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Abstract— The increasing effort on full-chip vali-

dation constrains design cost and time-to-market. A

waveform comparison tool named WCOMP is pre-

sented to automate mixed-signal validation regression

in memory design. Unlike digital waveform compari-

son tools, WCOMP compares mixed-signal waveforms

for functional match instead of graphical match, which

tally with the requirements of full-chip validation re-

gression. Simulations with different regression runs,

process parameters, voltages and temperatures can be

functionally compared. The methods are proved to be

effective in Intel� Flash memory design.

I. Introduction

The increasing memory density and complexity contin-
uously boost the attentions of improving design produc-
tivity to lower design cost and shorten time to market.
One of the bottlenecks in flash memory design is full-chip
validation [1] due to the following reasons. First, simula-
tion of large memory array and control circuit inevitably
requests many computing time. More importantly, hun-
dreds of full-chip mixed-signal simulation waveforms have
to be manually checked to ensure full-chip functionality
including accuracy of voltage placements. Furthermore,
additional full-chip regression runs at the succeeding de-
sign stage for validating small design edits multiply the
efforts.

Similar case happens in performance simulations, where
people simulate smaller scale circuitry along critical path
to analyze performance specifications. It requests thou-
sands of simulations for worst-case analysis with differ-
ent process parameters, supply voltages and temperatures
(PVT). To check whether the performance of analog func-
tion degenerates under different PVT corners largely relies
on designer’s manual work. As a result, full-chip valida-
tion and performance validation may take up to 70% of
design loading in a product development.

There are several innovative solutions published to
speed up simulation time with tolerable accuracy; see for
example [2]. However, tools for functional auto-checking
is largely limited to digital design. One doable way to
assist analog/mixed-signal validation is waveform com-
parison. Currently, there are several waveform compar-
ison tools such as ModelSim [3], SPICE-explorer [4] and
WaveFormer [5]. However, their support in analog signal
is very limited. More importantly, all the above waveform
comparison tools are simply to perform exact compari-
son and then detect waveform differences from its graphi-
cal content. Nevertheless, many waveform differences are
caused by slightly different set of stimuli, PVT’s and clock
cycle time. Therefore, existing comparison method are
only useful for debugging, but not for validation regres-
sion auto-checking. To aid auto regression, we need to
screen out all false alarms in which differences are not
due to circuit functional errors. In this paper, we take an
Intel� flash memory design as a case study. We consider
the following cases as false alarms:

Case 1 : Differences of gate loading, transistor size and
delay between two simulation runs introduce time off-
set during signal ramping.

Case 2 : Delay differences of clock synchronized events
introduce mismatches between two waveforms. A
mixed-signal design usually has a microprogrammed
control unit (MCU) to control full-chip operations in-
cluding analog blocks, such as state machines for flash
memory read and write operations. For instance, we
change the clock cycle time or insert “no-op” instruc-
tions in MCU control code between two simulation
runs for timing adjustment. In this case, a trivial
waveform comparison will report many false alarms.

Case 3 : Simulations under different PVT corners intro-
duce many waveform differences of supply voltages,
pulse widths and delays even though they look like
each other and has same function.
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Fig. 1. The sim-comparison. Black arrows denote the enable
signal shift that caused the analog waveform shift.

In this paper, we present a waveform comparison tool
named WCOMP that aims to automate analog simula-
tion regression check and screen out all false alarms in the
above cases. It tolerates gate delays, aligns analog signal
with synchronous events and linearly transforms wave-
form respectively according to the above three cases. To
the best of our knowledge, this study is the first attempt
of mixed-signal waveform comparison for computer-aided
validation.

WCOMP mainly consists of two components: sim-
comparison and pattern comparison. The sim-comparison
compares one simulation with different runs of regression
regarding to analog/digital signal relevance in synchro-
nous events, which handles Case 1 and Case 2. It is
further divided into point-to-point (p2p) comparison and
time-shift comparison. In considering Case 3, Pattern
comparison is proposed for comparing simulations under
different PVT corners and for judging the similarity of
two waveforms.

Fig. 1 gives an example of the sim-comparison. Golden
waveform (i.e., pre-examined waveform, solid line) and
reference waveform (i.e., waveform under comparison,
doted line) exhibit same analog function for SIG D and
SIG E with several time-shift events caused by their
digital control signals of EN A, EN B and EN C. The
time-shift comparison together with the p2p comparison
will detect those shifts and compare the analog function
(SIG D & SIG E) based on the shifting information. In a
real memory design, there maybe up to 600 control signals
for hundreds analog block.

Fig. 2 shows two examples of the pattern comparison.
In Fig. 2(a), three waveforms from three different PVT
simulations have different voltages, pulse widths and time
delays but they are similar to each other and are consid-
ered as a functional “match”. Fig. 2(b) illustrates a case
that one of those three waveforms has a glitch. In this
case it is considered as a “functional error”.

The rest of this paper is organized as follows. Section II
gives a overview. Sections III, IV and V will give the
detail descriptions of the point-to-point (P2P), time-shift
and pattern comparison respectively. Experiment results
are presented in Section VI to illustrate the effectiveness

(a) Same signal under different
PVT corners.

(b) An error case with one signal
has an unexpected glitch.

Fig. 2. Pattern-comparison.
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Fig. 3. Flow chart of waveform comparison tool WCOMP

of this tool.

II. Overview

The main structure of WCOMP is illustrated in Fig. 3.
The key features as well as the control flow of the tool are
described as follows:

1. WCOMP has an input interface for reading in data
files that contain the waveforms, and a configure file
where comparison parameters are defined. Configure
file defines the option of comparison types (point-to-
point, time-shift and pattern comparison) and names
of signals to be compared and other options such as
tolerance.

2. If the “point-to-point comparison” option is defined,
the tool will only perform point-to-point comparison
with user-defined tolerance and output the compari-
son results.
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3. If the “time-shift comparison” option is defined, the
tool will perform the time-shift comparison. First, it
detects the time-shift events between two waveforms
and divides both golden and reference waveforms into
different time zones. Then the point-to-point com-
parison is used to compare the waveforms for each
time zone.

4. If the “pattern comparison” option is defined, pat-
tern comparison module will be used to extract the
commonality of waveforms in different PVT.

III. Point-to-point comparison

Point-to-point comparison is a basis functionality that
is often called by other components. It simply determines
the graphical differences of two waveforms. To deal with
time off-set of Case 1, a time tolerance window is defined
by voltage tolerance and time tolerance. See Fig. 4 as an
example. Note that the values of tolerances are usually
given by user as an input.

Signal

Time
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Fig. 4. Point-to-point comparison with time tolerance window

Time tolerance window is a rectangle with height of
voltage tolerance (denoted by S tol) and width of time-
tolerance (denoted by T tol). Its center is the data point
of a golden or reference waveform. If any line segment of
the other waveform intersects with this window, we con-
sider two waveforms as graphical match at this data point.
To the best of our knowledge, we can only find a similar al-
gorithm mentioned in [6], in which the tolerance window
is a circle. Our analysis shows that rectangle tolerance
window has advantage over circle tolerance window as it
has linear calculation formula and is more straightforward
for user to set time-tolerance parameters.

IV. Time-shift comparison

Time-shift comparison aims to screen out false alarms
of synchronous delays. It compares the analog signals
when their digital enable signal is shifted for clock cycles.
The flow chart of the time-shift comparison is illustrated
in Fig. 6(a).

In mixed signal designs [7] [8] including memory de-
signs, analog modules are usually controlled by digital

enable signals. Enable signals are controlled by MCU and
may have clock-controlled delays due to clock cycle time
differences and “no-op” insertions. They are also called
Index signals. In our cases, enable signals usually have
a special prefix such as INDEX_. Thus they can easily be
identified. Let N be the total number of index signals. A
state is defined as a vector formed by all index signals
(idx_sig0,idx_sig1,...,idx_sigN). The whole wave-
form can be divided into different time zones according
to state vector changes. The time duration of a given
state value is referred to as state time zone (see Fig. 5).
The criteria that two waveforms are functionally matched
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Fig. 5. Time-shift comparison and state definition

is given by, a) States are in same sequences; b) Each state
has same analog function after aligning the state start
time; c) The duration time of every state in two wave-
forms can be different as long as the their state sequences
are same.

Fig. 6(a) shows the time-shift comparison flow. Note
that it is not feasible to store each state vector value
directly because there may be up to hundreds of index
signals in a real design. To deal with it and save mem-
ory usage, an algorithm of detecting state sequence has
been proposed and was detailed in [9]. In this algorithm,
each index signal initial value and its switch events time.
are captured. After generating the switching events of
each index signal and its own switching sequence, we
combine switching sequence of all index signals into a
state sequence. Each state begin-time and end-time de-
fines a state time zone. Comparing each state time zone
between golden waveform and reference waveform can de-
termine the state time shift as well as determine whether
states are in same sequence.

In a real design, some index signals may switch at the
same time within a given time tolerance (see Fig. 7).
Also, some index signal shifting may introduce new state,
such as state (1,0,1) and (1,0,0) in Fig. 7. We use
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Fig. 6. Flow chart of the time-shift comparison and pattern
comparison

group_state() to detect such cases and group the same
amount of switch events of golden/reference waveforms.
Then group_state() will compare current state between
two waveforms, for instance, if they contains the same sig-
nals within time tolerance) [9]. It returns true or false as a
result of state comparison. If it returns false, a state error
will be reported. After obtaining the grouped state, we
can adjust the boundary of each state and perform the
point-to-point comparison for each “TRUE” state time
zone. In this way, all state shift errors introduced in di-
rectly waveform comparison is tolerated and only real sig-
nal behavior differences after state alignment is considered
as a mismatch.
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Fig. 7. Switch sequence and state

V. Pattern comparison

In the pattern comparison, we compare the waveforms
from different PVT corners for functional check. If two
waveforms are in the same shape, they are considered as
functional match. Although the problem looks related
to pattern recognition, we are cautious when the related
techniques are applied for validation. In particular, the
suggestion of using learning algorithms was quickly re-
jected by designers in our earlier development stage. For
validation automation, robustness is most concerned, in
the sense that designers would prefer the tool misclassifies
two waveforms as different even they are in fact accept-
able, rather than the tool has chances to misclassify two
waveforms as match but they are in fact unacceptable. In
the former situation, designers can still make their own
judgments by manually debugging, whereas in the later
situation, there is probably no chance for the designers to
notify the error.

In this paper, we propose a method that utilizes a sig-
nal processing technique called Wiener filtering in order
to linearly restore the common waveform pattern of sig-
nal waveforms under different PVT corners. This tech-
nique has been successfully applied in channel equaliza-
tion, time-delay estimation and noise reduction [10].

Wiener filter is a finite duration impulse response (FIR)
filter. Let y(t) be a signal representing the reference wave-
form and x(t) be a signal representing the golden wave-
form. The Wiener filter function to transform y(t) is given
by:

x̂ (m) =
P−1∑

k=0

wk · y (m − k) = wT y, (1)

where wk’s are coefficients of Wiener filter and P is the
order of the filter. x̂(m) represents the transformed signal
at time m.

The error between x̂(m) and x(m) is

e(m) = x(m) − x̂(m) = x(m) − wT y. (2)

Filter coefficients wk’s are calculated by solving the un-
derlying least square linear problem such that ||e(t)||2 is
minimized. We apply the Conjugate Gradient Normal
Residue method (CGNR) for solving this least square
problem [11]. One of the advantages of using CGNR over
the standard QR decomposition method is that the un-
derlying Toeplitz matrix does not need to be explicitly
formed.

Fig. 8 shows an example that two waveforms are in dif-
ferent shapes. By using the Wiener Filter technique, we
transform the original waveform (in blue color) in such a
way that the shape is mostly preserved and the error be-
tween the resulting waveform and the transformed wave-
form (in red color) is minimized in least square sense. Af-
ter the transformation through a Wiener filter, the point-
to-point comparison will be used and reports that which
portions of waveform are different.
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(a) Original waveforms. (b) Waveforms after the Wiener
filtering.

Fig. 8. Example of two waveforms in different shapes

The flow chart of the pattern comparison is described
on Fig. 6(b). The detail of the pattern comparison is
summarized into following steps.

Step 1 : reads in the two waveforms under-compared
and take them as two functions F = x(t) and F

′
=

y(t).

Step 2 : the function Judge_shape() examine the wave-
form to judge the basic waveform shape information.
If the shape is a DC value, no transform is needed.
If the shape is a single ramp (half pulse), we make
it to a full pulse for the convenience of transform.
If the shape is similar to a pulse, we need to equal-
ize the pulse widths of two waveforms by interpolate
the sample data in order to perform linear transform,
which is essential as Wiener filter cannot deal with
pulse width changes.

Step 3 : Calculate time relationship between two wave-
form by the correlation between x(t) and y(t) as
shown in following equation, The n that maximizes
Cxy is the time delay between x(t) and y(t).

Cxy(n) =
+∞∑

t=−∞
x(t)y(t + n) (3)

Step 4 : Use Wiener filter to linearly transform wave-
form and make two waveforms similar to each other.
An example is shown in Fig. 9. The blue signal is
transformed into the green signal. We can see that
the transformed green signal matches with red signal
very well. At last, we apply the point-to-point com-
parison with two waveforms to determine if they are
functionally matched.

VI. Experimental Results

We implemented WCOMP in C++. All experiments
were run on an IBM Workstation with 2.4GHz Intel Xeon
CPU. Tables I and II show the sim-comparison results
we got from WCOMP. In Table I, we performed wave-
form comparison with different runs of full-chip simula-
tions and two densities (128Mb flash and 32Mb flash)full-
chip simulations of a same product. It demonstrates high

Fig. 9. Signals after transform

efficiency and fast speed (less than a minute) to compare
up to 1700 signals with 17,000 data points per signal.
The comparison speed is mostly proportional to the total
numbers of data points for all signals. Table II shows the
advantage of time-tolerance and time-shift. In Table II,
there were many false alarms without time tolerance and
time-shifting that makes directly wave comparison inap-
plicable for functional check. Adding time-tolerance and
time-shifting screened out all those false alarms out. Only
user cared functional errors are flagged out.

TABLE I
Comparison between two runs of full-chip simulations and
two densities of simulations. RevTest is for different runs

and DensTest is for two densities.

Waveform No. of Data points Run time Errors Real
name Signals per signal (sec) detected Errors

RevTest1 1760 9672 26.41 0 0
RevTest2 1699 17822 59.23 0 0
RevTest3 1699 7944 15.69 0 0
RevTest4 1699 9388 23.94 0 0
DensTest1 1760 9672 28.11 0 0
DensTest2 1699 17822 50.87 1 1
DensTest3 1699 7944 18.85 3 3
DensTest4 1699 9388 19.91 2 2

TABLE II
Comparison of false alarms without tolerance window and

time-shift algorithm

Wave differences that detected
Waveform by different algorithms

name Without Without Our Manual
Time tol. Time-shift tool check

TolTest1 17 800 17 17
TolTest2 30 1153 30 30
TolTest3 6 635 3 3
TolTest4 16 1 1 1
TolTest5 55 6 6 6
TolTest6 22 0 0 0

Table III gives test result of the pattern comparison.
There were nine PVT corners for each test. The run time
is within 3 minutes to compare up to 24 signals, which met
designers’ expectations. The comparison speed is mostly
proportional to the Wiener filter iteration numbers, as
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TABLE III
Pattern Comparisons Results for Different PVT

Simulations

Test Total Iterations Max. Errors Real
name signal of Wiener run time detected errors

PatTest1 12 140 173s 1 1
PatTest2 12 50 78s 0 0
PatTest3 12 55 153s 1 1
PatTest4 5 12 1s 0 0

illustrated in Table III. All the errors detected by the
pattern comparison are matched with real design errors.
Fig. 10 and Fig. 11 show examples of pattern pass and
pattern fail.

Sig_A

Sig_C

Sig_B

Sig_E

Fig. 10. Pattern compare results (Pass cases for sig a, sig b and
sig c)

Failing area

Fail as one has a pulse

Fail as one pulse is 
degenerated in shaded 
area

Failing area
Sig_D

Sig_E

Fig. 11. Pattern comparison results (Mismatch cases for sig d and
sig e)

VII. Summary

A mixed-signal waveform comparison tool is presented
with the sim-comparison for different runs of simulations
and the pattern comparison for different PVT corners.
This is the first attempt to apply functional match con-
cept in waveform comparison and we have never seen it
in previous waveform comparison tools. The functional
match method is particularly suitable for full-chip valida-
tion regression in Intel� flash memory design practice.
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