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Abstract—This paper presents a very efficient algorithm for
performance-driven topology design for interconnects. Given a net, it
first generates A-tree1 topology using table lookup and net-breaking.
Then a performance-driven post-processing heuristic not restricting to
A-tree topology improves the obtained topology by considering the sink
positions, required time and load capacitance to achieve better timing.
Experimental results show that our new technique can produce topologies
with better timing and is hundreds of times faster than traditional
approach.

I. INTRODUCTION

With technology scaling, interconnect delay has become the
dominant factor in circuit delay, making effective performance-driven
interconnect design vital for the timing closure. Topology design
and buffer insertion are two main techniques for performance-driven
interconnect design. Alpert et. al. [2] showed that the two-step
approach of (1) constructing a Steiner tree, and (2) then running
van Ginneken style buffer insertion, can be as good as the slower
simultaneous approach. However, topology design, i.e. finding a
good Steiner tree, itself is a difficult and time-consuming step.
For nets with low degree2, such as 2-pin or 3-pin nets, finding
good topologies is easy. But for high-degree nets, constructing good
topologies efficiently is both challenging as well as critical, for they
are likely to be the cause of critical paths.
Rectilinear minimum spanning tree (RMST) is a class of topolo-

gies widely used in practice because efficient algorithms are available
for their solution. However, the wirelength of an RMST can be as
much as 1.5 times that of rectilinear Steiner minimal tree (RSMT)
[3]. RSMT is another class of well-researched topologies. But RSMT
construction being NP-complete [4], no efficient algorithm exists,
and a lot of work has focused on approximation algorithms for
it. Batched 1-Steiner heuristic [5] and the heuristic proposed by
Mandoiu et. al. [6] are two well-known near-optimal algorithms.
Recently, FLUTE [7], [8] has been proposed as a very fast and
accurate RSMT algorithm for VLSI applications based on a table
lookup technique.
In addition to wirelength-driven topologies such as RMST and

RSMT, many timing-driven topology design techniques have also
been proposed. The SERT algorithm of Boese et. al. [11] produces
the routing tree for performance. Later, Cong et. al. [1] proposed
A-tree algorithm to find a min-area shortest paths tree. In [12],
Permutation-constrained routing trees (P-tree) algorithm reported
better area objectives than SERT and A-tree. Alpert et al. [13]
proposed AHHK trees as a direct trade-off between Prim’s MST
algorithm and Dijkstra’s shortest path tree algorithm, and used in
the C-tree algorithm [2] for timing-driven Steiner tree construction.
However, all of these algorithms are not very efficient to address
large industrial designs with a substantial number of high-degree
nets, especially for an integrated route-and-place flow. Although most
of the nets in a design are of low degree, there are still a considerable
number of high-degree nets (12% nets have degree ≥ 8 [7]). And
these high-degree nets are more likely to be timing-critical. Hence,
our goal is to develop a fast, performance-driven topology design
algorithm applicable to optimizing delay properties of a large-class
of nets early-on in the design cycle.

This work was partially supported by the SRC under Task ID 1206 and
NSF under grant CCF-0540998.
1In [1], it defined that a rectilinear Steiner tree is an A-tree if every path

connecting the source and any node on the tree is a shortest path.
2The degree of a net is the number of pins in the net.

In this paper, we present a novel method to efficiently design
performance-driven topology for nets. We develop a very fast algo-
rithm to construct an A-tree based on table lookup and net-breaking.
Then we apply post-processing techniques, not restricted to A-trees
anymore, on the obtained A-tree topology to further improve the
timing for the net.
Our main contributions include the following:

• A very efficient algorithm to construct the A-tree potentially
optimal wirelength vector (POWV) [7] and topology table for
all the nets with degree up to a certain value

• A fast A-tree construction algorithm using table lookup and
net-breaking techniques for high-degree nets

• A performance-driven post-processing technique, which modi-
fies the A-tree topology to further improve the timing

Experimental results show that our new algorithm can generate
topologies with better timing than the timing-driven tree construction
algorithm in C-tree [2]. Moreover, our algorithm is 371× faster.
Therefore, it is very suitable for performance-driven topology design
for a large number of nets, in an integrated physical design flow.
The remainder of the paper is organized as follows. In Section 2,

we discuss the topologies for the performance-driven interconnect de-
sign. Section 3 describes the fast algorithm to generate A-tree lookup
table. In Section 4, we present the algorithm to construct A-tree
using table lookup and net-breaking. In Section 5, a performance-
driven post-processing technique is proposed. Experimental results
are shown in Section 6.

II. TOPOLOGY FOR PERFORMANCE

As mentioned earlier, RSMT is a class of widely used topologies
with good wirelength metric. However, an RSMT may contain many
detours from the source to some sinks resulting in bad timing for
them. A simple illustrative example is shown in Figure 1. Sink t4
is the critical sink here. We can see that there is detour from the
source s to t4 which harms the timing result. Therefore, despite its
good wirelength, it is not suitable for performance-driven topology
design. And we need some other types of topologies for the timing
purpose.

S
t1

t2

t3
t4

Fig. 1. Detour in RSMT.

A-tree is a class of topologies with good properties for
performance-driven interconnect design. First, an A-tree is a shortest
path tree (SPT), thus no detours between the source and a sink. In
addition, it has been shown in [1] that minimizing total wirelength of
an A-tree leads to simultaneous optimization of different components
of sink delays. Such a harmony would be impossible to achieve
for general routing topologies. Hence we focus on A-trees and
their subsequent refinement as our goal. However, finding A-tree
with minimum wirelength is an NP-complete problem [10]. Inspired
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by the table lookup idea of FLUTE [7], [8], we propose a very
efficient way to construct A-trees using table lookup techniques to
be discussed in detail below.

III. A-TREE LOOKUP TABLE GENERATION

In this section, we focus on A-tree lookup table generation.
We first discuss how to group infinite number of nets into finite
number of groups so that a practical lookup table can be constructed.
Then a Configuration Graph approach is proposed to generate
the lookup table efficiently. Finally, we introduce the concepts of
Abstract Topology and Topology Signature to reduce the complexity
in topology table generation.

A. A-tree Lookup Table Organization

FLUTE [7], [8] is a lookup table based RSMT algorithm. It is
shown that the set of all degree d nets can be partitioned into d!
groups according to the relative positions of their pins. The relative
positions of pins is defined by vertical sequence. Consider an d-pin
net. Let xi be the x-coordinate of some vertical Hanan grid line such
that x1 ≤ x2 ≤ ... ≤ xd. Similarly, let yj be the y-coordinate of
some horizontal Hanan grid line such that y1 ≤ y2 ≤ ... ≤ yd.
Assume the pins are indexed in ascending order of y-coordinate. Let
si be the rank of pin i if all pins are sorted in ascending order of x-
coordinate. s1s2...sd is the vertical sequence. As illustrated in Figure
2. All the nets with the same vertical sequence fall in one group in the
lookup table. For each group, the wirelength of all possibly optimal
routing topologies along the Hanan grid [14] can be written as a small
number of linear combinations of distances between adjacent Hanan
grid lines [7]. Each linear combination can be expressed as a vector
of the coefficients which is called a potentially optimal wirelength
vector (POWV). The few POWVs for each group can be generated
once. Each POWV and one corresponding topology are stored into
a lookup table. To get the RSMT for a net, the algorithm computes
the wirelengths corresponding to the POWVs for the group the net
belongs to, and picks the one with the best wirelength.

Pin 1

Pin 2

Pin 3

Pin 4
y

y1

y2

y3

y4

xx1 x2 x3 x4

S4 = 2

S3 = 4

S2 = 1

S1 = 3

Fig. 2. Illustration of some notions.

We also use the vertical sequence to group the nets. However, for
A-tree, only the vertical sequence is not enough to group the nets.
The reason is that not only the relative pin positions but also the
source pin location define the group of nets sharing the same POWVs
(potentially optimal wirelength vectors) and topologies. Therefore,
we first divide all the nets with degree d into d! groups according to
their vertical sequence. Then we further divide every group into d
subgroups. For subgroup 1, 2, ..., d, the corresponding source pin is
pin 1, 2, ..., d, respectively. For each subgroup, we will have a set of
POWVs and their corresponding topologies stored in the table. Note
that in FLUTE, a POWV represents rectilinear Steiner trees which
can potentially have minimum wirelength. In contrast, in this work
a POWV represents A-trees that can produce optimal wirelength.
Our POWV table stores POWVs for every subgroup. Moreover,

while the FLUTE table contains only one topology for each POWV,
in the current work we efficiently store all topologies for a POWV.
This allows us to explore a very large set of topology alternatives
for better timing and good wirelength – although they may all have
same wirelength. In this sense, constructing the A-tree table is more
sophisticated than constructing RSMT tables of FLUTE.

B. Configuration Graph

Since there are a lot of possible topologies for each subgroup
(defined by vertical sequence and the source pin) and the number of
subgroups (d × d! for degree-d nets) are huge, the table generation
can be very time-consuming. An efficient way needs to be developed
instead of directly enumerating all possible topologies. Boundary
compaction [7] is a very efficient technique to generate topologies.
For a net, the boundary compaction technique reduces the Hanan
grid size by compacting any one of the four boundaries, i.e., shifting
all pins on a boundary to the grid line adjacent to that boundary. The
set of routing topologies of the original problem can be generated
by expanding the routing topologies of the reduced grid back to
the original grid. Figure 3 uses the compaction of left boundary to
illustrate the idea.

Fig. 3. Boundary Compaction.

We observe that most of the A-tree topologies can be generated by
boundary compaction. Hence, we employ boundary compaction to
generate the A-tree topologies. We recursively compact any boundary
without the source on it until the grid is compacted into a single
node (source). The edges created during the process form an A-tree
with the source being the final left node. If we choose different
ways for compaction, we will obtain different A-tree topologies.
We define the compacting sequence as the sequence of compaction
operations that reduces the original grid to a single node. Hence, one
compacting sequence corresponds to one A-tree topology source at
the single node left after the compactions. A direct idea for finding
different topologies is to look at the different compacting sequences.
Unfortunately, the number of compacting sequences is huge. For each
group, the number of different sequences =

(
2(d−1)

d−1

)
× 2d−1

× 2d−1

because we have to perform d − 1 times of horizontal compactions
(left or right) and d−1 times of vertical compactions (top or bottom).
Therefore, the number of feasible sequences for one group of 9-pin
nets =

(
16
8

)
×28

×28 = 843448320. And this is just for one group,
the total # sequences for all 9-pin nets is 9! times this number.
Although the number of compacting sequences is huge, we still

have hope because we only want to store the different topologies
that potentially can result in best wirelength. Therefore, most of the
compacting sequences can be pruned. But since there are so many
sequences, directly generating all sequences and prune them is not
practical. Our idea to generate and prune the sequences is using a
graph called Configuration Graph. We will show that we can generate
POWVs for all subgroups in one group (same vertical sequence but
different source) simultaneously.
First, we define some terms. A Pin Configuration (PC) is the

configuration of a set of pins on the Hanan grid. This configuration
only defines the pin positions on the Hanan grid without considering
any real geometry size. If we apply boundary compaction on a PC,
we will get a new one. The new PC has no pin on the compacted
boundary and can have the same or less pins than the original because
some pins may collapse together.
If the original PC is transformed into a new PC with a specific

bounding box by a sequence of compaction, the new PC is indepen-
dent on the compactions performed, as stated in Lemma1.
Lemma 1: The bounding box of a PC in the original Hanan grid

defines the PC.
Proof idea: As shown in Figure 4, the whole grid is the Hanan

grid of original pin configuration and the center region 3 is the new
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configuration with bounding box for the center 16 small squares
obtained by some compacting sequence Q. It is easy to see that
all the pins in the four corner region 1 are compacted to the four
corners in the new configuration. And the four boundary regions
2 are compacted to the closest boundary with the unique position.
The center region 3 is not touched. So every pin has the unique
pin position in the compacted configuration. No matter what the
compacting sequence Q is, every pin has the same position in this
configuration.

1 2 1

2

2

2
3

1 1

1 2 1

2

2

2
3

1 1

Fig. 4. Lemma 1 Proof.

In Configuration Graph, every node corresponds to a PC. So
we call these nodes Configuration Nodes (CN). There are two
kinds of special nodes in the Configuration Graph. One is the CN
corresponding to the original PC for a vertical sequence. We call
it Start Node because any boundary compaction operation starts
with it. The other type is the CN with the PC in which all the
pins are compacted to a single point on the grid. We call them
End Nodes because any compacting sequence will end with such
a CN. Note that an A-tree topology is obtained when reaching an
End Node. A Partial wirelength Vector (PWV) is the Wirelength
Vector (WV) with undecided entries obtained after a sequence of
compactions. For example, if a full WV is (1221, 1121), a PWV
could be (1xx1, 11x1) (x means undecided). The undecided part
corresponds to the horizontal edges or vertical edges that have not
been created by boundary compaction. For each CN, a set of PWVs
are associated with it. They are the PWVs corresponds to the edges
created by compacting sequences that can result in the the PC
associated with the CN. If compacting one boundary of the PC
associated with a CN can get the PC of another CN, an edge is
created from the first CN to the second. An example of Configuration
Graph is shown in Figure 5.

Start
Node

End
Nodes

Fig. 5. Configuration Graph.

From Lemma 1, we know the number of CNs in Configura-
tion Graph is a small number. It is just the number of different
bounding boxes we can find in the original Hanan grid. #CN =∑d

i=1

∑d

i=1
(d + 1 − i)(d + 1 − j) , if d = 9, #CN = 2025.

Actually, we can even do better. Instead of using the original PC as
the Start Node, we start from a new Start Node that is obtained by

compacting the original PC once in all 4 directions (left, right, top
and bottom). We have the following lemma for the new Start Node.
The proof is similar to the Lemma 2 in [7]. The only difference is
that when the source pin is on one of the 4 boundaries, we will treat
the new source for the reduced grid at the position of the pin created
by compacting the original source.

Lemma 2: No POWV will be lost by starting boundary com-
paction at the new Start Node.

Since we begin from this new Start Node with the bounding
box size (d − 2) × (d − 2), the length of compacting sequences
is reduced from 2(d − 1) to 2(d − 3). And # CN can be reduced to∑d−2

i=1

∑d−2

i=1
(d − 1 − i)(d − 1 − j) , if d = 9, #CN = 784.

Configuration Graph allows us to do the pruning very efficiently.
We have the following lemma.

Lemma 3: If a PWV at a CN is worse than the other, it cannot
be part of any POWV (it can be pruned).

Proof: Prove by contradiction, assume a PWV V1 at a CN is
worse than the other V2, but it is part of a POWV V . From Lemma
1 we know that the undecided part of WV is the same for V1 and
V2 because of the same PC. Let Vb=V −V1. Then V2 + Vb is better
than V1 + Vb. A contradiction with V is a POWV.

From Lemma 3, we can use Configuration Graph to prune the
PWVs using “PWV dominance” at each CNs efficiently. We say
a PWV is dominated by the other one if it corresponds to more
wirelength, i.e., it has the same or bigger value on all entries in WV.
This kind of pruning does not wait until the full WV has been gen-
erated. It can prune the bad WV as early as possible and accelerates
the pruning process a lot. Another advantage for the Configuration
Graph approach is that if we construct the Configuration Graph for
a given vertical sequence, we already obtain POWVs for all the
subgroups corresponding to different source pins. We will see this
later.

Hence, we construct Configuration Graph for any given
group (vertical sequence) as following. We start from the new
Start Node mentioned in Lemma 2. Its corresponding PWV is
(1xx...x1, 1xx...x1) because we have four edges due to the first 4
boundary compactions. Then, we compact the four boundaries of the
current PC to get four new CNs, their corresponding PWVs, and four
edges. Similarly, we just recursively apply boundary compaction on
the new created CNs and generating more CNs. Note that compacting
different CNs can result in the same CN but different PWVs.
Therefore, we need to prune the PWVs using “PWV dominance”
at each node. Only the PWVs left after pruning associated with a
CN will be used to generate further PWVs when compacting this
CN to generate new CN. This recursive new CN generation will stop
when the new generated CN is an End Node, where no compaction
can be applied. After generating all the CNs and their corresponding
PWV list, we obtain the whole Configuration Graph and can easily
find the A-tree topologies from it.

It is easy to see that any path from the Start Node to an End Node
corresponds to a compacting sequence, hence a tree topology. But
our goal is not to find any tree topology but to find A-trees with a
specific source pin. We have the following lemma for the generated
tree topologies.

Lemma 4: Any tree topology generated by a compacting sequence
corresponding to a path from the Start Node to an End Node is an
A-tree with the source at the position corresponding to the End Node.

Therefore, for any pin as the source, we can easily find the POWVs
for the A-trees. We just need to look at the End Node corresponding
to the position of the source pin and all the POWVs associated with
that End Node are the POWVs for A-trees with the source pin.
Since we have End Nodes corresponding to every position in the
Hanan grid, POWVs for every pin as the source can be obtained
simultaneously from the Configuration Graph.

C. Abstract Topology and Topology Signature

By now, we can obtain the POWVs for A-tree topologies from
Configuration Graph. But unlike FLUTE, we are not satisfied with
storing one arbitrary topology corresponding to each POWV. Instead,

3A-1

246



we want to explore good A-tree topologies for performance. There-
fore, we want to find all different A-tree topologies corresponding
to each POWV and store them in the table.

Hanan grid topologies

Abstract
topology

Hanan grid topologies

Abstract
topology

Hanan grid topologies

Abstract
topology

Fig. 6. Abstract topology.

We study the topologies generated by different compacting se-
quences corresponding to POWVs and find that most of them
are redundant. There are two kinds of redundancy. First, different
compacting sequences generate the same topology. Second, different
compacting sequences generate different but equivalent topologies in
terms of both wirelength and timing. Two topologies are equivalent
when they are the same in all node positions (pins and Steiner
nodes) on Hanan grid and the connections between nodes. The
only difference between equivalent topologies is the embedding for
the connections. To eliminate these two types of redundancy, we
introduce the concept of Abstract Topology. An Abstract Topology
for a net is the topology on the Hanan grid that fixes the positions
for all the nodes (pins and Steiner nodes) and the connections
between these nodes. The difference between an Abstract Topology
and a normal topology on the Hanan grid is that the Abstract
Topology does not specify how the connection is embedded on
Hanan grid. If two compacting sequences generate the same topology
or equivalent topologies, their corresponding Abstract topology are
the same. Therefore, we only need to store the different Abstract
topologies for POWVs. Figure 6 illustrates the concept of Abstract
Topology for a 6-pin net. Although the concept of Abstract Topology
is very simple, it can save huge amount of table space. For example,
consider a 9-pin Abstract Topology with 7 steiner nodes, 15 two-pin
connections. If there are 2 different routing on Hanan grid for 10
two-pin connections in 15, # embedded topologies = 210 = 1024. If
we just directly save the different topologies, we may need thousands
of times space than just storing Abstract Topologies.
The way we find different Abstract Topologies is as following. We

start from the End Node corresponding to the source pin and for every
POWV, trace back in the reverse direction of edges until reaching the
Start Node. This back trace will form different paths corresponding
to different compacting sequences. Since each compacting sequence
corresponds to an A-tree topology, we can get all the possible A-
tree topologies for each POWV. Then we can compare their Abstract
Topologies and just store the different Abstract Topologies in the
table.
However, there is still one problem in generating and comparing

the Abstract Topologies. To know whether a topology is redundant,
we need to first find its corresponding Abstract Topology and
compare it to all the other Abstract Topologies already found. This
topology generation and comparison take a lot of runtime. We want to
make it easier and faster. So we introduce the Topology Signature.
A Topology Signature of a Hanan grid topology (for a given pin
configuration) is the positions of the Steiner nodes in the topology.
The following theorem gives us a better way to find whether two
tree topologies have the same Abstract Topology.
Theorem 1: For A-trees generated by boundary compaction, two

trees A and B has the same Topology Signature if and only if A and
B has the same Abstract Topology.
Because of the page limit, we have to skip the proof. Theorem 1

tells us that Abstract Topology and Topology Signature has one-to-

TABLE I
STATISTICS FOR POWV.

Degree # groups # POWVs in a group
n n! Max Avg Min

2 2 1 1 1

3 6 1 1 1

4 24 8 6 1

5 120 18 12.63 1

6 720 36 25.31 1

7 5040 70 50.69 1

8 40320 144 99.55 1

9 362880 282 193.19 1

one correspondence. So Topology Signature is really the “signature”
for topologies. Therefore, instead of finding all different Abstract
Topologies, we only need to find the topologies with different
Topology Signatures. For the topologies generated by different com-
pacting sequences, it is enough to simply compare their Steiner
nodes positions on Hanan grid. After we find all the topologies with
different Topology Signatures, we store their corresponding Abstract
Topologies in the table.
Till now, we can generate A-tree POWVs and Abstract Topologies

and store them in the table grouped by the vertical sequence and the
source pin. Table I gives the statistics of our POWV table for the nets
up to degree 9. And we observed in experiments that all POWVs for
the nets up to degree 9 have only ONE Abstract Topology. With our
algorithm based on Configuration Graph, it only takes less than 15
minutes to generate the table for all nets up to degree 9 compared to
many hours for generating FLUTE table up to degree 9. The table
size for POWV and Abstract Topologies up to degree 9 are 21MB and
75MB, respectively. Note that this table only needs to be generated
once. And after loaded into the memory, it can be used for as many
times as wanted.

IV. A-TREE TOPOLOGY CONSTRUCTION AND NET-BREAKING

In last section, we construct the A-tree POWV table and cor-
responding topology table for the nets up to some degree D.
Therefore, for any net with degree no more than D, we can find
the corresponding group index based on the vertical sequence of the
net. Having the group index and the source pin, we directly look up
the POWV table to find the corresponding POWVs and compute their
wirelength based on the real geometric information of the net. Then
we pick the POWV with best wirelength and look up the topology
table for the A-tree topology corresponding to it.
However, it is not practical to generate table for high-degree nets

because of the huge table size. Therefore, a high-degree net will be
divided into several sub-nets with degree less than D to which the
table lookup can be applied.
The net-breaking method we use is different from that in [8] be-

cause we are generating A-tree instead of RSMT. Different heuristics
need to be applied and the source needs to be considered when
breaking a net.
We can still use the optimal net-breaking algorithm proposed in

[8]. If a net satisfies that all the pins in the net can be partitioned into
two sets which reside in two diagonal regions, it can be optimally
broken into two sub-nets formed by these two sets. An extra pin is
introduced in both sub-nets. The pin is positioned at the bounding
box corner of one sub-net which is closest to the other sub-net. After
the breaking, only one sub-net contains the source. For the other sub-
net, we need to specify a source pin. It is very simple in this case that
we make the extra pin introduced in both sub-nets as the source for
the sub-net without the original source in it. If we construct A-trees
for both sub-nets, the combined tree is still an A-tree.
If there is no optimal breaking for a net, we will break the net in

x or y direction. However, we cannot directly break the net at some
pin and combine the two trees for the two sub-nets to obtain the
whole tree as in [8] because it will not result in an A-tree. Therefore,
with the A-tree constraint, instead of including the pin where the net
is broken in both sub-nets, we introduce an extra pin and include
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it in both sub-nets. This extra pin will become the source of the
subset that does not have the original source in it. The position of
this extra pin is found by a “source propagation” technique. Assume
the breaking direction and position are known. We first project the
source on the breaking line to get the initial position of the new
source. However, this position may not be good in some cases. For
example, in Figure 7, all the pins in the right sub-net have bigger
y-coordinates than the source. If we put new source at the position
of the projection of the source on the breaking line, it could lead
to unnecessary extra wirelength. In order to solve this problem, we
slide the source projection along the breaking line until it has the
same y-coordinate as the pin with the smallest y-coordinate in the
right sub-net. It is easy to see that this operation will not affect the
A-tree property of the whole tree. Apparently, this idea can be used
no matter in what direction the net is broken and which sub-net the
source is in. The new source found is noted as “propagated source”.

Propagated SourceSource

Breaking
Line

Fig. 7. Source propagation.

Lemma 5: Breaking a net at the “propagated source” generates
an A-tree by combining the A-trees of both sub-nets. (The sources
of two sub-nets are the original source and the propagated source).

Proof: Let N , N1 and N2 be the original net and two sub-nets
after breaking and let S, S2 be the source of N and the extra pin.
Without loss of generality, we assume S is in N1 after breaking.
If T1 is an A-tree for N1 with source S and T2 is an A-tree with
source S2, all the nodes in N1 have the shortest path to S and all
the nodes in N2 have the shortest path to S2. Since S2 is in N1, S2

has the shortest path to S (which is a straight line). It is obvious that
all the nodes in N2 has the shortest path to S. Therefore, A1+A2 is
an A-tree for net N .
For the heuristics of choosing a good direction and position to

break the net, we apply a slightly different heuristics from that in
[8]. We also compute a score which is a weighted sum of three
components. For the first and third component, we follow the way
in [8] to find them. But for component two, since the real breaking
point is the “propagated source”, we will consider the lengths of
the segments adjacent to the “propagated source” other than those
adjacent to the pin on the candidate breaking line.
After we break the net into sub-nets with degree no more than D,

we can look up the table to find out the topologies for them. Finally,
we merge these subtrees to form the whole A-tree.
After the A-tree for the net is obtained, we apply a heuristic to

repair the errors caused by the nonoptimality of the table and net-
breaking. For each node on the tree (pins and Steiner nodes), we try
to connect it to the closest point on the tree and in the direction of the
source. This will further improve the wirelength and still maintain
the A-tree property.

V. PERFORMANCE-DRIVEN POST-
PROCESSING

So far, we can construct a good A-tree topology for any given
net by net-breaking and table lookup. However, the topology is still
a generic A-tree without consideration of the timing properties of a
specific net. In general, A-tree is a good topology in performance-
driven routing if there is no difference between all the sinks in
criticality. However, for a specific net, different sinks have different
capacitive load, required time and distance to the source. This makes
it more complicated to find a good topology in terms of performance.

Since we already have the A-tree as a good initial topology,
it will be very convenient if we can make improvement on the
obtained A-tree to achieve better timing. In addition, we are aiming
at some very efficient heuristics so that it can match our fast table
lookup based A-tree construction technique. Therefore, we propose
a performance-driven post-processing heuristic to modify the tree
topology to achieve better timing result.

Critical
sink

source

2 3 4 51

T1

T2

T3

T4

T5

T6

6

edge2

source Critical
sink

2 3 4 51

T1

T2

T3

T4

T5

T6

6

edge1

Fig. 8. Branch Moving.

Our heuristic is called “branch moving”, which change the tapping
point for some branches in the tree. At this stage, we no longer
restrict the topology to A-tree. The basic idea is to change the load
distribution on the critical path to reduce the delay on critical sinks.
To easily understand the technique, let us look at a simple example.
As illustrated in Figure 8, we have a tree topology (left) and know
the critical sink by timing analysis. Now we want to look at the
possibility to improve the timing for the critical sink. We first label
the tree nodes on the critical path with numbers. These numbers
represent the distances from the source to the nodes. The bigger the
label on the node, the farther to the source. We use Elmore delay
model for our delay computation. Therefore, the delay on the critical
sink is the sum of a series of RC terms, Delay(Critical sink 6) =∑6

i=1
RiCi, where Ri is the path resistance from source to node i,

Ci is the downstream capacitance of the subtree Ti rooted at node
i, (excluding the critical path). If we change the tapping point of
some branch, the delay on the critical sink will be changed as well.
Hence, we try to move the branches so that the delay on the critical
sink is reduced. For instance, in Figure 8 (left), we find a possible
edge (dashed line) which connect the branch tapped to node 5 to
the subtree tapped to node 3. It is easy to compute the delay change
on the critical sink. ∆d = R3(C5 + Cedge2) − R5(C5 + Cedge1).
Therefore, we can quickly find the delay change on the critical sink
when moving a branch.
In fact, this “branch moving” technique is very flexible. You can

find an edge (not existing in the original tree) between any two
node on the tree and try to connect them. This operation will form
a loop. In order to maintain the tree topology, we can break an
edge in the formed loop to obtain a new tree. However, there are
too many choices for the edge to be connected and broken. In our
implementation, we constrain all the edges in the tree on the Hanan
grid. Therefore, We find all the edges on the Hanan grid which is
not in the tree. Then we measure the “benefit” to connect any of
the candidate edges and break another edge in the formed loop.
Here, the “benefit” is the delay reduction on the critical sink. Among
all the candidates, we simply pick the one with best “benefit” and
update the tree. We apply this “branch moving” iteratively until no
improvement.
So far, we have introduced the “branch moving” technique to

improve the critical sink delay. However, there are several problems
that need careful consideration. First, we should not touch the nodes
on the critical path. Otherwise, we will create detour from source
to the critical sink. Second, although reducing critical sink delay is
the major objective here, we do not want to increase the wirelength
too much for two reasons: 1. more wirelength corresponds to more
routing resources and power, 2. more wirelength could increase the
delay for the whole tree for the increased capacitive load. Hence,
we add a weighted wirelength part in the “benefit” to discourage the
wirelength increase. Finally, moving a branch can reduce the critical
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TABLE II
EXPERIMENTAL RESULTS. * AVERAGE IS OVER ALL 29 TESTCASES.

deg Tree Wirelength WNS(ps) TNS(ps) Runtime

Our Ctree FLUTE Our Ctree FLUTE Our Ctree FLUTE Our Ctree FLUTE
A-tree Final A-tree Final

t1 9 1 1.029 0.914 -0.97 -0.80 -0.97 -0.87 -0.97 -0.80 -0.97 -0.87 1 111 0.11
t2 38 1 1.112 0.936 -5.66 -5.40 -5.71 -5.55 -5.66 -5.40 -5.71 -5.55 1 191 0.57
t3 58 1 1.176 0.809 0.00 0.00 -1.98 -21.61 0.00 0.00 -1.98 -144.3 1 704 1.15
t4 21 1 0.983 0.793 -16.32 -14.33 -15.62 -20.72 -32.34 -28.52 -31.10 -41.03 1 286 0.48
t5 9 1 1.032 0.968 -4.10 -3.81 -3.91 -4.20 -7.95 -7.31 -7.52 -8.07 1 250 0.13
t6 51 1 1.145 0.782 -1.82 0.00 -2.14 -9.76 -1.82 0.00 -2.14 -26.41 1 1255 0.89

n 1885 27 1 1.077 0.860 -4.56 -1.51 -3.73 -6.19 -4.56 -1.51 -3.73 -6.19 1 346 0.73
n 1898 39 1 1.052 0.907 -4.91 -2.73 -4.75 -8.85 -4.91 -2.73 -4.75 -8.85 1 304 0.87
n 2045 54 1 1.181 0.897 -22.71 -22.71 -25.29 -23.28 -126.0 -126.0 -155.4 -147.3 1 455 0.75
n 2049 45 1 1.158 0.924 -2.95 -0.62 -3.55 -5.43 -2.95 -0.62 -5.27 -7.97 1 468 0.84
n 2071 29 1 1.079 0.890 -12.99 -10.66 -14.51 -14.38 -12.99 -10.66 -14.51 -14.38 1 375 0.56
n 2072 69 1 1.180 0.845 -14.72 -12.09 -22.98 -61.55 -48.39 -37.92 -96.73 -1420 1 385 0.74

Avg.* 28 1 1.095 0.915 -7.38 -6.09 -7.41 -10.55 -21.96 -18.76 -22.87 -75.27 1 371 0.487

sink delay, but it could also cause other sinks to become critical.
Therefore, we need to add constraints on “branch moving”. When
picking the candidate edge, we look at the two nodes that the edge
is to connect. If any of the downstream sinks of these two nodes
will become critical after “branch moving”, we will not consider
this edge.

VI. EXPERIMENTAL RESULTS

We test our new method on 2 sets of industrial nets. The first
set is from a design in 65nm technology and the second is from a
design in projected 45nm technology. Two metal layers are used for
routing. These two sets of nets are critical nets extracted from the
designs after the timing analysis. The first set has 17 nets and the
second set has 12 nets.

We try to find performance-driven topology design algorithms in
the public domain. However, most of these algorithms are together
with other interconnect optimization techniques such as buffer in-
sertion and wire sizing. Since our focus is topology design, it is
very hard to find some direct comparison with these algorithms.
Hence, we compare our new algorithm with C-tree [2] and FLUTE
[8]. Both of them are downloaded from the GSRC Bookshelf [15].
Since C-tree algorithm is a combination of timing-driven Steiner tree
construction and buffer insertion, we turned off the buffer insertion
by not specifying any buffer library. In addition, we also turned off
the sink polarity by setting all sinks the same polarity as source.
FLUTE is used to generate near-optimal rectilinear Steiner minimal
trees. All results are generated on a 750MHz Sun Sparc-2 machine.

The result for 6 nets from each set are reported in table II.
We compare the tree wirelength, worst negative slack (WNS), total
negative slack (TNS) and runtime for the three algorithms. Note that
we report WNS and TNS for A-trees obtained by our algorithm
and the final trees obtained after post-processing. We can see the
post-processing technqiue is very effective in reduce WNS and TNS.
The wirelength and runtime are normalized to our algorithm. For all
the 29 nets, our algorithm always achieves the best WNS and TNS
among the three algorithms. We also take the average on all the
29 nets for these measurement. On average, C-tree uses 9.5% more
wirelength than ours as FLUTE uses 8.5% less wirelength. And WNS
and TNS of trees generated by our algorithm are 82.2% and 57.7%
that of C-tree and FLUTE, respectively. From the comparison to
FLUTE, we can see that although the tree generated by our algorithm
has more wirelength than RSMT, their performance is better. This
verifies our proposition that RSMT may not be good for timing. For
the runtime, we are just slightly slower than FLUTE and 371 times
faster than C-tree. Note that for the nets with degree more than 60,
the runtime of our algorithm is about 1ms, which means we can
handle 1000 that kind of high-degree nets in one second.

VII. CONCLUSION

In this paper, we proposed a novel method for interconnect
topology design. First, a table lookup based A-tree algorithm finds
good A-tree topologies very efficiently. Then a performance- driven
post-processing further improves the timing by modifying the A-
tree topology based on the physical information such as sink posi-
tions, capacitive load and required time. Experiments show that the
proposed method produces very promising results in both solution
quality and runtime.
Extending the topology design techniques, our future work will

address interconnect optimization by including buffer insertion and
wire-sizing.
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