuracy. Tools for verifying

hybrid systems have also been adapted to verify AMS circuits.

Gupta et al. utilize CheckMate to verify analog circuits such

∗This research is supported by SRC contract 2005-TJ-1357 and an SRC

Graduate Fellowship.

as a tunnel diode oscillator and a delta-sigma modulator [7]. In

[3], Dang et al. use d/dt to verify a biquad low-pass filter. In

[6], Frehse et al. use PHAVer to verify analog oscillator circuits.

These approaches, however, require a user to describe an AMS

circuit using a hybrid automaton which is unfamiliar to most

AMS circuit designers. In [13], Little et al. adapt a zone-based

algorithm for the verification of AMS circuits. This method,

however, only supports constant rates of change for the contin-

uous variables and conservatively abstracts the continuous state

space.

This paper describes a new exact symbolic model check-

ing algorithm for the verification of AMS circuits which sup-

ports ranges on the rates of change for the continuous variables.

Figure 1 presents a flowchart of the steps in this verification

method. A model of the AMS circuit is first specified by the

designer using a subset of VHDL-AMS described below. By

allowing the designer to specify the model in a language that

is familiar to them, we hope to encourage the acceptance of

formal verification methodologies. The VHDL-AMS descrip-

tion is automatically compiled into a labeled hybrid Petri net
(LHPN) which includes Boolean signals to represent digital

circuitry and continuous variables to model voltages and cur-

rents in the analog circuitry. The LHPN model provides a for-

malism for reasoning about the system being analyzed. System

properties are specified as temporal logic formulas using timed
CTL (TCTL). The TCTL can be automatically generated from

assert statements in VHDL-AMS or more complicated proper-

ties can be specified by the designer. In [17], Seshia and Bryant

describe a symbolic model checking procedure for real-time

systems based on the one described in [9]. Their method maps

separation predicates to Boolean variables so that analysis can

be performed using BDD operations. Since this work is only

for real-time systems, all continuous variables can only change

with a rate of one. Therefore, this paper extends this work to

support continuous variables that can change at any rate within

a range in order to allow for the symbolic modeling checking

of AMS circuits with BDDs. In preparation for the application

of the Boolean model checking method, the LHPN is converted

to a Boolean symbolic model and the TCTL is converted into a

timed µ (Tµ) property. Finally, model checking is performed

and a verification result is obtained.

II. MOTIVATING EXAMPLE

This paper uses the switched capacitor integrator shown in

Fig. 2 as a running example. This circuit takes as input a 5 kHz

square wave that varies from −1 V to +1 V and generates a

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3C-3

316



Designer

VHDL-AMS to
LHPN Compiler

LHPN Model

LHPN to Symbolic TCTL to Tµ

Boolean Based

Model Converter

Model Checker

Converter

Symbolic Model Tµ Property

Verification Result

TCTL Property

VHDL-AMS Model

Fig. 1. Verification tool flow.

triangle wave as output representing the integral of the input

voltage. Discrete-time integrators typically utilize switched ca-

pacitor circuits to accumulate charge which can cause gain er-

rors in the integrator due to capacitor mismatch. Therefore,

the output voltage in our model is allowed to have a slew rate

anywhere between 18 to 22 mV/µs to represent a ±10 percent

variance in circuit parameters. The verification goal is to ensure

that Vout never saturates (i.e., it is always between −2000 mV

and 2000 mV). An experienced analog circuit designer may

realize the potential of this circuit to fail. However, a very spe-

cific and unusual SPICE simulation is required to demonstrate

this failure. Specifically, a failure only appears in a simulation

where capacitor mismatch results in a different slew rate when

charging the capacitor versus when discharging the capacitor.

Furthermore, it is highly unlikely that a simulation allowing for

random uncertainty in the system variables would reveal the er-

ror. Therefore, a formal verification approach is beneficial.

Using a subset of VHDL-AMS, the circuit in Fig. 2 can be

modeled as shown in Fig. 3. The VHDL-AMS subset that is

supported allows variables of types std logic for representing

Boolean signals and real for representing continuous quanti-

ties. Continuous variables can be initialized using break state-

ments. The rates of continuous variables can be updated us-

ing simultaneous statements such as the if-use and case-use
statements. Sequential behavior can be specified using pro-
cess statements without sensitivity lists. Within a process, sup-

ported statements are wait, signal assignment, if-then, case,

and while-loop. Finally, assert statements can be used to state

basic safety properties about the system. For convenience, our

VHDL-AMS descriptions also use procedures defined in the

Φ1

freq(Vin) = 5 kHz
Vin = ±1 V

Φ2

C1

Q2Q1 Vout

C2

C2 = 25 pF

C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

dVout/dt = ±(18 to 22) mV/µs

Vin -

+

Fig. 2. Circuit diagram for a switched capacitor integrator.

library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity integrator is
end integrator;
architecture switchCap of integrator is

quantity Vout:real;
signal Vin:std logic := ’0’;

begin
break Vout => -1000.0; --Initial value
if Vin=’0’ use

Vout’dot == span(18.0, 22.0);
elsif Vin = ’1’ use

Vout’dot == span(-22.0, -18.0);
end use;
process begin

assign(Vin,’1’,100,100);
assign(Vin,’0’,100,100);

end process;
assert (Vout’above(-2000.0) and

not Vout’above(2000.0))
report ‘‘error’’
severity failure;

end switchCap;

Fig. 3. VHDL-AMS for a switched capacitor integrator.

handshake and nondeterminism packages [15]. For exam-

ple, the assign procedure performs an assignment to a signal

at some random time within a bounded range specified by its

parameters and waits until the assignment has been performed

before returning. The span procedure takes two real values and

returns a random value within that range. The span procedure

is used to assign a range of rate to a continuous variable.

While similar to the VHDL-AMS description in [13], the

VHDL-AMS shown in Fig. 3 is more concise because our

analysis allows rates to be specified as ranges. This model

tracks the real quantity Vout that represents the output volt-

age. The Boolean variable V in determines the rate of Vout
using the if-use statements. When V in is 0, Vout increases at

a rate between 18 and 22 mV/µs and when V in is 1, Vout
decreases at a rate between −22 and −18 mV/µs. Initially

Vout is −1000 mV and increasing between 18 and 22 mV/µs.

After 100 µs, V in is assigned to 1 by the assign function

which causes Vout to begin decreasing at a rate of −22 to

−18 mV/µs. The assert statement is used to check if Vout
falls below −2000 mV or goes above 2000 mV.

3C-3

317



III. LABELED HYBRID PETRI NETS

Our VHDL-AMS description is compiled into an LHPN for

analysis. An LHPN is a Petri net model developed to repre-

sent AMS circuits with the goal of being easily generated from

VHDL-AMS descriptions. The model is inspired by features in

both hybrid Petri nets [4] and hybrid automata [1]. An LHPN

is a tuple N = 〈P, T,B, V, F, L,M0, S0, Q0, R0〉:
• P : is a finite set of places;

• T : is a finite set of transitions;

• B : is a finite set of Boolean signals;

• V : is a finite set of continuous variables;

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• L : is a tuple of labels defined below;

• M0 ⊆ P is the set of initially marked places;

• S0 : is the set of initial Boolean signal values;

• Q0 : is the set of initial continuous variable values;

• R0 : is the set of initial continuous variable rates.

A key component of LHPNs are the labels. Some labels

contain hybrid separation logic (HSL) formulas which are

a Boolean combination of Boolean variables and separation

predicates (a restricted form of inequalities relating real vari-

ables). HSL is an extension of separation logic (sometimes re-

ferred to as difference logic) that allows for non-unit slopes on

the separation predicates. These formulas satisfy the following

grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | cixi ≥ cjxj + c

where bi are Boolean variables, xi and xj are continuous vari-

ables, and ci, cj , and c are constants from the set of rational

numbers, Q. Each transition t ∈ T is labeled using the func-

tions defined in L = 〈E,D, BA, VA, RA〉:
• E : T → φ labels each t with an enabling condition;

• D : T → Q × (Q ∪ {∞}) labels each t with a lower and

upper bound delay value, [dl, du];
• BA : T → 2(B×{0,1}) labels each t with Boolean signal

assignments made when t fires;

• VA : T → 2(V ×Q) labels each t with continuous variable

assignments made when t fires;

• RA : T → 2(V ×Q×Q) labels each transition with a range

of rate assignments, [rl, ru], made when t fires.

The LHPN shown in Fig. 4 is automatically generated from

the VHDL-AMS model in Fig. 3. The break statement sets the

initial value for Vout . The if-use statement is compiled into

the LHPN in Fig. 4a. The process statement is compiled into

the LHPN in Fig. 4b. The assert statement is compiled into

the LHPN shown in Fig. 4c which fires a transition to set the

Boolean signal fail to true when the assertion is violated.

Formal semantics of LHPNs are given in [13, 18]. Intu-

itively, transitions in LHPNs are controlled by enabling con-

ditions and timing constraints. When the enabling condition

becomes satisfied, the clock on the transition begins, and the

Q0 = {Vout = −1000} R0 = {V̇ out = [18, 22]} S0 = {¬Vin,¬fail}

p3

p2

(b)

[100, 100]

〈Vin := F 〉

t3

t2

〈Vin := T 〉
[100, 100]

{Vout ≤ −2000 ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

t4

(c)

p4

p1

p0

(a)

〈V̇ out := [18, 22]〉

t1

t0

{¬Vin} [0, 0]

{Vin} [0, 0]

〈V̇ out := [−22,−18]〉

Fig. 4. LHPN for the switched capacitor integrator.

transition fires sometime after the clock reaches its lower bound

and before it exceeds its upper bound. Upon firing, the discrete

marking is updated by removing tokens from the preset places

of the transition and placing tokens in the postset places of the

transition. Additionally, assignments are made to Boolean sig-

nals, continuous variables, and rates of continuous variables.

For the LHPN in Fig. 4, the marking is initially {p0, p2, p4},

the Boolean signal Vin is false, the continuous variable Vout
is −1000, and Vout is increasing at a rate of 18 to 22 mV/µs.

After 100 µs, t2 fires resulting in p2 becoming unmarked, p3

becoming marked, and the assignment of true to Vin . This as-

signment causes the enabling and immediate firing of t0 and

thus the assignment of −22 to −18 mV/µs to the rate for Vout .

IV. BOOLEAN REPRESENTATION

The verification algorithm relies on performing Boolean op-

erations using BDDs. Thus, it is necessary to efficiently rep-

resent HSL formulas as Boolean formulas. This requires a

canonical representation of HSL separation predicates.1 The

canonical representation is of the form cixi ≥ cjxj + c with

the following restrictions where x0 is a special variable repre-

senting zero:

• The continuous variables xi and xj are distinct.

• If xi = x0 or xj = x0 then the corresponding constant ci

or cj is one.

• The constants ci and cj are not both negative.

• If ci or cj is negative (but not both), then in the ordered

set of real variables, xi comes before xj .

• The constants ci and cj are arbitrarily large integers with

a greatest common denominator of one.

• The constant c is a rational number using arbitrarily large

integers as the numerator and the denominator.

Using these restrictions and the fact that separation predicates

of the form cixi > cjxj+c are equivalent to cjxj ≥ cixi + −c,

any separation predicate can be represented in a unique way.

1A similar approach is suggested for octagonal polyhedra in [14].

3C-3

318



For clarity, we show separation predicates throughout the re-

mainder of this paper, however they are actually mapped to

BDD variables in their canonical form.

Using the canonical form of separation predicates, relation-

ships among continuous variables in LHPNs can now be rep-

resented in a Boolean manner. It is also necessary to maintain

relationships among the timers on transitions. This necessitates

the creation of additional continuous variables, denoted by ct,

to represent the value of the clock on transition t.

To complete the Boolean representation, BDD variables are

created for each place in the LHPN to indicate if the place is

marked, for each Boolean signal (denoted using the Boolean

signal’s name), and for each transition’s clock to indicate if

the clock is active or inactive (denoted as at for the clock on

transition t). Finally, a BDD variable is created for each possi-

ble rate on each continuous variable. These BDD variables are

known as Boolean rate variables and are denoted as v̇[rl,ru] for

the BDD variable corresponding to the continuous variable v̇
having rate [rl, ru]. Additionally, •t and t• represent the preset

and postset of t, respectively, and the notation (t•) := T means

that each element in the postset of t is assigned true. The nota-

tion t • − • t is used as a condition to ensure that the places in

the postset of the transition t, aside from places that form a self

loop, are not marked.

V. SYMBOLIC MODEL

In order for analysis to proceed, a symbolic model is gener-

ated that contains the essential information for analysis. The

symbolic model consists of three components: an invariant, a

set of possible rates, and a set of guarded commands.

The invariant (φI) is an HSL statement that must be satis-

fied in every state of the system. First, it states that only the

discrete states (represented by Φ) can be reached. The for-

mula Φ is found by performing a state space exploration of the

LHPN neglecting the continuous variables. The discrete state

space exploration is based on the Petri net algorithm described

in [16] with extensions to include values of Boolean signals and

Boolean rate variables in the state space. In other words, Φ is

a formula over the Boolean variables for the Petri net marking,

Boolean signals, and Boolean rate variables. Next, φI states

that for a transition’s clock to be active, the preset must be

marked, the enabling condition must be satisfied, and the clock

must be greater than zero but not greater than its upper bound.

This portion of φI prevents an active clock from exceeding its

upper bound. The last part of φI states that if a transition’s

clock is not active it must either have an unmarked place in

its preset or the non-strict inverse (Ẽ(t)) of the enabling condi-

tion must be satisfied. In the non-strict inverse, all ≥ separation

predicates become ≤ separation predicates and vice-versa. The

last two portions of φI when taken together enforce the activa-

tion or deactivation of a clock if a changing continuous variable

should cause an enabling condition to change evaluation. The

invariant is defined formally as follows:

φI = Φ ∧
∧
t∈T

(at ⇒ •t ∧ E (t) ∧ 0 ≤ ct ≤ u(t)) ∧

(at ⇒ •t ∨ Ẽ (t))

For the integrator example in Fig. 4, the invariant is:

φI = ((p0 p1 p2 p3 VinV̇ out [−22,−18] V̇ out [18,22]) ∨
(p0 p1 p2 p3 VinV̇ out [−22,−18] V̇ out [18,22]) ∨
(p0 p1 p2 p3 VinV̇ out [−22,−18] V̇ out [18,22]) ∨
(p0 p1 p2 p3 VinV̇ out [−22,−18] V̇ out [18,22])) ∧
(at0 ⇒ p0 ∧ Vin ∧ ct0 = 0) ∧ (at0 ⇒ p0 ∨ Vin) ∧
(at1 ⇒ p1 ∧ Vin ∧ ct1 = 0) ∧ (at1 ⇒ p1 ∨ Vin) ∧
(at2 ⇒ p2 ∧ 0 ≤ ct2 ≤ 100) ∧ (at2 ⇒ p2) ∧
(at3 ⇒ p3 ∧ 0 ≤ ct3 ≤ 100) ∧ (at3 ⇒ p3) ∧
(at4 ⇒ p4 ∧ ct4 = 0 ∧
(Vout ≤ −2000 ∨ Vout ≥ 2000)) ∧
(at4 ⇒ p4 ∨ (Vout ≥ −2000 ∧ Vout ≤ 2000))

The set of possible rates (R) consist of an HSL statement in-

dicating a possible Boolean rate assignment and the set of rate

assignments to continuous variables corresponding to the state-

ment (〈φR, R〉). This set is constructed from Φ, the Boolean

state set, by existentially abstracting all non-rate Boolean vari-

ables. Each product term corresponds to a φR of a pair in R.

The Boolean rate assignment sets (R) are built from the product

terms. For example, the possible rate set for Fig. 4 is:

R = {〈V̇ out [−22,−18] ∧ V̇ out [18,22],

{V̇ out := [−22,−18]}〉,
〈V̇ out [−22,−18] ∧ V̇ out [18,22],

{V̇ out := [18, 22]}〉}

The set of guarded commands (C) is used to determine in

each state which transitions are enabled and the effect on the

state due to the firing of a transition. It is constructed using a

set of primary guarded commands (CP ) and a set of secondary
guarded commands (CS). Each guarded command consists of

a guard, φG , represented using an HSL formula and a set of

commands, A, to be performed when the guard is satisfied.

A primary guarded command is created for each transition

t ∈ T . The guard for transition t ensures that the preset for

t is marked, the enabling condition on t is satisfied, and the

clock associated with t is active and exceeds its lower bound.

The commands for transition t cause the postset of t to become

marked and the application of the assignments associated with

t. Formally, the set of primary guarded commands is defined

as follows:

CP =
⋃
t∈T

{〈φGP
(t),AP (t)〉}

where φGP
(t) = (•t ∧ t • − • t ∧ E(t) ∧ at ∧ ct ≥ l(t))

and AP (t) = {(•t − t•) := F, (t•) := T, at := F, ct :=
[−∞,∞], BA(t), VA(t), RA(t)}. The primary guarded com-

mand for transition t2 in Fig. 4 is:

φGP
(t2) = p2 ∧ p3 ∧ at2 ∧ ct2 ≥ 100

AP (t2) = {p2 := F, p3 := T,Vin := T,

at2 := F, ct2 := [−∞,∞]}

3C-3

319



Two secondary guarded commands are created for each tran-

sition t ∈ T , one to activate and one to deactivate the clock as-

sociated with t. The first one activates the clock for t and sets it

to zero when its preset is marked and its enabling condition is

true. The second one deactivates the clock when t is no longer

enabled and sets its values to [−∞,∞]. This has the effect of

removing the clock from the state space. The set of secondary

guarded commands is defined as follows:

CS =
⋃
t∈T

{〈φGSA
(t),ASA(t)〉, 〈φGSD

(t),ASD(t)〉}

where φGSA
(t) = •t ∧ E (t) ∧ at, ASA(t) = {at := T, ct :=

[0, 0]}, φGSD
(t) = (•t ∨ Ẽ (t)) ∧ at, and ASD(t) = {at :=

F, ct := [−∞,∞]}. The activating and deactivating guarded

commands for transition t0 in Fig. 4 are:

φGSA
(t0) = p0 ∧ Vin ∧ at0

ASA(t0) = {at0 := T, ct0 := [0, 0]}
φGSD

(t0) = (p0 ∨ Vin) ∧ at0

ASD(t0) = {at0 := F, ct0 := [−∞,∞]}
The sets CP and CS are merged to form the set C. It is neces-

sary to merge these commands because the firing of a transition

may result in the activation or deactivation of clocks associated

with other transitions by changing the marking or the values of

the Boolean or continuous variables. Only the intuition behind

the merging process is described here. The basic idea is that for

each transition, t, the effect of its assignments associated with

its primary guarded command AP (t) must be checked against

the guards φGSA
(t′) and φGSD

(t′) for each other transition t′

to determine if the assignment may have enabled the guard. If

the assignments have no effect on the guard or disable it, then

the secondary for t′ is not merged with the primary for t. If

the assignment would make the guard true, then the commands

associated with the secondary must be combined with those

for the primary. Finally, if the assignment may have changed

the guard’s evaluation, then two guarded commands must be

constructed. One is for the case in which the guard for the

secondary is true in which the commands are merged, and the

other is for when the guard is false in which the secondary com-

mands are not merged. For example, since the primary guarded

command for t2 assigns Vin to true, a condition in the guard

of the activating guarded command on t0, they are merged into

the guarded command shown below:

φG(t2, t0) = p0 ∧ p2 ∧ p3 ∧ at0 ∧ at2 ∧ ct2 ≥ 100
A(t2, t0) = {p2 := F, p3 := T,Vin := T,

at0 := T, ct0 := [0, 0],
at2 := F, ct2 := [−∞,∞]}

VI. SPECIFYING PROPERTIES

Properties to be checked are specified using a dense real-

time version of CTL known as TCTL. For example, the TCTL

property to check for the integrator is AG(¬fail). This prop-

erty is automatically generated from the assert statement in the

VHDL-AMS code. More complex properties can be manually

provided by the user, if desired.

A TCTL property is translated into a Tµ calculus formula

as described in [9]. Tµ calculus has the following grammar as

defined in [9]:

ϕ ::= Y | φ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 � ϕ2 | z.ϕ | µY.ϕ | νY.ϕ

where φ is an HSL formula, z is a specification clock variable,

and Y is a formula variable used in fixpoint computation. The

next operator “�” means that ϕ1 is true as time elapses until a

discrete transition is taken resulting in ϕ2. When the specifica-

tion clock variable z is assigned to zero in ϕ, z.ϕ is true. The

expressions µY.ϕ and νY.ϕ are the least fixpoint and greatest

fixpoint, respectively, of ϕ with the formula variable Y bound

inside ϕ. The property for the integrator gets transformed into

the following Tµ formula:

φinit =⇒ ¬µY.[fail ∨ (true � Y )]

where φinit is the initial set of states:

φinit = p0 p1 p2 p3 p4 Vin FailV̇ out [−22,−18] V̇ out [18,22]

at0 at1 at2 at3 at4 ∧ ct2 = 0 ∧ V out = −1000

If a state in which fail is true cannot be reached from the initial

state then the formula evaluates to true.

VII. SYMBOLIC MODEL CHECKING WITH BDDS

Henzinger et al. describe a symbolic model checking algo-

rithm for timed automata in which all continuous variables

change at rate one [9]. Seshia and Bryant adapted this algo-

rithm for implementation using BDDs [17]. This adapted algo-

rithm is shown in Fig. 5. It proceeds over the structure of ϕ,

a Tµ property, given the symbolic model for the system to be

verified. Upon termination of the algorithm, the resulting HSL

formula is equivalent to φI if the property is satisfied and the

model is non-zeno. The outline of the algorithm in Fig. 5 is ap-

plicable to models with rates other than one [2], but extensions

are necessary to three critical parts of this algorithm. These

parts, assignment (φ[A]), weakest precondition (pre(φ)), and

time elapse (φ1 � φ2), are described below.

When an assignment, φ[A], operation is performed, a set of

assignments, as specified by A, are simultaneously performed.

The set, A, contains assignments to Boolean signals and/or as-

signments to continuous variables as defined by a guarded com-

mand. Assignments to Boolean signals are of the form b := T
or b := F and are performed on φ by calculating the cofactor

of φ with respect to the positive or negative form of b, respec-

tively. The assignment set, A, may also contain assignments to

real variables of the form xi := [−∞,∞] or xi := a. When

an xi := [−∞,∞] assignment is made, all BDD variables in

φ mapping to separation predicates containing xi are existen-

tially quantified. When an assignment of the form xi := a is

made, all BDD variables in φ containing xi are found and BDD

substitutions to φ are performed using the BDD composition

operation such that cixi ≥ cjxj + c ← x0 ≥ cjxj + (c − cia)
and cjxj ≥ cixi + c ← cjxj ≥ x0 + (c + cia).

The weakest precondition operation, pre(φ), calculates all

the possible states that could have resulted in φ by firing dis-

crete transitions. In particular, for each guarded command,

3C-3

320



|φ| := φI ∧ φ

|¬ϕ| := φI ∧ ¬|ϕ|
|ϕ1 ∨ ϕ2| := |ϕ1| ∨ |ϕ2|
|ϕ1 � ϕ2| := |(|ϕ1| ∨ |ϕ2|) � pre(|ϕ2|)|

|z.ϕ| := |ϕ|[z := 0]
|µY.ϕ| := the result of the following iteration:

φnew := false

repeat

φold := φnew

φnew := |ϕ[Y := φold ]|
until (φnew =⇒ φold)
return φold

Fig. 5. Symbolic analysis algorithm (courtesy of [17]).

〈φG,A〉 ∈ C, it first performs the assignments (A) to the cur-

rent set of states, and then applies the guard (φG). By taking the

disjunction of the result for each guarded command, all possi-

ble previous states are determined. Finally φ is disjunctively

combined with the result, and φI is conjunctively combined to

ensure that impossible states are not introduced into the calcu-

lation. This is defined formally below:

pre(φ) .= φI ∧ (φ ∨
∨

〈φG,A〉∈C
φG ∧ (φI ∧ φ)[A]))

The time elapse operation (�) calculates all the states that

can reach φ2 by allowing time to elapse while remaining in φ1

in between. The general idea of time elapse is that the state

region φ2 is expanded to include all states that can reach φ2 by

moving time backward. The result is then intersected with all

the states that can result in φ1 by moving time backward up to

the point where φ1 ∧ φ2 is no longer satisfied. Fig. 6 presents

a visual representation of the time elapse operation. Given an

initial state region, φ2, the result of time elapse encompasses

φ2 plus the region within the dotted lines where φ1 is satisfied.

The time elapse calculation is performed by iterating over the

possible rate set, R, and operating on the portion of the state

space for which φR is true. The separation predicates in that

portion of the state space are evolved backwards based on the

rates for each continuous variable in R. During this calculation,

separation predicates that cannot be guaranteed to remain true

are existentially abstracted, and new separation predicates that

represent the result of time evolution are introduced.

An example of applying a time elapse and transition precon-

dition step to the integrator example is shown in Fig. 7. Begin-

ning with the state shown in Fig. 7c, applying the time elapse

operation in a backwards fashion results in the state shown in

Fig. 7b. Similarly, applying the weakest precondition operation

to the state in Fig. 7b results in the state shown in Fig. 7a.

10x

10

y

φ2

φ1

φ1 � φ2

Fig. 6. Visual representation of φ1 � φ2 where 1 ≤ ẋ ≤ 2 and 1 ≤ ẏ ≤ 2.

p3

p2

t3
t2

[100, 100]
〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1
t0

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

〈V̇ out := [18, 22]〉
{Vin} [0, 0]

Vout ≤ 18ct2 + 200
Vout ≥ 22ct2 − 200

0 ≤ ct2 ≤ 100
−200 ≤ Vout ≤ 2000

p3

p2

t3
t2

[100, 100]
〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1
t0

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

{Vin} [0, 0]
〈V̇ out := [18, 22]〉

ct2 = 100
Vout = 2000

p3

p2

t3
t2

[100, 100]
〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1
t0

{Vin} [0, 0]
〈V̇ out := [18, 22]〉

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

ct3 = 100
−200 ≤ Vout ≤ 200

(b)(a) (c)

�−→Transition −→Time Elapse

Fig. 7. Application of time elapse and weakest precondition operators to the

integrator example. Note that the analysis is backwards beginning from the

state shown in (c).

VIII. CONSTRAINT GENERATION

As new separation predicates are generated and mapped to

Boolean variables, constraints are added to create relationships

with existing Boolean variables and prevent Boolean assign-

ments from being made that are impossible. The use of mul-

tiple variable rates in LHPNs, requires an enhanced constraint

generation approach over [17] with consideration given to the

canonical representation. The constraints are generally added

to the HSL formula before a particular variable is going to be

existentially abstracted. When constructing transitivity con-

straints, the signs of the coefficients must be taken into account

and both the regular and inverted forms of the variables must be

considered. There are two main types of constraints. In the first

type, one separation predicate implies the second as follows:

1. cixi ≥ cjxj + c1 ⇒ cixi ≥ cjxj + c2 if c1 > c2.

2. cjxj > cixi + −c1 ⇒ cjxj > cixi + −c2 if −c1 > −c2.

3. cixi ≥ cjxj + c1 ⇒ cixi > cjxj + −c2 if c1 > −c2.

4. cjxj > cixi + −c1 ⇒ cixi ≥ cj2xj + c2 if −c1 ≥ c2.

3C-3

321



The second type of constraint is a transitivity constraint—

two constraints together imply a third newly created constraint

thus forming new relationships between real variables. For ex-

ample, the two separation predicates 2x1 ≥ 3x2 +2 and 5x2 ≥
x3 + 3 form the new separation predicate 10x1 ≥ 3x3 + 19
by transitivity and thus a constraint is formed. Given the sep-

aration predicates cixi ≥ cjxj + c1 and ckxk ≥ cmxm + c2

(referred to as e1 and e2, respectively), transitivity constraints

are formed as follows:

1. If xj = xk, let e3 represent the separation predicate ci
cj

xi ≥
cm
ck

xm + ( c1
cj

+ c2
ck

) and e4 represent the separation predicate
cm
ck

xm ≥ ci
cj

xi + (−c2
ck

+ −c1
cj

).

(a) If cj > 0 and ck > 0 then e1 ∧ e2 ⇒ e3.

(b) If cj < 0 and ck < 0 then ¬e1 ∧ ¬e2 ⇒ ¬e4.

(c) If cj > 0 and ck < 0 then ¬e1∧e2 ⇒ e4 and ¬e1∧e2 ⇒
¬e3.

(d) If cj < 0 and ck > 0 then ¬e1∧e2 ⇒ e3 and ¬e1∧e2 ⇒
¬e4.

2. If xi = xk, let e3 represent the separation predicate cm
ck

xm ≥
cj

ci
xj + (−c2

ck
+ c1

ci
) and e4 represent the separation predicate

cj

ci
xj ≥ cm

ck
xm + (−c1

ci
+ c2

ck
).

(a) If ci > 0 and ck > 0 then e1 ∧ e2 ⇒ e3.

(b) If ci < 0 and ck < 0 then ¬e1 ∧ ¬e2 ⇒ ¬e4.

(c) If ci > 0 and ck < 0 then ¬e1∧e2 ⇒ e4 and ¬e1∧e2 ⇒
¬e3.

(d) If ci < 0 and ck > 0 then ¬e1∧e2 ⇒ e3 and ¬e1∧e2 ⇒
¬e4.

IX. RESULTS

The VHDL-AMS to LHPN compiler and symbolic model-

ing checking algorithm described in this paper have been im-

plemented and preliminary results are promising. In addition to

checking our tool on several small hybrid system benchmarks,

we have also verified various versions of the switched capaci-

tor integrator circuit. In particular, we have experimented with

different ranges of rates for Vout . When the lower and upper

bound for these rates are equal, our tool determines a few sec-

ond of CPU time that the property is satisfied (i.e., the circuit

does not saturate).2 When the lower and upper bounds are not

equal, our tool determines correctly in a few seconds that the

circuit violates the property. This error occurs if the rising slew

rate of Vout is consistently larger than the falling slew rate,

then charge can build up leading to Vout eventually saturating

at the high supply rail.

Saturation of the integrator can be prevented using the cir-

cuit shown in Fig. 8. In this circuit, a resistor in the form of a

switched capacitor is inserted in parallel with the feedback ca-

pacitor. This causes Vout to drift back to 0 V. In other words,

if Vout is increasing, it increases faster when it is far below

0 V than when it is near or above 0 V. Therefore, the model

for this circuit uses a Vout range of 22 to 24 mV/µs when it is

below −1000 mV, and it uses a range of 16 to 22 mV/µs when

it is above −1000 mV. A similar modification is made for the

ranges of rates when Vout is decreasing. With these changes,

verification finds that the circuit no longer saturates.

2All tests performed on a 3GHz PentiumIV with 1GB of RAM.

Q4

Φ1

Q1

Vin

freq(Vin) = 5 kHz
Vin = ±1 V

Φ2

C1

Q2 Vout

C2

C2 = 25 pF

C1 = 1 pF

Φ1

Q3

Φ2

C3

C3 = 0.1 pF

dVout/dt = ±(16 to 24) mV/µs

freq(Φ1) = freq(Φ2) = 500 kHz

−
+

Fig. 8. Circuit diagram of a switched capacitor integrator that has been

modified to prevent saturation.

The symbolic model checker described in this paper is the

first to support the verification of VHDL-AMS models with

ranges of rates. This is accomplished due to the fact that the

model checker is designed to work with LHPN models which

are developed with the goal of being easily generated from

VHDL-AMS descriptions. For comparison purposes, it is pos-

sible to hand translate the LHPN model for the switched ca-

pacitor integrator into a hybrid automaton. While this is not

too complicated for this small LHPN, this translation is in gen-

eral difficult and can result in a blowup in the size of the hybrid

automaton. This hand generated hybrid automaton can then

be verified using the hybrid automata tools HyTech [10] and

PHAVer [5]. While both tools rapidly verified the integrator

example with equal bounds on the rates of change for Vout ,

they are unable to complete for the integrator with ranges of

rates for Vout . Upon closer examination, we determined that

this is due to the fact that the state space is unbounded in these

cases. To address this problem, we add by hand invariants to

the hybrid automaton to bound the state space that is explored.

Both tools can then complete the verification of the integrator

examples in runtimes that are comparable with our tool.

X. CONCLUSION

To gain acceptance of formal verification by AMS designers,

it is crucial to allow them to describe circuits using a method

that they are comfortable with. To this end, this paper de-

scribes a method for symbolic model checking of AMS circuits

described using a subset of VHDL-AMS. These VHDL-AMS

descriptions are compiled into LHPNs which are then analyzed

using an algorithm that maps separation predicates to Boolean

variables allowing for the use of BDDs. This algorithm ex-

tends previous work by providing a canonical representation of

separation predicates containing two real variables with arbi-

trary slopes and introduces an expanded constraint generation

method. The time elapse calculation, in particular, must also

3C-3

322



be modified substantially. These extensions are necessary for a

BDD based implementation of an algorithm that allows for real

variables to change at ranges of rates.

We are currently developing a SPICE-deck front-end which

will further improve the ability of AMS designers to use our

tool. We are also planning to develop abstraction methods to

reduce the number of BDD variables that are created and to

help alleviate the state explosion problem that can occur as we

apply these methods to larger scale examples. Additionaly, we

believe that many of the methods described in this paper may

lend themselves well to a bounded model checking approach

using SAT and/or SMT systems. In this approach, the transi-

tion relation and time elapse calculation would introduce next

state variables and time step variables at each step of the anal-

ysis. Finally, we plan to investigate methods to improve user

feedback when a failure is detected.

ACKNOWLEDGEMENTS

We would like to thank Goran Frehse of VERIMAG for his

help with PHAVer. We would also like to thank Sanjit Seshia

of UC Berkeley, Randal Bryant of CMU, Reid Harrison of the

University of Utah, Robert Kurshan of Cadence, and Kevin

Jones of Rambus for their comments on this work.

REFERENCES

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho.

Hybrid automata: An algorithmic approach to the spec-

ification and verification of hybrid systems. In Hybrid
Systems, pages 209–229, 1992.

[2] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic sym-

bolic verification of embedded systems. In IEEE Trans-
actions on Software Engineering, pages 181–201, 1996.

[3] T. Dang, A. Donze, and O. Maler. Verification of ana-

log and mixed-signal circuits using hybrid systems tech-

niques. In Formal Methods for Computer Aided Design,

2004.

[4] R. David and H. Alla. On hybrid petri nets. Discrete
Event Dynamic Systems: Theory and Applications, 11:9–

40, Jan. 2001.

[5] G. Frehse. Phaver: Algorithmic verification of hybrid sys-

tems past hytech. In Manfred Morari and Lothar Thiele,

editors, HSCC, volume 3414 of Lecture Notes in Com-
puter Science, pages 258–273. Springer, 2005.

[6] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying

analog oscillator circuits using forward/backward refine-

ment. In Proc. Design, Automation and Test in Europe
(DATE), pages 257–262. IEEE Computer Society Press,

2006.

[7] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards

formal verification of analog designs. In International
Conference on Computer-Aided Design, pages 210–217,

2004.

[8] W. Hartong, L. Hedrich, and E. Barke. Model checking

algorithms for analog verification. In Design Automation
Conference, pages 542–547, 2002.

[9] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-

bolic model checking for real-time systems. In 7th. Sym-
posium of Logics in Computer Science, pages 394–406,

Santa-Cruz, California, 1992. IEEE Computer Scienty

Press.

[10] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH:

A model checker for hybrid systems. International Jour-
nal on Software Tools for Technology Transfer, 1(1–

2):110–122, 1997.

[11] IBS Corporation. Industry reports, 2003.

[12] R. P. Kurshan and K. L. McMillan. Analysis of digital

circuits through symbolic reduction. IEEE Transactions
on Computer-Aided Design, 10(11):1356–1371, Novem-

ber 1991.

[13] S. Little, N. Seegmiller, D. Walter, and C. J. Myers. Veri-

fication of analog/mixed-signal circuits using labeled hy-

brid petri nets. In Proc. International Conf. Computer-
Aided Design (ICCAD), November 2006.

[14] A. Miné. The octagon abstract domain. In Analyzing,
Slicing, and Transformation, pages 310–319. IEEE Com-

puter Society Press, October 2001.

[15] C. Myers. Asynchronous Circuit Design. Wiley, 2001.

[16] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri

net analysis using boolean manipulation. In R. Valette,

editor, Proc. of the 15th Int. Conf. on Application and
Theory of Petri Nets (PNPM’94), Zaragosa, Spain, LNCS

815, pages 416–435. Springer, June 1994.

[17] S. A. Seshia and R. E. Bryant. Unbounded, fully sym-

bolic model checking of timed automata using boolean

methods. In Proc. International Workshop on Computer
Aided Verification, pages 154–166, 2003.

[18] D. Walter. Verification of Analog and Mixed-Signal Cir-
cuits Using Binary Decision Diagrams and Predicate Ab-
straction. PhD thesis, University of Utah, 2007.

3C-3

323



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


