
A Theoretical Study on Wire Length Estimation Algorithms for Placement with
Opaque Blocks

Tan Yan, Shuting Li, Yasuhiro Takashima, Hiroshi Murata
Graduate School of Environmental Engineering

The University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

Abstract—How to estimate the shortest routing length when
certain blocks are considered as routing obstacles is becoming an
essential problem for block placement because HPWL is no longer
valid in this case. Although this problem is well studied in compu-
tational geometry [6], the research results are neither well-known
to the CAD community nor presented in a way easy for CAD re-
searchers to ultilize their establishment. With the help of some
recent notions in block placement, this paper interprets the re-
search result in [1,8], which gives the best algorithm for this prob-
lem as we know, in a way more concise and more friendly to CAD
researchers. Besides, we also tailor its algorithm to VLSI CAD
application. As the result, we present a method that estimates the
shortest obstacle-avoiding routing length in time for
a placement with blocks and 2-pin nets.

I. INTRODUCTION

In an SA-based block placer, the total wire length of a place-

ment has to be estimated millions of times. The HPWL (half

perimeter wire length) model is a standard estimation model

for such placers because of its fast speed. This model is fairly

accurate when the blocks in the placement are regarded “trans-

parent” to interconnections, i.e., they allow wires to go over

them. However, as [4] points out, with the increasing use of

IP blocks, more and more blocks in modern design are be-

coming “opaque” to interconnections (e.g., memory modules

and noise-sensitive mixed-signal/analog/RF blocks do not al-

low exotic wires over them). Such blocks are regarded as ob-

stacles for the routing and need to be considered in wire length

estimation. Still using the HPWL model will greatly under-

estimate the wire length of actual routing (see Fig. 1) and may

subsequently lead to serious problems such as timing violation,

unroutable nets, etc., in later design stages.

In [4], the statistical distribution of wire length in the pres-

ence of obstacles is discussed. In our work, we provide a theo-

retical study on the exact wire length estimation, i.e., the short-

est path length estimation for 2-pin nets in a placement con-

figuration with the blocks as obstacles. Actually, this is al-

ready a well formulated problem in computational geometry

where its full name is “rectilinear shortest path query with axis-

aligned rectangular obstacles” and there exist many works on

it. Mitchell [6] gives a survey on those works. However, those

works are not well-known to the CAD community. The pre-

sentation in those works is also very computational-geometry-

The author is now with University of Illinois at Urbana-Champaign,

Email: tanyan2@uiuc.edu

Fig. 1. The HPWL may underestimate the minimal wire length (MWL) of an
actual routing.

oriented and thus needs some interpretation to be applicable to

VLSI design automation.

In this paper, we present the theoretical results in [1, 8] in a

way more compatible to the SA-based block placement frame-

work. Our contribution lies in the following aspects:

By introducing some recent notions from block placement

research, (e.g., ABLR relation [10]) into the discussion, we

greatly simplify the theory as well as the algorithm.

The discussion in our paper is CAD-oriented and is there-

fore much more friendly to CAD researchers than the discus-

sion in [1, 8].

We tailor the theory in [1] so that it is applicable to VLSI

design. In [1], only two extreme cases are discussed: the pins

are located on the four corner vertices of the blocks and the

pins can be located anywhere on the routing space. The later

case leads to an increase in time complexity. We extend the dis-

cussion to the case when pins are located along the peripheries

of the blocks, which is more realistic for VLSI CAD applica-

tion, without increasing the time complexity. As the result, we

present a method that estimates the shortest obstacle-avoiding

routing length in time for a placement with

blocks and 2-pin nets.

In the rest of this paper, we will restate the ideas in [1, 8] in

a unique way, although some lemmas and theorems may find

their origins in [1,8]. We will first present the problem formula-

tion and some assumptions in Section II. Then we will present

a graph based approach which runs in linear time in Section III.

A further improvement to constant time will be shown in Sec-

tion IV. Finally, we will conclude the paper in Section V.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3A-5

268

II. PROBLEM SETUP

Before we start our discussion, we enforce several assump-

tions on the problem we will discuss:

Assumption 1. 1. The placement, i.e., the locations of the
blocks, is known. 2. The blocks are non-overlapping rectan-

gles. 3. The pins are located at the peripheries of the blocks.

4. The routing adopts the Manhattan geometry. 5. All the

blocks are obstacles for routing. 6. The ABLR relations [10]

of the blocks are already known.

The first four assumptions are quite reasonable and practical

for VLSI design. The fifth is for the simplicity of discussion. It

will be shown later that the algorithm can be easily extended to

handle the problem in which only selected blocks are obstacles.

The sixth assumption is special for our discussion, part of our

theory is based on it. It is also a reason why our discussion is

much more concise than that in [1] and [8]. The ABLR relation

is universal for relation-based representations, e.g., Sequence-

Pair [7]. It indicates whether a block is located above or
below or left-to or right-to another block . If we say is

above , then we mean that ’s lower boundary is above ’s

upper boundary. The ABLR relation has the following proper-

ties: 1. Uniqueness rule, i.e., one and only one relation applies
for a pair of blocks. 2. Reversed-symmetry rule, e.g., if is

above , then is below . 3. Transitive law, e.g., if is

above , is above , then is above .

If other representations, e.g., B*-tree [3], are used, we can

translate the placement into a sequence-pair in

time [5] and then obtain the ABLR relation.

Under these assumptions, we formulate the wire length esti-

mation problem for a 2-pin net:

Definition 1. The wire length estimation with opaque blocks is
to estimate the length of the shortest routing of a 2-pin net

that avoids all the blocks. This length is called theminimal wire
length (MWL) of this net and a routing with this length is called
anMWL routing.

Here we use to denote a 2-pin net with as the source

pin and as the target pin. In the rest of this paper, the term

“the/a net” refers to the net and “ ”/“ ” refers to the pins

of this net. In some later situations, we will also use the sym-

bol to denote a routing or path between vertices and

without introducing any confusion.

Without loss of generality, we assume the net satisfies:

Assumption 2. is on block and is on block , .

is left-to . (is located lower than).

Fig. 1 gives an example of such a net. This paper discusses

only the situation that satisfies Assumption 2. Other situations

such as is above or can be discussed by verti-

cally/horizontally flipping the placement or rotating the place-

ment by .

III. LINEAR TIME MWL ESTIMATION

In this section, we will first give some theoretical results

and then present the estimation algorithm whose correctness

is guaranteed by the theory.

A. The Theory

Definition 2. Suppose an ant starts traveling from a point
and goes right. When it hits a block, it goes up until it reaches

the top-left corner of that block and then it goes right again.

The ant repeats such moves until it goes beyond the outline of

this placement. The trace of this ant is defined as the Right-Up
(RU) locus of . The Right-Down (RD), Left-Up (LU), Left-
Down (LD), Up-Left (UL), Up-Right (UR), Down-Left (DL)
and Down-Right (DR) locus of are defined similarly.

Fig. 2. The definition and the proof of the theorem about locus.

Notice that different orders of the initials denote different

loci. For example, the RU locus and the UR locus have differ-

ent traces as in Fig. 2(a).

Definition 3. A routing is called -monotonic if it intersects
with any vertical line at most once (the intersection can be a

vertical segment or a point). -monotonic is defined similarly.

See Fig. 1 for an example, the solid routing (marked with

“MWL”) is -monotonic but not -monotonic. It is natural that:

Lemma 1. The length of a routing is the same as the HPWL of
the net (we call this routing HPWL routing) this routing is
both -monotonic and -monotonic.

With this, the following theorem holds:

Theorem 1. The MWL of a net is its HPWL the RU locus of
goes below or through .

Proof. If the locus goes through , the theorem naturally holds.
Here we discuss the case when it goes below :

: We draw the DL locus of . It must intersect with the

RU locus of . (Otherwise, must be below because of the

transitive law of the ABLR relation as in Fig. 2(c). This violates

Assumption 2.) By merging the two loci at the intersection, we

find an HPWL routing (the dashed line in Fig. 2(d)).

: If the RU locus goes above as shown in Fig. 2(b), it

divides the area to the right of into two parts. Since the HPWL

3A-5

269

routing must be both and monotonic, it must be in the upper

part (the shaded area in Fig. 2(b)) and therefore cannot reach .

Thus, the RU locus must be below .

This theorem shows how to obtain the MWL when the RU

locus of goes below or through . In the rest of this section,
we will discuss about the other case, i.e., the case when the

following assumption is true:

Assumption 3. The RU locus of goes above .

Definition 4. The AB-region of a net is the region enclosed
by the RD and RU locus of and the LD and LU locus of .

The boundary of this region forms two paths from to , the

upper one is called Path-A(bove) and the lower one is called
Path-B(elow).

Fig. 3 gives an illustration of the definition. Notice that Path-

A and Path-B are also included in the AB-region.

Fig. 3. The AB-region of a net.

Lemma 2. There exists an MWL routing completely inside the
AB-region.

Proof. If the MWL routing is not within the AB region, there
are two cases:

Fig. 4. There exists an MWL routing inside the AB-region.

It is completely outside the AB region (see the upper

dashed curve in Fig. 4). Then, it goes either above Path-A or

below Path-B. In either case, its length cannot be shorter than

that of Path-A or Path-B.

Only part of it is outside the AB-region (see the thick curve

from to in Fig. 4). Then we can replace the exceeding part

by the routing from to along Path-A or Path-B and obtain

a routing completely inside the AB-region. The new routing

should not be longer than the MWL routing.

Now our task is to find out this MWL routing inside the AB-

region. In the following discussion, we show that it can be

obtained by finding the shortest path on a DAG.

Definition 5. For each block in the placement, put a vertex
at the center of its upper (lower) boundary and call it the up-
per (lower) vertex of this block. From a point in the place-
ment, draw a horizontal line to its right. The first block this

line hits, if any, is called the Right Adjacent Block (RAB) of
(see Fig. 5(b)). If is on the left boundary of a block, then

its RAB is the block itself. From to the two vertices on its

RAB, define two directed edges. The one to the upper vertex is

called the Right-Up (RU) edge of and the other one is called
the Right-Down (RD) edge of (see Fig. 5(a)). The directions
of these edges are from left to right (rightward). The length
of each edge is the Manhattan distance between its two ends.

Similarly, the Left Adjacent Block (LAB) and the Left-Up (LU)
and Left-Down (LD) edges of a point (see the dashed edges of
in Fig. 5(a)) are defined. However, here we let the directions of

the LU and LD edges still be rightward. If the LU/LD edge is
identical with a RU/UD edge, the LU/LD edge is not defined.

That is, we do not allow multiple edges between two vertices.

Comparing Fig. 5(a) with (b), one can see that:

Remark 1. Each edge corresponds to one actual HPWL rout-
ing. A path of such edges also corresponds to a continuous

routing (but not necessarily with HPWL).

In the rest of this paper, the term “path” refers to the path

composed of such edges and the term “routing” refers to an

actual routing.

Due to this correspondence between the edge/path in the

graph and the actual routing, we define the intersection of

edges/paths as follows:

Definition 6. Two edges/paths are said to intersect with each
other if and only if their corresponding routings intersect with

each other.

We classify the edges into two categories:

Definition 7. An edge is called up-going if the -coordinate in-
creases along its direction. Otherwise, it is called down-going.

We know that RU and LD edges are up-going and RD and

LU edges are down-going. Following fact can be easily exam-

ined:

Lemma 3. An up-going edge cannot intersect with another up-
going edge.

Since a locus corresponds to a path of edges of the same

type (e.g., a RU locus corresponds to a path of RU edges), this

Lemma also applies for up-going (RU or LD) loci. We call the

corresponding path of the RU/RD/LU/LD locus of a vertex

the RU/RD/LU/LD path of .

We now define a graph based on these edges (Fig. 5(c)):

3A-5

270

Fig. 5. Routings, their corresponding edges and the Horizontal Visibility Graph (HVG).

Definition 8. The Horizontal Visibility Graph (HVG)1 of net
is , the upper and lower vertices of

all the blocks in the AB-region , all the RU and

RD edges between the vertices in the RU and RD edge

of the edges belonging to the LU and LD path of .

The following lemma ensures that the MWL routing is em-

bedded in this graph:

Lemma 4. There exists a path from to on that
corresponds to an MWL routing.

Proof. Take arbitrary MWL routing . Suppose it deviates
from at vertex which we call the branching vertex (see
Fig. 6, the gray routing differs from at vertex). There

are two cases:

Fig. 6. An MWL routing is embedded in the HVG.

is on the LU or LD path of (along the dotted edges in

Fig. 6). Notice that the LU/LD path itself is an HPWL path,

the path LU/LD path of is on and

corresponds to an MWL routing.

is not on the LU/LD path of (see in Fig. 6). Then

it must have RU and RD edges. By Lemma 2, there exists

an MWL routing inside the AB-region of . We focus

on the part of the AB-region between and ’s RAB (see the

part inside the circle in Fig. 6). Notice that this part of the

AB-region (the shaded region) has an area of zero, the MWL

routing inside it must take either the RU or the RD edge of .

Then we find an MWL routing that follows at . In other

words, is no longer a branching vertex. By repeating this,

we could eliminate all the branching vertices and find a path on

with MWL.

1The concept of “visibility graph” is widely used in computational geome-

try [6]. However, the graph we define here is only a subgraph of that in [6].

The path must be the shortest path in . (Otherwise,

the routing corresponding to the shortest path is shorter than

the MWL routing.) Therefore, we have the following theorem:

Theorem 2. The length of the shortest path from to in
is MWL.

Also notice that any path on the HVG corresponds to an -

monotonic routing because the directions of all the edges are

rightward and each edge corresponds to an -monotonic rout-

ing. Thus, the MWL routing is -monotonic. Furthermore, by

Lemma 1, Theorem 1 together with a discussion similar to the

proof of Lemma 4, we can prove that:

Corollary 1. Any MWL routing (no matter the RU locus of
goes above or below) is -monotonic.

Obviously, is a DAG and the number of its edges

. Therefore, the shortest path on it can be found

in time.

However, the time to build the graph overwhelms the estima-

tion time. To solve the problem, we build one common HVG

for all the nets (see Fig. 5(d)) instead of separate HVGs for

different nets:

Definition 9. The Horizontal Visibility Graph (HVG) of a
placement is , the upper and lower

vertices of all the blocks in , all the RU/RD/LU/LD

edges of the vertices in .

Building can be a preprocess before the estimation.

When estimating a net, we add the RU/RD edges of and

LU/LD edges of to and it becomes a super-graph of

. Therefore, the shortest path in it must also be the short-

est path of .

B. The Algorithm

Now with all the theoretical discussion, we can build an al-

gorithm (see Algo. 1) that calculates the MWL of . In the

algorithm, tracing down the RU locus from (line 4) can be

done in time by tracing along the RU path of on the

HVG. Finding the RAB or LAB (line 8) takes at most

time (by checking the blocks one by one). Finding the shortest

path (line 10) takes time because the HVG is a DAG.

3A-5

271

Algo. 1 Estimate the MWL
1: Build the HVG of the placement

2:

3: for each net do
4: Trace down the RU locus of

5: if the locus goes below then
6:

7: else
8: Find RAB of and LAB of

9: Add RU/RD edges of and LU/LD edges of to

10: Find shortest path from to on

11:

12: Remove RU/RD edges of and LU/LD edges of from

13: end if
14: end for

Building the HVG of the placement (line 1) is done as a pre-

process before wire length estimation. We use a plane sweep

method (Algo. 2) to do this.

Algo. 2 Build the HVG
1: Sort the blocks according to their coordinates.

2:

3: for the ’th leftmost block do
4: // ’s upper and lower vertices

5: while can find vertex in such that

do
6:

7:

8: end while
9: end for

Since the operations (finding, adding and deleting vertices)

on the set takes time if is im-

plemented by a height-balanced tree, the time complexity of

Algo. 2 is . Therefore, the total time complexity

of Algo. 1 is . Notice that although the

-coordinate is used to order the blocks in Algo. 2, or

in Sequence-Pair [7] can also be used for the ordering because

they follow the topological order in .

IV. CONSTANT TIME ESTIMATION USING LUT

It can be seen that if multiple nets share the same RAB

and LAB, repeating the shortest path computation is a waste

of time (e.g., in Fig. 7, net and net share the

same shortest path from block to block). An idea is

Fig. 7. The estimation could be constant time if the shortest paths (curved
edges) between blocks are pre-calculated.

to pre-calculate all vertex-to-vertex distances in and store

them in a lookup table (LUT) before we estimate the nets.

The RU/RD/LU/LD edges of and of all the nets are also

pre-calculated and stored into a LUT. When estimating a net

(say,), we just select the shortest path among the four

choices (, ,

and). Since all

the distances and the edges are pre-calculated, this takes only

constant time.

To prove the correctness of the above idea, following points

must be clarified (notice that in this section, Assumption 3 does

not necessarily hold):

1. What to do if there exist no path between two vertices in

the HVG (see the dashed edge in Fig. 7).

2. How to check whether the RU locus is above or below

within constant time.

3. How to obtain the RAB/LAB in the preprocess.

For the first point, we need the following lemma:

Lemma 5. For two vertices and on , if there is no path
between them, then .

Proof. If MWL HPWL, then the RU locus of goes above

(Theorem 1). There must exist an MWL path in the HVG

(Lemma 4) which violates the assumption.

Lemma 6. For two vertices and in , suppose is above
the RU locus of . If there exists a shortest path between the
two vertices, then its length must be HPWL.

Proof. Suppose the shortest path is longer than the HPWL.

Then it can’t be -monotonic and thus has at least one down-

going edge (by Lemma 1 and Corollary 1). Suppose the source

and target of that edge are and . We draw the RU locus of

. There are essentially two cases:

Fig. 8. The proof of Lemma 6.

This locus goes below (Fig. 8(a)). Then the path

must intersect with the RU locus at a certain vertex
(the intersection cannot happen between the edges because of

Lemma 3). Then there is a path RU locus of

on whose length is shorter than .

This locus is above (Fig. 8(b)). Then similarly we can

find a path LD locus of on whose length

is shorter than .

With Lemma 5, Lemma 6 and Theorem 2, we can see that

checking whether the locus goes above or below is not neces-

sary and the second point is clarified:

Theorem 3. The MWL of any two vertices on can be ob-
tained by finding the shortest path on the graph. If the shortest

3A-5

272

path exists, then the MWL is its length. Otherwise, the MWL is
the HPWL.

Finally, we deal with the last point – finding the RAB/LAB

of each pin. Here we only describe how to find the RAB. Find-

ing the LAB is similar.

If the pin is on the left boundary of a block, then its RAB is

the block itself. Otherwise, we obtain its RAB by a two step

process: first we build the horizontal stripping that provides

channels to link the pins on its left boundary to the block on its

right boundary, then we link the pins to their RABs.

The Horizontal Stripping (see Fig. 9) is defined as theMaxi-
mal Horizontal Strips in the corner stitching structure (Chapter
4.4.5 in [9]). The construction of the horizontal stripping is

Fig. 9. Use horizontal stripping to find the RAB of each pin.

similar to the construction of (see Algo. 2) and it takes

time.

After the strips are constructed, we link all the pins to their

RABs by scanning the pins and strips once. With the pins on

each block sorted by their -coordinates, this process can be

done in time (the number of strips is). Sort-

ing all the pins takes time. But since we

need to do it only once before the SA process, this pin-sorting

process is excluded from the estimation for one placement con-

figuration.

With all the theorems and descriptions above, we now

present the LUT based MWL estimation algorithm (see

Algo. 3). In the algorithm, line 1 takes

Algo. 3MWL calculation using LUT
1: Get the RAB/LAB of all the pins

2: Build the HVG of the placement

3: for each vertex-pair do
4: Find shortest path between and

5: if there is no shortest path then
6: HPWL

7: else
8: shortest path length

9: end if
10: end for
11: for each net do
12: Select the shortest path among the four choices

13: end for

time, line 2 takes time. The for loop from line
3 to line 10 takes time. The loop from line 11 to line

13 takes time. The total time complexity of Algo. 3 is

therefore .

The space complexity of the lookup tables is be-

cause the lookup table of vertex-to-vertex distances consumes

space and the lookup table for RAB/LAB of each pin

consumes space.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we revisit the theoretical result in [1, 8] and

interpret it in a CAD-friendly presentation. We also make

an extension on it so that it is more realistic to VLSI design.

As the result, what presented is an algorithm that estimtes the

obstacle-avoiding minimum wire length in time

for a placement with blocks and 2-pin nets. Consider-

ing that in many practical cases, the implication is

significant: the obstacle-avoiding minimum wire length can be

estimated in constant time per net, just the same as the HPWL

model.

In the paper, we only discuss over the case in which all the

blocks are obstacles. It is easy to extend our method to han-

dle the case in which only some of the blocks are opaque, by

building the HVG based on those opaque blocks only.

Future works include: 1. Integrating routing congestion into

the graph model. 2. Extending this method to handle multi-pin

nets. 3. Experimental study of this method. 4. Applying this

method to build a fast global router.

REFERENCES

[1] M. J. Atallah and D. Z. Chen, “Parallel rectilinear shortest paths with rect-

angular obstacles,” Computational Geometry: Theory and Applications,
Vol. 1, Issue 2, pp. 79–113, 1991.

[2] H. H. Chan, S. N. Adya, and I. L. Markov, “Are floorplan representations

important in digital design?” ISPD’05, pp. 129-136, 2005.

[3] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: a new

representation for non-slicing floorplans,” DAC’00, pp. 458-463, 2000.

[4] C.-K. Cheng, A. B. Kahng, B. Liu, and D. Stroobandt, “Toward better

wireload models in the presence of obstacles,” ASPDAC’01, pp. 527-532,

2001.

[5] C. Kodama, K. Fujiyoshi, and T. Koga, “A novel encoding method into

sequence-pair,” ISCAS’04, pp. 329-332, 2004.

[6] J. S.B. Mitchell, “Geometric shortest paths and network optimization,”

Handbook of Computational Geometry, Elsevier Science, pp. 633-702,
2000.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI mod-

ule placement based on rectangle-packing by the sequence pair,” IEEE
TCAD, Vol.15, No. 12, pp. 1518-1524, 1996.

[8] P. J. de Rezende, D. T. Lee and Y. F. Wu, “Rectilinear shortest paths with

rectangular barriers,” SCG’85, pp. 204-213, 1985.

[9] N. A. Sherwani, Algorithms for VLSI Physical Design Automation,
Kluwer Academic Publishers, 1999.

[10] X. Zhang and Y. Kajitani. “Space-planning: Placement of modules

with controlled empty area by single-sequence,” ASPDAC’04, pp. 25-30,

2004.

3A-5

273

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

